Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Some fixed point theorems of self-generalized contractions in partially ordered G-metric spaces

Muhammad Akram^{a,*}, Yasira Mazhar^b

^aDepartment of Mathematics, Lock Haven University, Lock Haven, PA, USA. ^bDepartment of Mathematics, Govt. College University, Lahore, Pakistan.

Abstract

The objective of this paper is to prove some fixed point results for self-mappings in partially ordered G-metric spaces using generalized contractive conditions. Our results are the extensions of the results presented in Agarwal et al. [R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Appl. Anal., **87** (2008), 109–116] form ordered metric spaces to partially ordered G-metric spaces. The usefulness of the results is also illustrated by an example. ©2017 All rights reserved.

Keywords: G-metric, partially ordered spaces, generalized contractions, fixed points. 2010 MSC: 47H10, 54H25.

1. Introduction

Banach fixed point theorem is of fundamental importance in fixed point theory. Banach fixed point theorem has been extended by many authors for different spaces. Recently Ran and Reuring [16] extended Banach fixed point theorem to partial ordered metric spaces. The results in [16] were improved in [15]. Some more fixed point results in partially ordered metric space can be found in [3].

Gahler introduced the concept of 2-metric spaces in [11] and [12]. Later Dhage introduced the concept of D-metric space and claimed it to be a generalization of 2-metric space and presented multiple results related to D-metric spaces in [6–10]. But Mustafa and Sims found that most of the claims made by Dhage were not correct and gave a generalized concept known as generalized metric space, briefly known as G-metric space. Mustafa and Sims in [14] discussed existence of fixed points in complete G-metric space. Following this paper, a number of authors established a number of fixed point theorems setting of G-metric space (see, e.g., [1, 2, 4] and [5]). Recently, Agarwal et al. in their paper [3] proved some fixed point theorems of generalized contractive mappings in partially ordered metric spaces. In this paper, we prove some fixed point results for self-mappings in partially ordered G-metric spaces using generalized contractive conditions. Our results are the extensions of the results presented in Agarwal et al. [3] from ordered metric spaces to partially ordered G-metric spaces.

doi:10.22436/jmcs.017.02.14

Received 2016-03-12

^{*}Corresponding author

Email addresses: mxa247@lhup.edu, dr.makram@gcu.edu.pk (Muhammad Akram), yasira.mazhar@gmail.com (Yasira Mazhar)

2. Preliminaries

Definition 2.1. Let $f : X \to X$ be a mapping. If f(x) = x then "x" is said to be the fixed point of f.

Definition 2.2 ([13]). Let X be a non-empty set and let $G : X \times X \times X \to \mathbb{R}_+$ be a function satisfying the following properties:

(G₁) G(x, y, z) = 0 if x = y = z;

(G₂) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$;

(G₃) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$;

- (G₄) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$, (symmetry in all three variables);
- (G₅) $G(x,y,z) \leq G(x,a,a) + G(a,y,z)$ for all $x,y,z,a \in X$.

Then the function G is called a generalized metric, or more specifically, a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 2.3. Let there be a set X with " \leq " as a binary relation on X. Then " \leq " is called a partial order over X, if " \leq " is reflexive, antisymmetric and transitive for all x, y, $z \in X$, i.e.,

- (i) $x \leq x$ (reflexivity);
- (ii) if $x \leq y$ and $y \leq x$ then x = y (antisymmetry);
- (iii) if $x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity).

Definition 2.4. A set with a partial order defined on it is called a partially ordered set, abbreviated as poset.

Definition 2.5. Let (X, \preceq) be a poset with " \preceq " as a partial ordering on X. Suppose there is a G-metric defined on X. Then the triplet (X, G, \preceq) is called a partially ordered G-metric space.

Definition 2.6 ([13]). Let (X, G) be a G-metric space, and let $\{x_n\}$ be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\{x_n\}$, if $\lim_{n,m\to+\infty} G(x, x_n, x_m) = 0$, and therefore $\{x_n\}$ is G-convergent to x or $\{x_n\}$ G-converges to x. Thus, $x_n \to x$ in a G-metric space (X, G) if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$ for all $m, n \ge k$.

Proposition 2.7 ([13]). Let (X, G) be a G-metric space. Then the following are equivalent:

- (i) (x_n) is G-convergent to x;
- (ii) $G(x_n, x_n, x) \rightarrow 0$, as $n \rightarrow \infty$;
- (iii) $G(x_n, x, x) \rightarrow 0$, as $n \rightarrow \infty$;
- (iv) $G(x_m, x_n, x) \rightarrow 0$, as $m, n \rightarrow \infty$.

Definition 2.8 ([13]). Let (X, G) be a G-metric space, a sequence $\{x_n\}$ is called G-Cauchy, if for every $\epsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \epsilon$, for all $n, m, l \ge k$; that is $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Proposition 2.9 ([13]). Let (X, G) be a *G*-metric space. Then the following are equivalent:

- (i) the sequence (x_n) is G-Cauchy;
- (ii) for every $\varepsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$, for all $n, m \ge k$.

Definition 2.10 ([13]). A G-metric space (X, G) is called G-complete, if every G-cauchy sequence in (X, G) is G-convergent in (X, G).

Definition 2.11. Let (X, \preceq) be a partially ordered set and $F : X \rightarrow X$. Then F is called a non-decreasing map, if for $x, y \in X$, $x \preceq y$ then $F(x) \preceq F(y)$.

3. Fixed point theorems in partially ordered metric spaces

Followings are the results given by Agarwal et al. [3] for partially ordered metric spaces which will further be extended to partially ordered G-metric spaces.

Theorem 3.1 ([3]). Let (X, \leq) be a partially ordered set and suppose that there is a metric d on X such that (X, d) is a complete metric space. Assume there is a non-decreasing function $\psi : [0, \infty) \to [0, \infty)$ with $\lim_{n\to\infty} \psi^n(t) = 0$ for each t > 0 and also suppose $F : X \to X$ is a non-decreasing mapping with,

$$d(F(x), F(y)) \leq \psi(d(x, y)), \quad \forall x \leq y.$$

Also suppose either

(1) F is continuous; or

(2)

 $\begin{cases} if \{x_n\} \subseteq X \text{ is a non-decreasing sequence with } x_n \to x \text{ in } X \\ then x_n \preceq x, \text{ for all } n \text{ holds.} \end{cases}$

If there exists an $x_0 \in X$ *with* $x_0 \preceq F(x_0)$ *then* F *has a fixed point.*

Remark 3.2 ([3]). If $\psi : [0, \infty) \to [0, \infty)$ is a continuous function (or upper semi-continuous from the right) with $\psi(t) < t$ for t > 0 then $\lim_{n\to\infty} \psi^n(t) = 0$ for t > 0, since for fixed t > 0 if $a_n = \psi^n(t)$, then $a_n = \psi(a_{n-1}) \leq a_{n-1}$ so $a_n \downarrow \beta$ say, and $\beta = \psi(\beta)$ (or $\beta \leq \psi(\beta)$) so $\beta = 0$.

Theorem 3.3 ([3]). Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Assume there is a continuous function $\psi : [0, \infty) \rightarrow [0, \infty)$ with $\psi(t) < t$ for each t > 0 and also suppose $F : X \rightarrow X$ is a non-decreasing mapping with,

 $d(F(x),F(y)) \leqslant \psi(\max\{d(x,y),d(x,F(x)),d(y,F(y))\}), \quad \forall x \leq y.$

Also suppose either hypothesis (1) or (2) of Theorem 3.1 holds. If there exists a $x_0 \in X$ with $x_0 \preceq F(x_0)$ then F has a fixed point.

4. Fixed point theorems in partially ordered G-metric spaces

Now we extend the above-mentioned results to partially ordered G-metric spaces.

Theorem 4.1. Let (X, \preceq) be a partially ordered set with a G-metric G defined on X such that (X, G) is G-complete. Assume there is a non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ with $\lim_{n\to\infty} \phi^n(t) = 0$ for each t > 0 and also suppose that $T : X \to X$ is a non-decreasing self-mapping with,

$$G(T(x), T(y), T(z)) \leqslant \phi(G(x, y, z)), \quad \forall z \leq y \leq x.$$
(4.1)

Also suppose either

(a) T is continuous; or

(b) *if* $\{x_n\} \subseteq X$ *is a non-decreasing sequence with* $x_n \to x$ *in* X *then* $x_n \preceq x$ *for all* n *holds.*

If there exists an $x_0 \in X$ *with* $x_0 \leq T(x_0)$ *then* T *has a unique fixed point.*

Proof. We claim that $\phi(t) < t$, for all t > 0, since if $t_0 \leqslant \phi(t_0)$ for $t_0 > 0$ then

$$\mathfrak{t}_0 \leqslant \varphi(\mathfrak{t}_0) \leqslant \varphi^2(\mathfrak{t}_0) \leqslant \cdots \leqslant \varphi^n(\mathfrak{t}_0),$$

which in turn gives

$$t_0 \leqslant \phi^n(t_0),$$

for each $n = \{1, 2, \dots\}$ which is a contradiction to the fact that $t_0 > 0$. Therefore $\phi(t) < t$. Also $\phi(0) = 0$.

Next, if $T(x_0) = x_0$ for some $x_0 \in X$, then x_0 will be a fixed point and we are done. So, suppose $T(x_0) \neq x_0$. Since $x_0 \leq T(x_0)$ and T is non-decreasing map, therefore we have

$$\mathbf{x}_0 \preceq \mathsf{T}(\mathbf{x}_0) \preceq \mathsf{T}^2(\mathbf{x}_0) \preceq \cdots \preceq \mathsf{T}^n(\mathbf{x}_0) \preceq \mathsf{T}^{n+1}(\mathbf{x}_0) \preceq \cdots$$

Now, since $x_0 \leq T(x_0) \leq T^2(x_0)$ so by using (4.1)

$$G(T^{3}(x_{0}), T^{2}(x_{0}), T(x_{0})) \leqslant \varphi(G(T^{2}(x_{0}), T(x_{0}), x_{0})),$$

and since $T^2(x_0) \preceq T^3(x_0)$, so by using (4.1)

$$\begin{split} \mathsf{G}(\mathsf{T}^4(\mathsf{x}_0),\mathsf{T}^3(\mathsf{x}_0),\mathsf{T}^2(\mathsf{x}_0)) &\leqslant \varphi(\mathsf{G}(\mathsf{T}^3(\mathsf{x}_0),\mathsf{T}^2(\mathsf{x}_0),\mathsf{T}(\mathsf{x}_0)) \\ &\leqslant \varphi^2(\mathsf{G}(\mathsf{T}^2(\mathsf{x}_0),\mathsf{T}(\mathsf{x}_0),\mathsf{x}_0)), \end{split}$$

then by the induction we have

$$G(T^{n+2}(x_0), T^{n+1}(x_0), T^n(x_0)) \leqslant \varphi^n(G(T^2(x_0), T(x_0), x_0)).$$

Let $\varepsilon > 0$ be fixed. Choose $n \in \{1, 2, \dots\}$ so that

$$G(\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) \leqslant \varepsilon - \phi(\varepsilon), \tag{4.2}$$

as $\varphi(\varepsilon) < \varepsilon$, so $\varepsilon - \varphi(\varepsilon) > 0$ and $\varepsilon - \varphi(\varepsilon) < \varepsilon$. Now using $T^n(x_0) \preceq T^{n+1}(x_0)$, we have

$$\begin{split} \mathsf{G}(\mathsf{T}^{n+3}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) &\leqslant \mathsf{G}(\mathsf{T}^{n+3}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0)) \\ &\quad + \mathsf{G}(\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varphi(\mathsf{G}(\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varphi[\varepsilon - \varphi(\varepsilon)] + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varphi(\varepsilon) + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varepsilon. \end{split}$$

Therefore,

$$G(T^{n+3}(x_0), T^{n+1}(x_0), T^n(x_0)) \le \varepsilon.$$
 (4.3)

Also,

$$\begin{split} \mathsf{G}(\mathsf{T}^{n+4}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) &\leqslant \mathsf{G}(\mathsf{T}^{n+4}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0)) \\ &\quad + \mathsf{G}(\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0)) \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant (\mathsf{G}(\mathsf{T}^{n+4}(\mathsf{x}_0),\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0)) \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varphi(\mathsf{G}(\mathsf{T}^{n+3}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) & \text{ (by using (4.1))} \\ &\quad + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varphi(\varepsilon) + [\varepsilon - \varphi(\varepsilon)] \\ &\leqslant \varepsilon. \end{split}$$

So we have,

$$\mathsf{G}(\mathsf{T}^{n+4}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)) \leqslant \epsilon.$$

This gives by the induction,

$$\mathsf{G}(\mathsf{T}^{n+k}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0))\leqslant\varepsilon,\quad\text{for }k\in\{2,3,\cdots\}.$$

Hence $T^n(x_0)$ is a G-cauchy sequence in X. Also since X is G-complete so there exists an $x \in X$ with $\lim_{n\to\infty} T^n(x_0) = x$.

Now if T is continuous then T(x) = x holds since,

$$\mathsf{T}(\mathsf{x}) = \lim_{n \to \infty} \mathsf{T}(\mathsf{T}^{n-1}(\mathsf{x}_0)) = \lim_{n \to \infty} \mathsf{T}^n(\mathsf{x}_0) = \mathsf{x}.$$

Next suppose that $\{x_n\} \subseteq X$ is a non-decreasing sequence with $x_n \to x$ in X, then $x_n \preceq x$ for all n. Suppose, G(x, T(x), T(x)) = a > 0, i.e., $x \neq T(x)$.

Since $\lim_{n\to\infty} T^n(x_0) = x$, so there exists $N \in \{1, 2, \dots\}$ such that

$$G(T^{n}(x_{0}), x, x) < \frac{a}{2}, \quad \forall \ n \ge N.$$

$$(4.4)$$

Then for $n \ge N$, we have

$$\begin{split} G(x,T(x),T(x)) &\leqslant G(x,T^{n+1}(x_0),T^{n+1}(x_0)) + G(T^{n+1}(x_0),T(x),T(x)) \\ &< \frac{a}{2} + \varphi(G(T^n(x_0),x,x)) & (by \text{ using (4.4) and (4.1)}) \\ &< \frac{a}{2} + \varphi(\frac{a}{2}) & (by \text{ using (4.4)}) \\ &< \frac{a}{2} + \frac{a}{2} = a. \end{split}$$

This gives,

$$\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x})) < \mathfrak{a},$$

which is a contradiction. Therefore, T(x) = x. Hence in both cases T has a fixed point.

Now to show that fixed point of T is unique, consider *w* be another fixed point of T. Then $T(w) = w, x \neq w$. Then,

$$G(x, x, w) = G(T(x), T(x), T(w)) \leq \phi(G(x, x, w)) < G(x, x, w),$$

which is a contradiction. Therefore, fixed point of T is unique.

Example 4.2. Let $X = \mathbb{R}$ and $G : X \times X \times X \to \mathbb{R}_+$. Define

$$G(x, y, z) = |x - y| + |y - z| + |x - z|,$$

for all $x, y, z \in X$. Then X is a complete G-metric space. Also $x \leq y$, if $y \leq x$ is partial ordering on X. Let $T(x) = \frac{x}{10}$ and $\varphi(t) = \frac{9}{10}t$. Clearly, $\varphi^n(t) = \left(\frac{9}{10}\right)^n t \to 0$ as $n \to \infty$. Then

$$G(T(x), T(y), T(z)) = G(\frac{x}{10}, \frac{y}{10}, \frac{z}{10}) = \frac{1}{10}[|x - y| + |y - z| + |x - z|],$$

and

$$\Phi(G(x, y, z)) = \Phi(|x - y| + |y - z| + |x - z|) = \frac{9}{10}[|x - y| + |y - z| + |x - z|].$$

Therefore,

$$G(T(x),T(y),T(z)) < \varphi(G(x,y,z)).$$

Also T has a fixed point at x = 0, since $T(0) = \frac{0}{10} = 0$. And this fixed point is unique as well.

Theorem 4.3. Let (X, \preceq) be a partially ordered set, let G be a G-metric on X such that (X, G) is a complete G-metric space. Assume there is a continuous function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(t) < t$ for each t > 0 and also suppose that $T : X \to X$ is a non-decreasing mapping with,

$$G(T(x), T(y), T(z)) \leq \phi(\max\{G(x, y, z), G(x, T(x), T(x)), G(y, T(y), T(y)), G(z, T(z), T(z))\}), \quad \forall z \leq y \leq x.$$

Also suppose either

(a) T is continuous; or

(b) *if* $\{x_n\} \subseteq X$ *is a non-decreasing sequence with* $x_n \to x$ *in* X *then* $x_n \preceq x$ *for all* n *holds.*

If there exists an $x_0 \in X$ *with* $x_0 \preceq T(x_0)$ *, then* T *has a unique fixed point.*

Proof. By Remark 3.2,

$$\lim_{n\to\infty} \phi^n(t) = 0, \quad \forall \ t > 0.$$

Let

$$\lambda_n = G(T^{n+2}(x_0), T^{n+1}(x_0), T^n(x_0))$$

Since, $T^{n-1}(x_0) \preceq T^n(x_0)$, so

$$\begin{split} \lambda_{n} &\leqslant \varphi(\max\{G(T^{n+1}(x_{0}), T^{n}(x_{0}), T^{n-1}(x_{0})), G(T^{n+1}(x_{0}), T^{n+2}(x_{0}), T^{n+2}(x_{0})), \\ &\quad G(T^{n}(x_{0}), T^{n+1}(x_{0}), T^{n+1}(x_{0})), G(T^{n-1}(x_{0}), T^{n}(x_{0}), T^{n}(x_{0}))\}) \\ &\leqslant \varphi(\max\{G(T^{n+1}(x_{0}), T^{n}(x_{0}), T^{n-1}(x_{0})), G(T^{n+2}(x_{0}), T^{n+1}(x_{0}), T^{n}(x_{0})), \\ &\quad G(T^{n+2}(x_{0}), T^{n+1}(x_{0}), T^{n}(x_{0})), G(T^{n+1}(x_{0}), T^{n-1}(x_{0}))\}) \\ &\leqslant \varphi(\max\{G(T^{n+2}(x_{0}), T^{n+1}(x_{0}), T^{n}(x_{0})), G(T^{n+1}(x_{0}), T^{n}(x_{0}), T^{n-1}(x_{0}))\}) \\ &= \varphi(\max\{\lambda_{n}, \lambda_{n-1}\}). \end{split}$$

Now we show that,

$$\lambda_{n} \leqslant \phi(\lambda_{n-1}). \tag{4.5}$$

If $max(\lambda_n, \lambda_{n-1}) = \lambda_{n-1}$, then Equation (4.5) holds. If $max(\lambda_n, \lambda_{n-1}) = \lambda_n$, then

$$\lambda_n \leqslant \phi(\lambda_n).$$

Therefore, by the remark, $\lambda_n = 0$ and hence Equation (4.5) is satisfied. Now since,

$$\lambda_n \leqslant \phi(\lambda_{n-1}) \leqslant \lambda_{n-1}$$

since $\phi(t) < t$, so there exists $\lambda \ge 0$ with $\lambda_n \downarrow \lambda$. Since $\lambda_n \leqslant \phi(\lambda_{n-1})$ and ϕ is continuous, so

$$\lambda \leqslant \phi(\lambda).$$

This gives, $\lambda = 0$, and therefore

$$\lambda_{\mathfrak{n}} = \mathsf{G}(\mathsf{T}^{\mathfrak{n}+2}(\mathsf{x}_0),\mathsf{T}^{\mathfrak{n}+1}(\mathsf{x}_0),\mathsf{T}^{\mathfrak{n}}(\mathsf{x}_0)) \to 0, \quad \text{as } \mathfrak{n} \to \infty.$$

We claim $\{T^n(x_0)\}$ is a Cauchy sequence.

Suppose this does not hold. Then we can find a $\delta > 0$ and three sequences of integers

$$\{n(k), s(k), t(k)\}, \ n(k) > s(k) > t(k) \ge k,$$

with

$$\mathfrak{m}_{k} = \mathsf{G}(\mathsf{T}^{n(k)}(\mathbf{x}_{0}), \mathsf{T}^{s(k)}(\mathbf{x}_{0}), \mathsf{T}^{t(k)}(\mathbf{x}_{0})) \ge \delta, \text{ for } k \in \{1, 2, \cdots\}.$$
(4.6)

Also assume that,

$$\mathsf{G}(\mathsf{T}^{n(k)-1}(x_0),\mathsf{T}^{s(k)-1}(x_0),\mathsf{T}^{t(k)}(x_0))<\delta,$$

by choosing n(k) and s(k) to be the smallest numbers exceeding t(k) for which (4.6) holds.

Now, we show that m_k converges to δ as follows,

$$\begin{split} \delta &\leqslant m_k = G(T^{n(k)}(x_0), T^{s(k)}(x_0), T^{t(k)}(x_0)) \\ &\leqslant G(T^{n(k)}(x_0), T^{n(k)-1}(x_0), T^{n(k)-1}(x_0)) \\ &\quad + G(T^{n(k)-1}(x_0), T^{s(k)}(x_0), T^{t(k)}(x_0)) \\ &\leqslant G(T^{n(k)}(x_0), T^{n(k)-1}(x_0), T^{n(k)-2}(x_0)) \\ &\quad + G(T^{n(k)-1}(x_0), T^{s(k)}(x_0), T^{t(k)}(x_0)) \\ &\leqslant \lambda_{n(k)-2} + G(T^{n(k)-1}(x_0), T^{s(k)}(x_0), T^{t(k)}(x_0)) \\ &\leqslant \lambda_{n(k)-2} + G(T^{s(k)}(x_0), T^{n(k)-1}(x_0), T^{t(k)}(x_0)) \\ &\leqslant \lambda_{n(k)-2} + G(T^{s(k)}(x_0), T^{s(k)-1}(x_0), T^{s(k)-1}(x_0)) \\ &\quad + G(T^{s(k)-1}(x_0), T^{n(k)-1}(x_0), T^{t(k)}(x_0)) \\ &< \lambda_{n(k)-2} + G(T^{s(k)}(x_0), T^{s(k)-1}(x_0), T^{s(k)-2}(x_0)) + \delta \\ &< \lambda_{n(k)-2} + \lambda_{s(k)-2} + \delta. \end{split}$$

This implies,

$$\delta \leq \lim_{n \to \infty} \mathfrak{m}_k < \delta$$
,

that is $\delta < \delta$, a contradiction.

Hence $T^n(x_0)$ is a Cauchy sequence. As X is complete G-metric so, there exists an $x \in X$ such that $\lim_{n\to\infty} T^n(x_0) = x$. Further, if (a) is true then clearly T(x) = x.

If (b) holds, then

$$\begin{split} \mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x})) &\leqslant \mathsf{G}(\mathsf{x},\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0)) + \mathsf{G}(\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x})) \\ &\leqslant \mathsf{G}(\mathsf{x},\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0)) + \varphi(\max\{\mathsf{G}(\mathsf{T}^n(\mathsf{x}_0),\mathsf{x},\mathsf{x}),\\ \mathsf{G}(\mathsf{T}^n(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0)),\\ \mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x})),\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x}))\}) \\ &\leqslant \mathsf{G}(\mathsf{x},\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0)) + \varphi(\max\{\mathsf{G}(\mathsf{T}^n(\mathsf{x}_0),\mathsf{x},\mathsf{x}),\\ \mathsf{G}(\mathsf{T}^{n+2}(\mathsf{x}_0),\mathsf{T}^{n+1}(\mathsf{x}_0),\mathsf{T}^n(\mathsf{x}_0)),\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x}))\}]. \end{split}$$

Therefore,

$$G(x, T(x), T(x)) \leqslant G(x, T^{n+1}(x_0), T^{n+1}(x_0)) + \varphi(\max\{G(T^n(x_0), x, x), \lambda_n, G(x, T(x), T(x))\}).$$

Since ϕ is continuous so as $n \to \infty$, we get,

 $\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x})) \leqslant \varphi(\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x}))).$

Therefore,

$$\mathsf{G}(\mathsf{x},\mathsf{T}(\mathsf{x}),\mathsf{T}(\mathsf{x}))=0,$$

which in turn gives,

$$\mathsf{T}(\mathsf{x}) = \mathsf{x}.$$

Now for uniqueness, let *w* be another fixed point. Then, T(w) = w. Therefore,

$$\begin{split} G(x, x, w) &= G(T(x), T(x), T(w)) \\ &\leqslant \varphi(\max\{G(x, x, w), G(x, T(x), T(x)), \\ & G(q, T(x), T(x)), G(w, T(w), T(w))\}) \\ &\leqslant \varphi(\max\{G(x, x, w), G(x, T(x), T(x)), G(w, T(w), T(w))\}) \\ &\leqslant \varphi(\max\{G(x, x, w), G(x, x, x), G(w, w, w)\}) \\ &\leqslant \varphi(\max\{G(x, x, w), 0, 0\}). \end{split}$$

This gives,

 $\mathsf{G}(\mathsf{x},\mathsf{x},w) \leqslant \phi(\mathsf{G}(\mathsf{x},\mathsf{x},w)).$

So by Remark 3.2,

 $\mathsf{G}(\mathsf{x},\mathsf{x},w)=0,$

which finally implies,

x = w.

Hence, fixed point is unique.

References

- [1] M. Abbas, T. Nazir, P. Vetro, Common fixed point results for three maps in G-metric spaces, Filomat, 25 (2011), 1–17. 1
- [2] M. Abbas, W. Sintunavarat, P. Kumam, *Coupled fixed point of generalized contractive mappings on partially ordered G-metric spaces*, Fixed Point Theory Appl., **2012** (2012), 14 pages. 1
- [3] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116. 1, 3, 3.1, 3.2, 3.3
- [4] R. P. Agarwal, E. Karapınar, *Remarks on some coupled fixed point theorems in G-metric spaces*, Fixed Point Theory Appl., **2013** (2013), 33 pages. 1
- [5] B. Azadifar, M. Maramaei, G. Sadeghi, On the modular G-metric spaces and fixed point theorems, J. Nonlinear Sci. Appl., 6 (2013), 293–304. 1
- [6] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336. 1
- [7] B. C. Dhage, On continuity of mappings in D-metric spaces, Bull. Calcutta Math. Soc., 86 (1994), 503–508.
- [8] B. C. Dhage, On generalized metric spaces and topological structure, II, Pure Appl. Math. Sci., 40 (1994), 37-41.
- B. C. Dhage, Generalized D-metric spaces and multi-valued contraction mappings, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 44 (1998), 179–200.
- [10] B. C. Dhage, Generalized metric spaces and topological structure, I, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 3–24. 1
- [11] S. Gähler, 2-metrische Rume und ihre topologische Struktur, (German) Math. Nachr., 26 (1963), 115–148. 1
- [12] S. Gähler, Zur Geometrie 2-metrischer Räume, (German) Rev. Roumaine Math. Pures Appl., 11 (1966), 665–667. 1
- [13] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. 2.2, 2.6, 2.7, 2.8, 2.9, 2.10
- [14] Z. Mustafa, B. Sims, *Fixed point theorems for contractive mappings in complete G-metric spaces*, Fixed Point Theory Appl., **2009** (2009), 10 pages. 1
- [15] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. 1
- [16] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. 1