
A. Fakharzadeh, S. Hashemi / TJMCS Vol .5 No.3 (2012) 146 - 152 
 

146 

 

 

 

 

 

 
 

 

Available online at 

http://www.TJMCS.com 
  

The Journal of Mathematics and Computer Science Vol .5 No.3 (2012) 146 - 152 

 

 

Solving a Class of Nonlinear Optimal Control Problems by Differential 

Transformation Method 
 

A. Fakharzadeh 
Department of Mathematics, Shiraz University of Technology 

a_fakharzadeh@sutech.ac.ir 
 

S. Hashemi 
Department of Mathematics, Shiraz University of Technology 

s.hashemi@sutech.ac.ir 

 
 
 
 
Received: February 2012, Revised: November 2012 
Online Publication: December 2012 

 

Abstract 

 Based on the Differential Transformation Method (DTM), a solution procedure for solving a 
class of nonlinear quadratic optimal control problems is presented in this paper. The reason 
for selecting this solution procedure is the less computational cost in comparison with the 
ordinary solution methods of original problem. First, the problem is converted to a two-point 
boundary value problem then the new problem is transferred into a set of algebraic 
equations by applying the differential transformation properties. By presenting the 
algorithmic solution procedure, two numerical examples are given to demonstrate the 
simplicity and efficiency of the new method. 
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   1.   Introduction 

 Optimal control theory has been widely used in different fields such as biomedicine [1], aircraft 

systems [2], robotic [3] and etc. But in all these areas, the nonlinear systems are a challenging task 

which has been studied extensively for decades. In many cases, the optimal control law can be 

derived by using the famous Pontryagin’s maximum principle. However,  for the nonlinear OCP’s, 

this approach leads to a nonlinear two-point boundary value problem (TPBVP), that unfortunately 
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in general cannot be solved analytically. Therefore, many researchers have tried to find an 

approximate solution for these nonlinear TPBVP’s. Regarding this fact, in the recent years, some 

new applications of finding an approximate analytical solution methods for TPBV differential 

systems have been presented to solve the related optimal control problems, such as Variational 

Iteration Method [4], Homotopy method [5], Optimal Homotopy Perturbation Method [6]. In 

sequential, here, we employ DTM to solve a class of nonlinear optimal control problems. 

The organization of the paper is as follows. In section 2, we discussed the quadratic nonlinear OCP 

and its necessary and sufficient extreme conditions, and then the differential transformation 

method is explained in next section. Section 4 is devoted to present a DT-Based Algorithm for 

solving TPBVP. Section 5 presents two useful numerical examples in order to demonstrate the 

application of the method and its efficiency; finally section 6 concludes the paper. 

 

2. Problem statement 

 

A nonlinear quadratic optimal control problem in a general form can be presented as [7]: 

0

1
: [ , ] ( ( ) ( ) ( ) ( )) ,

2

. : ( , ( )) ( , ( )) ( ),

ft T T

t
Min J x u x t Q x t u t R u t dt

S to x f t x t g t x t u t
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with ( ) nx t   denoting the state variable, ( ) mu t  denoting the control variable and 0 , fx x are 

the initial and final states at 0 , .ft t  Moreover f and g are two continuously differentiable 

functions in all arguments and  ,n n m mQ R    are positive semi-definite and positive definite 

matrices, respectively. 

According to the Pontryagin’s maximum principle [8], the optimality conditions for (1) are 

determined by the following nonlinear TPBVP: 
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where ( ) nt   is the co-state vector with the i-th component ( ), 1, 2,...,i t i n  and 

1( , ) [ ( , ),..., ( , )]T

ng t x g t x g t x with ( , ) m

ig t x  . Also the optimal control law is demonstrated 

by * 1 ( , ) .Tu R g t x                                                                                                              (3) 

 The system (2) contains a nonlinear TPBVP that in general cannot be solved analytically except in a 

few simple cases. In order to overcome this difficulty, we incline to apply the DTM approach to 

solve it. Therefore, the next section is devoted to illustrate this method. 

 

3. Differential Transformation Method 

 

We know that a (piecewise) smooth function u(x) can be expended in Taylor series about x=0 as: 

0
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k k
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(4) 

Hence, we define the differential transformation of u(x) as: 

0

1
( ) ( ) .

!

k

xk

d u
k

k dx
U

 
(5) 

Then one can deduce that the inverse differential transform of U(k) is: 
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(6) 

 Based on the above definitions, the fundamental mathematical operations performed by 

differential transform method is shown from [9] in the following Table. 

 
Table 1. SOME DIFFERENTIAL TRANSFORMATION RELATIONSHIPS 

Original function Transformed function 
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4. DT-Based Algorithm for solving the TPBVP 

 

        To solve (2) by DT approach, first we solve the following initial value problem, using DT 

method,  
1
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 where n  is an unknown parameter to be determined. For the sake of simplicity, let us define 

the right hand sides of (7) as follows: 
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Thus the (7) changes to: 
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(9) 

According to DTM, for solving an initial value problem such as (9) we can base on the rules 

mentioned in Table1 construct a recursive relation as follows: 
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(10) 

Which in that  , ,X W and H are the differential transfer of , ,x w and h respectively. 

We present the following algorithm for solving TPBVP’s: 

Step1. Let 0(0) ( )X x t , (0)    and determine N, (N is the number of terms to be kept in the 

Taylor series.) 
Step2. Obtain the differential transformation form (9) based on the rules mentioned in Table1. 

Determine the recursive relations for ( ), ( ).X k k  

Step3. Calculate ( )X k  and ( )k for 1,2,..,k N from the obtain recursive equations in step 2. 

Step4. Construct 
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Step5: Solve the equation ( )f fx t x to compute an approximation value for .  

If ( )fx t is free, solve ( ) 0ft   to calculate an approximation value for  . 

Step6. Determine the optimal control solution by the optimal control law * 1( ) ( )Tu t R g t  . 

 

5. Numerical examples and comparison  

 

To show the advantages of the mentioned new method in the previous section, here we present 

numerical simulations of two different cases. The first ones, has the terminal condition and in the 

other one, the terminal condition is free. The selected examples were solved in [4] by VIM. More 

than our new method, we solved the related TPBVP’s by fourth-order Runge-Kutta method as well 

to have a suitable comparison. We applied MAPLE 13 for calculating the coefficient of the recursive 

equations. 

Example 5.1. Consider the following quadratic optimal control problem with the give initial and 

terminal conditions: 

21
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By apply the PMP, we could reach to the following co-state system: 
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By regarding (3) the optimal control law for this problem is * 1
( ) ( ).

2
u t t  We know that here   

is an unknown parameter to be determined. According to Table 1, the following recursive formulas 

are determined:  
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By means of DTM algorithm with 3N  , 1   was obtained. Simulated curves of the state 

trajectory and control law are computed and shown in figure 1 and figure 2, respectively. Moreover 

they compared with simulation curves that computed by fourth-order Runge-Kutta method. 

 

 
Figure 1.The suboptimal state x(t), Example 5.1. 

 

 

 

Figure 2.The suboptimal control u(t), Example 5.1. 

 
In comparison with [4], the curves are similar but the computations and consumed time is less. 

 
Example 5.2. We considered the nonlinear quadratic optimal control problem where its terminal 
time is free, described as follows: 
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By apply the PMP, we could reach to the following co-state system: 
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Here the optimal control is *( ) ( ).u t t   With help of DTM algorithm, which described in section 

4, the obtained optimal trajectories and control are shown in figures 3, 4 and 5 respectively. They 
also compared with simulation curves that computed by fourth-order Runge-Kutta method. 
 

 

Figure 3.The suboptimal state (t), Example 5.2. 

 

 
Figure 4.The suboptimal state (t), Example 5.2. 
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Figure 5.The suboptimal control u(t), Example 5.2 

 
6. Conclusions  

 

We applied the DT approaches to solve an important class of nonlinear quadratic optimal control 
problems. Compared with the presented classical solution method for such problems, the DTM has 
much less computation with remarkable simplicity. This method is an approximated analytical 
solution as a differential series in which the coefficients can be computed much easy and accurate. 
Also, the comparison results with the simulations with VIM and direct use of fourth-order Runge-
Kutta method, conformed these facts. 
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