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Abstract
In this paper the asymptotic behavior for all nonoscillatory solutions of third order nonlinear neutral differential equations

have been investigated, where some necessary and sufficient conditions are obtained to guarantee the convergence of these
solutions to zero or tends to infinity as t → ∞. We introduced Lemma 2.1 and Lemma 2.2 which are a generalization of
Lemma 1.5.2 [I. Győri, G. Ladas, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford
University Press, New York, (1991)]. Some examples are given to illustrate our main results. c©2017 All rights reserved.
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1. Introduction

The oscillation theory and the asymptotic behavior criteria for neutral differential equations NDE
received attention of many authors in the last several years for their widely achieve in many applications.
By a solution of (1.1), we mean a function y ∈ C([ty,∞); R), ty > t0, which has the property y(t) +
p(t)f(y(τ(t))) ∈ C3([ty,∞), R), and satisfies (1.1) on [ty,∞). A solution of (1.1) is called oscillatory if
it has arbitrarily large zeros on [ty,∞) otherwise, it is called nonoscillatory, that is a solution is called
nonoscillatory if it is eventually positive or eventually negative. Jaros and Kusano [9] established sufficient
conditions under which all proper solutions of higher order linear NDE are oscillatory where F(t) ≡ 0.
Gyori and Ladas [8], Das et al. [3], obtained sufficient conditions for higher order NDE with constant and
variable delays. Parhi et al. [17], and Rath et al. [18] obtained sufficient conditions for all solutions of
(1.1) to oscillate or tend to zero as t → ∞, where the delays are constants and f(y) = y. Mohamad [15],
Mohamad and Ketab [16] obtained sufficient conditions for oscillation of all solutions of the linear third
order NDE. Karpuz et al. [12] compared oscillatory and asymptotic behaviors of all solutions of higher-
order linear NDE with first-order delay differential equations, depending on two different ranges of the
coefficient associated with the neutral part. El-Sheikh et al. [6] studied the oscillatory behavior of solutions
of general third order NDEs [a(t)(b(t)z ′(t)) ′] ′ + f(t, z(t), z ′(t)) = 0, where z(t) = x(t) + p(t)x(τ(t)) using
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a generalized Riccati transformation. Jiang and Li [11] studied asymptotic nature of a class of third-
order NDEs (r(t)[x(t) + P(t)x(t− τ(t))] ′′) ′+

∑m
i=1Qi(t)fi(x(t−σi(t))) = 0, t > t0 by using a generalized

Riccati substitution and the integral averaging technique, a new Philos-type criterion is obtained which
ensures that every solution of the studied equation is either oscillatory or converges to zero. In this paper
we study asymptotic behavior of (1.1) and established some necessary and sufficient conditions to insure
the convergence of all solutions of (1.1) to zero or tend to infinity. Some examples are given to illustrate
the obtained results.

d3

dt3

[
y(t) + p(t) f(y(τ(t)))

]
+ q(t)g(y(σ(t))) = F(t), t > t0. (1.1)

Under the following assumptions:

(A1) p(t) ∈ C([t0,∞); R+), q(t) ∈ C([t0,∞); R).

(A2) τ(t), σ(t) ∈ C([t0,∞); R), limt→∞ τ(t) = ∞, limt→∞ σ(t) = ∞, where τ(t),σ(t) are increasing func-
tions.

(A3) f ∈ C(R; R), f(u)u 6 δ1, u f(u) > 0, δ1 > 0 is constant.

(A4) There exists a function h(t) ∈ C3([t0,∞); R), such that limt→∞ h(t) = 0 and h ′′′(t) = F(t).

(A5) g ∈ C(R; R), g(u)u > β > 0.

(A
′
3) f ∈ C(R; R), δ2 6 f(u)

u 6 δ1, δ1, δ2 > 0.

2. Asymptotic behavior of Equation (1.1)

In this section, we obtain some main results, for simplicity define the function

z(t) = y(t) + p(t)f(y(τ(t))) − h(t). (2.1)

Using (2.1) into (1.1) leads to
z ′′′(t) = −q(t)g(y(σ(t))). (2.2)

The following lemmas generalized [8, lemma 1.5.2]:

Lemma 2.1. Let u, x, γ, τ, h : [t0,∞)→ R, be such that

u(t) = x(t) + γ(t)f(x(τ(t))) − h(t), (2.3)

where limt→∞ h(t) = 0, τ(t) is strictly increasing, limt→∞ τ(t) = ∞. Assume that (A3) holds, 0 6 γ(t) 6 γ1 <
1
δ1

. If x(t) is an eventually positive (or eventually negative), such that lim inft→∞ x(t) = 0 and limt→∞ u(t) =
L ∈ R exists. Then limt→∞ u(t) = limt→∞ x(t) = 0.

Proof. Let x(t) > 0, x(τ(t) > 0 for t > t0, then from (2.3) we get

u(τ(t)) = x(τ(t)) + γ(τ(t))f(x(τ(τ(t)))) − h(τ(t)),
u(t) − u(τ(t)) = x(t) + γ(t)f(x(τ(t))) − h(t) − x(τ(t)) − γ(τ(t))f(x(τ(τ(t)))) + h(τ(t))

6 x(t) + γ1 δ1 x(τ(t)) − h(t) − x(τ(t)) + h(τ(t)).

Since lim inft→∞ x(t) = 0, let tn be a sequence of points such that limn→∞ tn = ∞ and limn→∞ x(tn) = 0.
Then

u(tn) − u(τ(tn)) 6 x(tn) + γ1 δ1 x(τ(tn)) − x(τ(tn)) − h(tn) + h(τ(tn)),
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as n→∞ the last inequality leads to:

lim
n→∞u(tn) − lim

n→∞u(τ(tn)) 6 lim
n→∞ x(tn) + (γ1δ1 − 1) lim

n→∞ x(τ(tn)) − lim
n→∞h(tn)

+ lim
n→∞h(τ(tn)),

0 6
(
γ1δ1 − 1

)
lim
n→∞ x(τ(tn)),

which implies that limn→∞ x(τ(tn)) = 0.
From (2.3) we get

u(t) > x(t) − h(t),

u(tn) > x(tn) − h(tn),

as n→∞, it follows that L > 0. On the other hand from (2.3) we have

u(t) 6 x(t) + γ1δ1 x(τ(t)) − h(t),

u(tn) 6 x(tn) + γ1δ1 x(τ(tn)) − h(tn),

as n→∞, it follows that L 6 0, hence L = 0. Finally

0 < x(t) 6 u(t) + h(t),

so from the last inequality we conclude that limt→∞ x(t) = 0.

Lemma 2.2. Let u, x,γ, τ,h : [t0,∞)→ R, satisfy (2.3) where limt→∞ h(t) = 0, and let τ(t) be strictly increasing,
limt→∞ τ(t) = ∞.

Assume that (A
′
3) holds, 1

δ2
< γ2 6 γ(t) 6 γ1. If x(t) is an eventually positive (or eventually negative), such

that lim inft→∞ x(t) = 0 and limt→∞ u(t) = L ∈ R exists. Then limt→∞ x(t) = 0.

Proof. Let x(t) > 0, x(τ(t) > 0, for t > t0, then from (2.3) we get

u(τ−1(t)) = x(τ−1(t)) + γ(τ−1(t))f(x(t)) − h(τ−1(t)),

u(τ−1(t)) − u(t) = x(τ−1(t)) + γ(τ−1(t))f(x(t)) − h(τ−1(t)) − x(t)

− γ(t)f(x(τ(t)) + h(t)

> (γ2δ2 − 1)x(t) − γ1δ1x(τ(t)) − h(τ
−1(t)) + h(t).

Since lim inft→∞ x(t) = 0, let τ(tn) be a sequence of points such that limn→∞ τ(tn) = ∞ and

lim
n→∞ x(τ(tn)) = 0.

Then
u(τ−1(tn)) − u(tn) = x(τ

−1(tn)) + γ(τ
−1(tn))f(x(tn)) − h(τ

−1(tn)) − x(tn)

− γ(tn)f(x(τ(tn)) + h(tn),

as n→∞ the last inequality leads to:

lim
n→∞u(τ−1(tn)) − lim

n→∞u(tn) > (γ2δ2 − 1) lim
n→∞ x(tn) − γ1δ1 lim

n→∞ x(τ(tn))
− lim
n→∞h(τ−1(tn)) + lim

n→∞h(tn),
0 >

(
γ2δ2 − 1

)
lim
n→∞ x(tn),

which leads to limn→∞ x(tn) = 0. From (2.3) we get

u(t) > x(t) − h(t),

u(tn) > x(tn) − h(tn),

as n→∞, it follows that L > 0. On the other hand from (2.3) we get
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u(t) 6 x(t) + γ1δ1 x(τ(t)) − h(t),

u(tn) 6 x(tn) + γ1δ1 x(τ(tn)) − h(tn),

as n→∞, it follows that L 6 0, hence L = 0. Finally

0 < x(t) 6 u(t) + h(t),

so from the last inequality we conclude that limt→∞ x(t) = 0.

Theorem 2.3. Assume that A1–A5 hold, 0 6 p(t) < 1
δ1

, q(t) > 0, in addition to

lim inf
t→∞ q(t) > 0. (2.4)

Then every nonoscillatory solution of (1.1) tends to zero as t→∞.

Proof. Assume for the sake of contradiction that (1.1) has a nonoscillatory solution, let y(t) be eventually
positive solution of (1.1) (the case where y(t) be eventually negative is similar and will be omitted). Let
y(t) > 0, y(τ(t)) > 0, y(σ(t)) > 0, for t > t0. From (2.2) it follows that

z ′′′(t) 6 0, t > t0,

which implies that z ′′(t), z ′(t), z(t), are monotone functions. We have two cases for z ′′(t) :

Case 1. z ′′(t) < 0, t > t1 > t0, thus z ′(t) < 0, z(t) < 0 and limt→∞ z(t) = −∞.

From (2.1) we get z(t) > −h(t), thus limt→∞ h(t) = ∞, which is a contradiction.

Case 2. z ′′(t) > 0, t > t1 > t0. We have two cases for z ′(t) :

Case 2.1. z ′(t) > 0, t > t2 > t1. z(t) > 0, z ′(t) > 0, z ′′(t) > 0, z ′′′(t) 6 0, and limt→∞ z(t) = ∞. We
claim that limt→∞ y(t) = ∞, otherwise there exists k > 0 such that y(t) 6 k, and from (2.1) with virtue of
limt→∞ h(t) = 0, we get z(t) < k+ k− h(t) which implies that limt→∞ z(t) <∞ a contradiction.

Condition (2.4) implies that there exist q∗ > 0 and t3 > t2 such that q(t) > q∗ for t > t3. From (2.2)
and (A5) we get

z ′′′(t) 6 −βq(t)y(σ(t)). (2.5)

Integrating (2.5) from t3 to t we get

z ′′(t) − z ′′(t3) 6 −β

∫t
t3

q(s)y(σ(s))ds,

z ′′(t) − z ′′(t3) 6 −βq∗

∫t
t3

y(σ(s))ds,∫t
t3

y(σ(s))ds 6
z ′′(t3) − z

′′(t)

βq∗
<∞.

The last inequality leads to a contradiction since limt→∞ ∫t
t3
y(σ(s))ds = ∞.

Case 2.2. z ′(t) < 0, t > t2 > t1. We have two cases for z(t) :

Case 2.2.1. z(t) < 0, z ′(t) < 0, z ′′(t) > 0, z ′′′(t) 6 0, t > t3 > t2.

Let limt→∞ z(t) = L, −∞ 6 L < 0.
If L = −∞, we can use the same treatment in Case 1 to show that limt→∞ h(t) = ∞, which is a

contradiction.
If −∞ < L < 0, then there exist α > 0 and t∗ > t3 such that z(t) 6 −α, t > t∗, from (2.1) we get

y(t) = z(t) − p(t)f(y(τ(t))) + h(t) 6 −α+ h(t),
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hence y(t) < −α+ ε, ε > 0, then y(t) 6 −α which is a contradiction.

Case 2.2.2. z(t) > 0, z ′(t) < 0, z ′′(t) > 0, z ′′′(t) 6 0, t > t3 > t2.

We claim that lim inft→∞ y(t) = 0, otherwise lim inft→∞ y(t) > 0, then there exist c > 0 and t4 > t3
such that y(t) > c, t > t4, from (2.2) we get

z ′′′(t) 6 −q∗ βy(σ(t)). (2.6)

Integrating (2.6) from t4 to t we get

z ′′(t) − z ′′(t4) 6 −q∗β

∫t
t4

y(σ(s))ds,

z ′′(t) − z ′′(t4) 6 −q∗βc (t− t4),

which implies that limt→∞ z ′′(t) = −∞, which is a contradiction. Hence lim inft→∞ y(t) = 0, so by
Lemma 2.1 it follows that limt→∞ y(t) = 0.

Example 2.4. Consider the neutral differential equation:

[y(t) + (2 +
1
t
)f(y(

t

2
))] ′′′ + (1 +

1
t
)g(y(t)) =

36t+ 48
t6 +

1
t
+

1
t2 , t > 1, (2.7)

τ(t) = t
2 , σ(t) = t, p(t) = 2 + 1

t , f(y(t2 )) = 1 + y(t2 ), q(t) = 1 + 1
t , F(t) = 36t+48

t6 + 1
t +

1
t2 , g(y(t)) =

36t+48
t5 + y(t). One can find that all conditions of Theorem 2.3 are held. To see the condition (2.4):

lim inf
t→∞ q(t) = lim

t→∞(1 +
1
t
) = 1 > 0.

So, every nonoscillatory solution of (2.7) tends to zero as t→∞. For instance y(t) = 1
t is such a solution.

Theorem 2.5. Assume that A1–A5 hold, 0 6 p(t) 6 p∗ < 1
δ , q(t) 6 0 addition to

lim sup
t→∞ q(t) < 0. (2.8)

Then every nonoscillatory solution y(t) of (1.1) tends to zero or |y(t)|→∞ as t→∞.

Proof. Let y(t) be an eventually positive solution of (1.1). Thus for t > t0, y(t) > 0, y(τ(t)) > 0, y(σ(t)) >
0. From (2.2) it follows that z ′′′(t) > 0, t > t0, which implies that z ′′(t), z ′(t), z(t) are monotone functions.
We have two cases for z ′′(t):

Case 1. z ′′(t) > 0, t > t1 > t0, hence z ′(t) > 0, z(t) > 0 and limt→∞ z(t) = ∞, which implies that
limt→∞ y(t) = ∞, otherwise limt→∞ y(t) < ∞, so there exists c > 0 such that y(t) 6 c, t > t∗ > t1 then
from (2.1) we get z(t) 6 c+ p∗ δ c− h(t) implies that limt→∞ z(t) <∞, which is a contradiction.

Case 2. z ′′(t) < 0, t > t1 > t0. We have two cases for z ′(t):

Case 2.1. z ′(t) < 0, t > t2 > t1, in this case we have z(t) < 0, z ′(t) < 0, z ′′(t) < 0, z ′′′(t) > 0 and
limt→∞ z(t) = −∞.

From (2.1) we get z(t) > −h(t), it follows that limt→∞ h(t) = ∞, which is a contradiction.

Case 2.2. z ′(t) > 0, t > t2 > t1. We have two cases for z(t):

Case 2.2.1. z(t) > 0, t > t3 > t2, thus z(t) > 0, z ′(t) > 0, z ′′(t) < 0, z ′′′(t) > 0.

Let limt→∞ z(t) = L, 0 < L 6 ∞. If L = ∞ we can use the same treatment in Case 1 to show that
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limt→∞ y(t) = ∞. If 0 < L <∞, then by (2.8) there exists q∗ < 0 such that q(t) 6 q∗ < 0. From (2.2) and
(A5) we get

z ′′′(t) > −βq(t)y(σ(t)). (2.9)

Integrating (2.9) from t3 to t we get

z ′′(t) − z ′′(t3) > −β

∫t
t3

q(s)y(σ(s))ds,

z ′′(t) − z ′′(t3) > −βq∗
∫t
t3

y(σ(s))ds,

∫t
t3

y(σ(s))ds 6
z ′′(t) − z ′′(t3)

−βq∗
<∞, t > t3.

The last inequality implies that lim inft→∞ y(t) = 0. By Lemma 2.1, it follows that limt→∞ y(t) = 0.
However from (2.1) we find

z(t) 6 y(t) + p∗ δ y(τ(t)) − h(t).

As t→∞ the last inequality leads to L 6 0, which is impossible since z(t) > 0, z ′(t) > 0.

Case 2.2.2. z(t) < 0, t > t3 > t2, thus z(t) < 0, z ′(t) > 0, z ′′(t) < 0, z ′′′(t) > 0.

We claim that lim inft→∞ y(t) = 0, otherwise lim inft→∞ y(t) > 0, there exist c > 0 and t4 > t3 such
that y(t) > c, t > t4 from (2.2) we get

z ′′′(t) > −q∗βy(σ(t)). (2.10)

Integrating (2.10) from t4 to t we get

z ′′(t) − z ′′(t4) > −q∗ β

∫t
t4

y(σ(s))ds,

z ′′(t) − z ′′(t4) > −q∗ βc(t− t4),

the last inequality implies that limt→∞ z ′′(t) = ∞, which is a contradiction. Hence lim inft→∞ y(t) = 0,
so by Lemma 2.1 it follows that limt→∞ y(t) = 0.

Example 2.6. Consider the neutral differential equation

[
y(t) + e−

1
4 f(y(

t− 1
4

))
] ′′′

− e−2g(y(t)) = −2e−t −
1
64
e−

t
4 , t > 1, (2.11)

τ(t) = t−1
4 , σ(t) = t, p(t) = e−

1
4 , q(t) = −e−2, F(t) = −2e−t − 1

64e
− t

4 , f(y) = y, g(y(t)) = e2y(t). One
can find that all conditions of Theorem 2.5 are held. To see this condition (2.6):

lim sup
t→∞ q(t) = lim

t→∞−e−2 = −0.135 < 0.

So, every nonoscillatory solution of (2.11) tends to zero or |y(t)| → ∞ as t → ∞. For instance y(t) = e−t

is such a solution.

Theorem 2.7. Assume that A1–A5 hold and, p1 > p(t) > p2 >
1
δ2

, q(t) > 0, in addition to

lim inf
t→∞ q(t) > 0.

Then every nonoscillatory solution of (1.1) tends to zero as t→∞.
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Proof. The proof is similar to the proof of Theorem 2.3, only we used Lemma 2.2 instead of Lemma 2.1.

Theorem 2.8. Assume that A1–A5 hold, p1 > p(t) > p2 >
1
δ2

, q(t) 6 0 addition to

lim sup
t→∞ q(t) < 0.

Then every nonoscillatory solution y(t) of (1.1) tends to zero or |y(t)|→∞ as t→∞.

Proof. The proof is similar to the proof of Theorem 2.5, only we used Lemma 2.2 instead of Lemma 2.1.
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