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Abstract
The objective of this paper is to prove some fixed point results for self-mappings in partially ordered G-metric spaces using

generalized contractive conditions. Our results are the extensions of the results presented in Agarwal et al. [R. P. Agarwal, M. A.
El-Gebeily, D. O’Regan, Appl. Anal., 87 (2008), 109–116] form ordered metric spaces to partially ordered G-metric spaces. The
usefulness of the results is also illustrated by an example. c©2017 All rights reserved.
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1. Introduction

Banach fixed point theorem is of fundamental importance in fixed point theory. Banach fixed point
theorem has been extended by many authors for different spaces. Recently Ran and Reuring [16] extended
Banach fixed point theorem to partial ordered metric spaces. The results in [16] were improved in [15].
Some more fixed point results in partially ordered metric space can be found in [3].

Gahler introduced the concept of 2-metric spaces in [11] and [12]. Later Dhage introduced the concept
of D-metric space and claimed it to be a generalization of 2-metric space and presented multiple results
related to D-metric spaces in [6–10]. But Mustafa and Sims found that most of the claims made by Dhage
were not correct and gave a generalized concept known as generalized metric space, briefly known as
G-metric space. Mustafa and Sims in [14] discussed existence of fixed points in complete G-metric space.
Following this paper, a number of authors established a number of fixed point theorems setting of G-
metric space (see, e.g., [1, 2, 4] and [5]). Recently, Agarwal et al. in their paper [3] proved some fixed
point theorems of generalized contractive mappings in partially ordered metric spaces. In this paper, we
prove some fixed point results for self-mappings in partially ordered G-metric spaces using generalized
contractive conditions. Our results are the extensions of the results presented in Agarwal et al. [3] from
ordered metric spaces to partially ordered G-metric spaces.
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2. Preliminaries

Definition 2.1. Let f : X→ X be a mapping. If f(x) = x then ”x” is said to be the fixed point of f.

Definition 2.2 ([13]). Let X be a non-empty set and let G : X× X× X → R+ be a function satisfying the
following properties:

(G1) G(x,y, z) = 0 if x = y = z;

(G2) 0 < G(x, x,y) for all x,y ∈ X with x 6= y;

(G3) G(x, x,y) 6 G(x,y, z) for all x,y, z ∈ X with z 6= y;

(G4) G(x,y, z) = G(x, z,y) = G(y, z, x) = · · · , (symmetry in all three variables);

(G5) G(x,y, z) 6 G(x,a,a) +G(a,y, z) for all x,y, z,a ∈ X.

Then the function G is called a generalized metric, or more specifically, a G-metric on X and the pair
(X,G) is called a G-metric space.

Definition 2.3. Let there be a set X with ”�” as a binary relation on X. Then ”�” is called a partial order
over X, if ”�” is reflexive, antisymmetric and transitive for all x,y, z ∈ X, i.e.,

(i) x � x (reflexivity);

(ii) if x � y and y � x then x = y (antisymmetry);

(iii) if x � y and y � z then x � z (transitivity).

Definition 2.4. A set with a partial order defined on it is called a partially ordered set, abbreviated as
poset.

Definition 2.5. Let (X,�) be a poset with ”�” as a partial ordering on X. Suppose there is a G-metric
defined on X. Then the triplet (X,G,�) is called a partially ordered G-metric space.

Definition 2.6 ([13]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points of X, a point
x ∈ X is said to be the limit of the sequence {xn}, if limn,m→+∞G(x, xn, xm) = 0, and therefore {xn} is
G-convergent to x or {xn} G-converges to x. Thus, xn → x in a G-metric space (X,G) if for any ε > 0,
there exists k ∈N such that G(x, xn, xm) < ε for all m,n > k.

Proposition 2.7 ([13]). Let (X,G) be a G-metric space. Then the following are equivalent:

(i) (xn) is G-convergent to x;

(ii) G(xn, xn, x)→ 0, as n→∞;

(iii) G(xn, x, x)→ 0, as n→∞;

(iv) G(xm, xn, x)→ 0, as m,n→∞.

Definition 2.8 ([13]). Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy, if for every ε > 0,
there is k ∈N such that G(xn, xm, xl) < ε, for all n,m, l > k; that is G(xn, xm, xl)→ 0 as n,m, l→ +∞.

Proposition 2.9 ([13]). Let (X,G) be a G-metric space. Then the following are equivalent:

(i) the sequence (xn) is G-Cauchy;

(ii) for every ε > 0, there is k ∈N such that G(xn, xm, xm) < ε, for all n,m > k.

Definition 2.10 ([13]). A G-metric space (X,G) is called G-complete, if every G-cauchy sequence in (X,G)
is G-convergent in (X,G).

Definition 2.11. Let (X,�) be a partially ordered set and F : X → X. Then F is called a non-decreasing
map, if for x,y ∈ X, x � y then F(x) � F(y).
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3. Fixed point theorems in partially ordered metric spaces

Followings are the results given by Agarwal et al. [3] for partially ordered metric spaces which will
further be extended to partially ordered G-metric spaces.

Theorem 3.1 ([3]). Let (X,�) be a partially ordered set and suppose that there is a metric d on X such that (X,d) is
a complete metric space. Assume there is a non-decreasing function ψ : [0,∞)→ [0,∞) with limn→∞ψn(t) = 0
for each t > 0 and also suppose F : X→ X is a non-decreasing mapping with,

d(F(x), F(y)) 6 ψ(d(x,y)), ∀ x � y.

Also suppose either

(1) F is continuous; or

(2) {
if {xn} ⊆ X is a non-decreasing sequence with xn → x in X

then xn � x, for all n holds.

If there exists an x0 ∈ X with x0 � F(x0) then F has a fixed point.

Remark 3.2 ([3]). If ψ : [0,∞)→ [0,∞) is a continuous function (or upper semi-continuous from the right)
with ψ(t) < t for t > 0 then limn→∞ψn(t) = 0 for t > 0, since for fixed t > 0 if an = ψn(t), then
an = ψ(an−1) 6 an−1 so an ↓ β say, and β = ψ(β) (or β 6 ψ(β)) so β = 0.

Theorem 3.3 ([3]). Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X,d) is a
complete metric space. Assume there is a continuous function ψ : [0,∞) → [0,∞) with ψ(t) < t for each t > 0
and also suppose F : X→ X is a non-decreasing mapping with,

d(F(x), F(y)) 6ψ(max{d(x,y),d(x, F(x)),d(y, F(y))}), ∀ x � y.

Also suppose either hypothesis (1) or (2) of Theorem 3.1 holds. If there exists a x0 ∈ X with x0 � F(x0) then F has
a fixed point.

4. Fixed point theorems in partially ordered G-metric spaces

Now we extend the above-mentioned results to partially ordered G-metric spaces.

Theorem 4.1. Let (X,�) be a partially ordered set with a G-metric G defined on X such that (X,G) is G-complete.
Assume there is a non-decreasing function φ : [0,∞) → [0,∞) with limn→∞φn(t) = 0 for each t > 0 and also
suppose that T : X→ X is a non-decreasing self-mapping with,

G(T(x), T(y), T(z)) 6 φ(G(x,y, z)), ∀ z � y � x. (4.1)

Also suppose either

(a) T is continuous; or

(b) if {xn} ⊆ X is a non-decreasing sequence with xn → x in X then xn � x for all n holds.

If there exists an x0 ∈ X with x0 � T(x0) then T has a unique fixed point.

Proof. We claim that φ(t) < t, for all t > 0, since if t0 6 φ(t0) for t0 > 0 then

t0 6 φ(t0) 6 φ
2(t0) 6 · · · 6 φn(t0),

which in turn gives
t0 6 φn(t0),

for each n = {1, 2, · · · } which is a contradiction to the fact that t0 > 0. Therefore φ(t) < t. Also φ(0) = 0.
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Next, if T(x0) = x0 for some x0 ∈ X, then x0 will be a fixed point and we are done. So, suppose T(x0) 6= x0.
Since x0 � T(x0) and T is non-decreasing map, therefore we have

x0 � T(x0) � T 2(x0) � · · · � Tn(x0) � Tn+1(x0) � · · · .

Now, since x0 � T(x0) � T 2(x0) so by using (4.1)

G(T 3(x0), T 2(x0), T(x0)) 6 φ(G(T
2(x0), T(x0), x0)),

and since T 2(x0) � T 3(x0), so by using (4.1)

G(T 4(x0), T 3(x0), T 2(x0)) 6 φ(G(T
3(x0), T 2(x0), T(x0))

6 φ2(G(T 2(x0), T(x0), x0)),

then by the induction we have

G(Tn+2(x0), Tn+1(x0), Tn(x0)) 6 φ
n(G(T 2(x0), T(x0), x0)).

Let ε > 0 be fixed. Choose n ∈ {1, 2, · · · } so that

G(Tn+2(x0), Tn+1(x0), Tn(x0)) 6 ε−φ(ε), (4.2)

as φ(ε) < ε, so ε−φ(ε) > 0 and ε−φ(ε) < ε. Now using Tn(x0) � Tn+1(x0), we have

G(Tn+3(x0), Tn+1(x0), Tn(x0)) 6 G(T
n+3(x0), Tn+2(x0), Tn+2(x0))

+G(Tn+2(x0), Tn+1(x0), Tn(x0))

6 φ(G(Tn+2(x0), Tn+1(x0), Tn+1(x0))

+ [ε−φ(ε)]

6 φ(G(Tn+2(x0), Tn+1(x0), Tn(x0))

+ [ε−φ(ε)] (by using (4.1) and (4.2))
6 φ[ε−φ(ε)] + [ε−φ(ε)] (by using (4.2))
6 φ(ε) + [ε−φ(ε)]

6 ε.

Therefore,
G(Tn+3(x0), Tn+1(x0), Tn(x0)) 6 ε. (4.3)

Also,

G(Tn+4(x0), Tn+1(x0), Tn(x0)) 6 G(T
n+4(x0), Tn+2(x0), Tn+2(x0))

+G(Tn+2(x0), Tn+1(x0), Tn(x0))

6 (G(Tn+4(x0), Tn+2(x0), Tn+2(x0))

+ [ε−φ(ε)] (by using (4.2))

6 (G(Tn+4(x0), Tn+2(x0), Tn+1(x0))

+ [ε−φ(ε)]

6 φ(G(Tn+3(x0), Tn+1(x0), Tn(x0)) (by using (4.1))
+ [ε−φ(ε)]

6 φ(ε) + [ε−φ(ε)] (by using (4.3))
6 ε.
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So we have,
G(Tn+4(x0), Tn+1(x0), Tn(x0)) 6 ε.

This gives by the induction,

G(Tn+k(x0), Tn+1(x0), Tn(x0)) 6 ε, for k ∈ {2, 3, · · · }.

Hence Tn(x0) is a G-cauchy sequence in X. Also since X is G-complete so there exists an x ∈ X with
limn→∞ Tn(x0) = x.

Now if T is continuous then T(x) = x holds since,

T(x) = lim
n→∞ T(Tn−1(x0)) = lim

n→∞ Tn(x0) = x.

Next suppose that {xn} ⊆ X is a non-decreasing sequence with xn → x in X, then xn � x for all n.
Suppose, G(x, T(x), T(x)) = a > 0, i.e., x 6= T(x).
Since limn→∞ Tn(x0) = x, so there exists N ∈ {1, 2, · · · } such that

G(Tn(x0), x, x) <
a

2
, ∀ n > N. (4.4)

Then for n > N, we have

G(x, T(x), T(x)) 6 G(x, Tn+1(x0), Tn+1(x0)) +G(T
n+1(x0), T(x), T(x))

<
a

2
+φ(G(Tn(x0), x, x)) (by using (4.4) and (4.1))

<
a

2
+φ(

a

2
) (by using (4.4))

<
a

2
+
a

2
= a.

This gives,
G(x, T(x), T(x)) < a,

which is a contradiction. Therefore, T(x) = x. Hence in both cases T has a fixed point.
Now to show that fixed point of T is unique, consider w be another fixed point of T . Then T(w) =

w, x 6= w. Then,

G(x, x,w) = G(T(x), T(x), T(w)) 6 φ(G(x, x,w)) < G(x, x,w),

which is a contradiction. Therefore, fixed point of T is unique.

Example 4.2. Let X = R and G : X×X×X→ R+. Define

G(x,y, z) = |x− y|+ |y− z|+ |x− z|,

for all x,y, z ∈ X. Then X is a complete G-metric space. Also x � y, if y 6 x is partial ordering on X.
Let T(x) = x

10 and φ(t) = 9
10t. Clearly, φn(t) =

( 9
10

)n
t→ 0 as n→∞. Then

G(T(x), T(y), T(z)) = G(
x

10
,
y

10
,
z

10
) =

1
10

[|x− y|+ |y− z|+ |x− z|],

and
φ(G(x,y, z)) = φ(|x− y|+ |y− z|+ |x− z|) =

9
10

[|x− y|+ |y− z|+ |x− z|].

Therefore,
G(T(x), T(y), T(z)) < φ(G(x,y, z)).

Also T has a fixed point at x = 0, since T(0) = 0
10 = 0. And this fixed point is unique as well.
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Theorem 4.3. Let (X,�) be a partially ordered set, let G be a G-metric on X such that (X,G) is a complete G-metric
space. Assume there is a continuous function φ : [0,∞) → [0,∞) with φ(t) < t for each t > 0 and also suppose
that T : X→ X is a non-decreasing mapping with,

G(T(x), T(y), T(z)) 6 φ(max{G(x,y, z),G(x, T(x), T(x)),G(y, T(y), T(y)),
G(z, T(z), T(z))}), ∀ z � y � x.

Also suppose either

(a) T is continuous; or

(b) if {xn} ⊆ X is a non-decreasing sequence with xn → x in X then xn � x for all n holds.

If there exists an x0 ∈ X with x0 � T(x0), then T has a unique fixed point.

Proof. By Remark 3.2,
lim
n→∞φn(t) = 0, ∀ t > 0.

Let
λn = G(Tn+2(x0), Tn+1(x0), Tn(x0)).

Since, Tn−1(x0) � Tn(x0), so

λn 6 φ(max{G(Tn+1(x0), Tn(x0), Tn−1(x0)),G(Tn+1(x0), Tn+2(x0), Tn+2(x0)),

G(Tn(x0), Tn+1(x0), Tn+1(x0)),G(Tn−1(x0), Tn(x0), Tn(x0))})

6 φ(max{G(Tn+1(x0), Tn(x0), Tn−1(x0)),G(Tn+2(x0), Tn+1(x0), Tn(x0)),

G(Tn+2(x0), Tn+1(x0), Tn(x0)),G(Tn+1(x0), Tn(x0), Tn−1(x0))}) (by (G3))

6 φ(max{G(Tn+2(x0), Tn+1(x0), Tn(x0)),G(Tn+1(x0), Tn(x0), Tn−1(x0))})

= φ(max{λn, λn−1}).

Now we show that,
λn 6 φ(λn−1). (4.5)

If max(λn, λn−1) = λn−1, then Equation (4.5) holds.
If max(λn, λn−1) = λn, then

λn 6 φ(λn).

Therefore, by the remark, λn = 0 and hence Equation (4.5) is satisfied.
Now since,

λn 6 φ(λn−1) 6 λn−1,

since φ(t) < t, so there exists λ > 0 with λn ↓ λ.
Since λn 6 φ(λn−1) and φ is continuous, so

λ 6 φ(λ).

This gives, λ = 0, and therefore

λn = G(Tn+2(x0), Tn+1(x0), Tn(x0))→ 0, as n→∞.

We claim {Tn(x0)} is a Cauchy sequence.
Suppose this does not hold. Then we can find a δ > 0 and three sequences of integers

{n(k), s(k), t(k)}, n(k) > s(k) > t(k) > k,
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with
mk = G(Tn(k)(x0), Ts(k)(x0), Tt(k)(x0)) > δ, for k ∈ {1, 2, · · · }. (4.6)

Also assume that,
G(Tn(k)−1(x0), Ts(k)−1(x0), Tt(k)(x0)) < δ,

by choosing n(k) and s(k) to be the smallest numbers exceeding t(k) for which (4.6) holds.
Now, we show that mk converges to δ as follows,

δ 6 mk = G(Tn(k)(x0), Ts(k)(x0), Tt(k)(x0))

6 G(Tn(k)(x0), Tn(k)−1(x0), Tn(k)−1(x0))

+G(Tn(k)−1(x0), Ts(k)(x0), Tt(k)(x0))

6 G(Tn(k)(x0), Tn(k)−1(x0), Tn(k)−2(x0))

+G(Tn(k)−1(x0), Ts(k)(x0), Tt(k)(x0))

6 λn(k)−2 +G(T
n(k)−1(x0), Ts(k)(x0), Tt(k)(x0))

6 λn(k)−2 +G(T
s(k)(x0), Tn(k)−1(x0), Tt(k)(x0))

6 λn(k)−2 +G(T
s(k)(x0), Ts(k)−1(x0), Ts(k)−1(x0))

+G(Ts(k)−1(x0), Tn(k)−1(x0), Tt(k)(x0))

< λn(k)−2 +G(T
s(k)(x0), Ts(k)−1(x0), Ts(k)−2(x0)) + δ

< λn(k)−2 + λs(k)−2 + δ.

This implies,
δ 6 lim

n→∞mk < δ,

that is δ < δ, a contradiction.
Hence Tn(x0) is a Cauchy sequence. As X is complete G-metric so, there exists an x ∈ X such that

limn→∞ Tn(x0) = x. Further, if (a) is true then clearly T(x) = x.
If (b) holds, then

G(x, T(x), T(x)) 6 G(x, Tn+1(x0), Tn+1(x0)) +G(T
n+1(x0), T(x), T(x))

6 G(x, Tn+1(x0), Tn+1(x0)) +φ(max{G(Tn(x0), x, x),

G(Tn(x0), Tn+1(x0), Tn+1(x0)),
G(x, T(x), T(x)),G(x, T(x), T(x))})

6 G(x, Tn+1(x0), Tn+1(x0)) +φ(max{G(Tn(x0), x, x),

G(Tn+2(x0), Tn+1(x0), Tn(x0)),G(x, T(x), T(x))}].

Therefore,

G(x, T(x), T(x)) 6 G(x, Tn+1(x0), Tn+1(x0)) +φ(max{G(Tn(x0), x, x),
λn,G(x, T(x), T(x))}).

Since φ is continuous so as n→∞, we get,

G(x, T(x), T(x)) 6 φ(G(x, T(x), T(x))).

Therefore,
G(x, T(x), T(x)) = 0,

which in turn gives,
T(x) = x.
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Now for uniqueness, let w be another fixed point. Then, T(w) = w. Therefore,

G(x, x,w) = G(T(x), T(x), T(w))
6 φ(max{G(x, x,w),G(x, T(x), T(x)),
G(q, T(x), T(x)),G(w, T(w), T(w))})

6 φ(max{G(x, x,w),G(x, T(x), T(x)),G(w, T(w), T(w))})
6 φ(max{G(x, x,w),G(x, x, x),G(w,w,w)})
6 φ(max{G(x, x,w), 0, 0}).

This gives,
G(x, x,w) 6 φ(G(x, x,w)).

So by Remark 3.2,
G(x, x,w) = 0,

which finally implies,
x = w.

Hence, fixed point is unique.
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Mat. (N.S.), 44 (1998), 179–200.
[10] B. C. Dhage, Generalized metric spaces and topological structure, I, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46
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