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Abstract 

In this paper we consider the single facility location problem with respect to a given 
set of existing facilities in the presence of an arc-shaped barrier. A barrier is considered a 
region where neither facility location nor travelling is permitted. We present a             
mixed-integer nonlinear programming model for this single facility location problem. The 
objective of this problem is to locate this single facility such that the sum of the rectilinear 
distances from the facility to the demand points is minimized. Test problems are presented 
to illustrate the applicability of the proposed model. 
 

Keywords:  Facility location problem, Arc-shaped barrier, Mixed-integer nonlinear 
programming model, rectilinear distance 
 

   1.   Introduction. 

 Location theory is one of the branch of operations research and contains many dues which are 

related to locating facilities on the one hand, decisions in management, economy, and production 

planning on the other hand [1]. Facility location problems in the presence of barrier occur in almost 
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every real-world application and have more practical relevance than general facility location 

problems, but they have not been given much attention until lately. The location of a new 

warehouse with respect to a given set of distribution center or the location of public service centers 

are only some examples for a wide range of potential applications. 

[2]considered problem with circular barrier with Euclidean distance and this problem has 

been become one of the most considerable issues and is referred to as median problem with 

barrier. [3] considered two cases of forbidden and barrier regions and used the concept of visibility 

in a network with the location point as the source and also assumed some non-convex barriers 

functions to be convex. Then, they used a Simulated Annealing (SA) method for computing global 

optimal locations of new facilities. [4] generalized the results of [5] and provided arbitrary 

barriers with rectilinear distance which there was interaction between a facility and the existing 

facilities and among the existing facilities and suggested a suitable model for the finite size facility 

locations problems. They introduced a heuristic algorithm for solving this location problem. [6] 

considered rectangular barriers and facilities and considering barrier locations as variables and 

solved the new facility location problem using the contour line approach. [7] analyzed a similar 

problem with minimax objective and finite facility location and they presented a new concept to 

classify cells based on their cell corners.  

[8] considered a line barrier with a specified number of flat screens which divided the plane 

into two subplanes where distance functions were measured by any metric. Travelling from one 

sub-plane to the other has to be through one of these passages. [9] used this approach that that the 

feasible region can be divided into some convex regions.  

[10] introduced the location problem with a probabilistic line barrier with rectilinear distance 

metric and designed a model for single facility location problem in the presence of barriers and 

proposed a solution methodology in which the feasible solution passages was divided into half-

planes. Here, we present a mixed integer nonlinear programming model for the single facility 

location problem in the presence of an arc-shaped barrier. The objective function is to minimize a 

total cost function consisting of the sum of costs directly proportional to the weighted rectilinear 

distances among new facility and existing facilities. This study is presented in the following 

sections. In Section 2, we provide preliminaries, including the related notations and definitions of 

the problem. In Section 3, a mixed-integer nonlinear programming model for the given problem is 

defined. A numerical example is provided in Section 4. Section 5 includes conclusions and further 

research directions. 

 

2. Problem Definition 

Let 𝐵 be a union of a finite number of barrier sets in 𝑅2and 𝐹 = ℜ2/ (𝐵) be the feasible region 

in 𝑅2. Let 𝐸𝑥𝑗 =  𝑥𝑗 , 𝑦𝑗  , 𝑗 = 1 … ,𝑚, indicate the location of the jth existing facility in the plane, and 

ℰ𝓍 = { 𝐸𝑥𝑗 ∈ ℜ
2: j = 1, ..., m } show the set of locations for the m existing facilities. Considering two 

arbitrary points 𝑋, 𝑌𝜖𝐹,          the p-norm barrier distance between two points is defined as: 𝑙𝑝
𝐵(X, Y) 

= inf {d (P): P a feasible X-Y path}, or in other words, the infimum of the lengths of all permitted 

paths (shortest path) between X and Y where P is a feasible path between two arbitrary 

points 𝑋, 𝑌𝜖𝐹 and d (P) is the length of the feasible X-Y path. Consider 𝑙𝑝(𝑋, 𝑌) as the p-norm 

distance between two arbitrary points 𝑋, 𝑌𝜖𝐹. Generally, The two arbitrary points 𝑋, 𝑌𝜖𝐹 are called 

p-visible if the barrier distance between the two points is equal to the non-barrier distance,    

𝑙𝑝
𝐵 𝑋, 𝑌 = 𝑙𝑝(𝑋, 𝑌), and they are named p-shadow from each other if 𝑙𝑝

𝐵 𝑋, 𝑌 > 𝑙𝑝(𝑋, 𝑌). Consider a 

plane  with m existing facilities and an arc-shaped barrier with length of arc 𝐿 . It is desired to add a 

new facility to the plane. Generally, the Weber problems with an arc-shaped barrier can be 

formulated as: 
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𝑚𝑖𝑛 𝑤𝑗 𝑙𝑝

𝑚

𝑗=1

 𝑋, 𝐸𝑋𝑗   
 

(1) 

𝑤𝑗  is the positive weight of the jth existing facility, EXj= (xi,yi). Consider an arc-shaped barrier 

which is part of a circle with radius of R and corresponding angle to the arc is 𝜃. Here, the starting 

point of the barrier is denoted as Xs = (xs, ys).  

Fig.1 shows the facility location problem with an arc-shaped barrier. 

 
 

 
In this model, we defined Ls as straight line which is passed from existing facility and new 

facility, and the equation of arc is considered based on related circle. As a result 

problem,  𝑥1
∗ , 𝑦

1
∗ and  𝑥2

∗ , 𝑦
2
∗  are the coordinates of the roots of solution quadratic equation from 

crossing Ls and arc, and (𝑥∗, 𝑦∗) is assigned to one of this roots which is matched to considered 

interval based on shadow condition. 

 According to shadow conditions, there are two routes for calculating distance between two 

points. In order to computation of shortest path between two points X = (x, y) and EXj = (xj,yj), 

variables  𝐷𝑗
′  𝑎𝑛𝑑 𝐷𝑗

′ ′ are defined as: 

𝐷𝑗
′ = │𝑥 − 𝑥𝑒│+ │𝑦 − 𝑦𝑒│+ │𝑥𝑗 − 𝑥𝑒│+ │𝑦𝑗 − 𝑦𝑒│ (2) 

𝐷𝑗
′ ′= │𝑥 − 𝑥𝑠│+ │𝑦 − 𝑦𝑠│+ │𝑥𝑗 − 𝑥𝑠│+ │𝑦𝑗 − 𝑦𝑠│ (3) 

 

So, for solving the shortest permitted path between two points, 𝐷𝑗  , we have:  

𝐷𝑗  = min⁡{ 𝐷𝑗
′ ,  𝐷𝑗

"} (4) 

The equation of crossing the barrier arc with line (Ls) is a quadratic equation. For checking that 

crossing Ls and arc-shaped barrier has roots, we calculate variable 𝐻𝑗  as follow: 

 

𝐻𝑗 =
 4 𝑦𝑗 − 𝑦  𝑥 𝑏 − 𝑦𝑗  + 𝑥𝑗   𝑦 − 𝑏  − 4𝑎 𝑥𝑗 − 𝑥 

2
 

 𝑥2 − 𝑥1 
2

− 

 

 

(5) 
 4   𝑦𝑗 − 𝑦 

2
+  𝑥𝑗 − 𝑥 

2
  𝑥 𝑏 − 𝑦𝑗  + 𝑥𝑗   𝑦 − 𝑏 +  𝑎2 − 𝑅2  𝑥𝑗 − 𝑥 

2
  

 𝑥𝑗 − 𝑥 
4  

For specifying condition, define the binary variable 𝑧𝑗  is defined. 

 

 

 
3. Proposed Model 
 

The proposed model is to find the optimal location of new facility minimizing the total 

weighted rectilinear barrier distances. Here, the facility location problem with an arc-shaped 

barrier can be formulated as:  

Figure1. Problem with presence of an arc-shaped barrier 

barrier lem  
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The objective function (6) minimizes the weighted barrier distance between the facility and the 

existing customers. Constraint (7) guarantee equations from crossing Ls and arc have solution. 

Equations (8) and (9) separate double root and dual root. Constrains (10) and (11) ensure that 

solutions from crossing are feasible. Constrain (12) guarantees that two points of new facility and 

min 𝑧 =  𝑊𝑗 [𝑍𝑗  𝑇𝑗∆𝑗 + 𝑇𝑗
′∆𝑗

′ 𝐹𝑗 (𝐴𝑗 + (1 − 𝐴𝑗 )𝛾𝑗 )(𝛺𝑗 {│𝑥 − 𝑥𝑒│ + │𝑦 − 𝑦𝑒│ + │} +

𝑚

𝑗=1

 

│𝑥𝑗 − 𝑥𝑒│ +  𝑦𝑗 − 𝑦𝑒  } + (1 − 𝛺𝑗 ){│𝑥 − 𝑥𝑠│ + │𝑦 − 𝑦𝑠│ + │𝑥𝑗 − 𝑥𝑠│ + │𝑦𝑗 − 𝑦𝑠│}) 

+│𝑥 − 𝑥𝑗│ + │𝑦 − 𝑦𝑗│] 

 

 
(6) 

s.t.  

𝑧𝑗 =  
1, 𝐻𝑗 ≥ 0

0, 𝐻𝑗 < 0
  (7) 

𝑇𝑗 =  
1, 𝐻𝑗 = 0

0, 𝑜𝑡ℎ𝑒𝑟𝑠
   (8) 

𝑇𝑗
′ =  

1, 𝐻𝑗 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑠
  (9) 

𝑇𝑗 + 𝑇𝑗
′ = 1 (10) 

∆𝑗=  
1, 𝑥𝑠 < 𝑥1

∗ = 𝑥2
∗ < 𝑥𝑒  𝑎𝑛𝑑 𝑦𝑠 < 𝑦1

∗ = 𝑦2
∗ < 𝑦𝑒

0                        𝑜𝑡ℎ𝑒𝑟𝑠                                                   
  (11) 

𝐹𝑗 =  
1,                                  

𝑥∗−𝑥

𝑥∗−𝑥𝑗
< 0 𝑜𝑟 

𝑦 ∗−𝑦

𝑦∗−𝑦𝑗  
< 0  

  0,                                            𝑜𝑡ℎ𝑒𝑟𝑠                         

          ∀ 𝑗 

 

 
(12) 

𝐴𝑗 =  
1     𝑥 = 𝑥𝑗  𝑜𝑟 𝑦 = 𝑦𝑗
0     𝑥 ≠ 𝑥𝑗  𝑎𝑛𝑑 𝑦 ≠ 𝑦𝑗

              ∀ 𝑗 (13) 

𝑔𝑗 =  
1, 𝑥 > 𝑥𝑗
0, 𝑥 < 𝑥𝑗

                    ∀ 𝑗 (14) 

𝑠𝑗 =  
1, 𝑦 > 𝑦𝑗
0, 𝑦 < 𝑦𝑗

                 ∀ 𝑗 (15) 

𝐵𝑗 =  
1,  1 − 𝑔𝑗  𝑥𝑠 + 𝑔𝑗𝑀𝑎𝑥 𝑥, 𝑥𝑠 <  𝑅2 −  𝑦 − 𝑏 2 + 𝑎 < 𝑥𝑒 . 𝑔𝑗 +  1 − 𝑔𝑗  min 𝑥, 𝑥𝑒 , 𝑦𝑠 < 𝑦 < 𝑦𝑒      

0, 𝑜𝑡ℎ𝑒𝑟𝑠
 ∀ 𝑗 

(16) 

𝐵𝑗
′ =  

1,  𝑠𝑗  𝑦𝑠 +  1 − 𝑠𝑗  𝑀𝑎𝑥 𝑦, 𝑦𝑠 <  𝑅2 −  𝑥 − 𝑎 2 + 𝑏 < 𝑦𝑒 . (1 − 𝑠𝑗 ) + 𝑆𝑗 min 𝑦, 𝑦𝑒 , 𝑦𝑠 < 𝑥 < 𝑦𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑠

         ∀ 𝑗 

 

(17) 

𝑐𝑗 =  1,  1 − 𝑠𝑗  𝑦𝑠 + 𝑠𝑗𝑀𝑎𝑥 𝑦𝑗 , 𝑦𝑠 <  𝑅2 −  𝑥𝑗 − 𝑎 
2

+ 𝑏 < 𝑦𝑒 . 𝑆𝑗 + (1 − 𝑠𝑗 ) min 𝑦𝑗 , 𝑦𝑒 , 𝑦𝑠 < 𝑥𝑗 < 𝑦𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑠

           ∀ 𝑗 

 

(18) 

𝑐′𝑗 =  1, 𝑔𝑗𝑥𝑠 +  1 − 𝑔𝑗  𝑀𝑎𝑥 𝑥𝑗 , 𝑥𝑠 <  𝑅2 −  𝑦𝑗 − 𝑏 
2

+ 𝑎 < 𝑥𝑒 .  1 − 𝑔𝑗  + 𝑔𝑗 min 𝑥𝑗 , 𝑥𝑒 , 𝑦𝑠 < 𝑦𝑗 < 𝑦𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑠

        ∀ 𝑗 (19) 

𝛾𝑗 =

 
 
 
 
 
 

 
 
 
 
 1              

𝐵𝑗 = 1  

𝐶𝑗 = 1  
 

     

         𝑜𝑟  
𝐵𝑗
′ = 1  

𝐶𝑗
′ = 1  

 

      𝑜𝑟   
𝐶𝑗
′ = 1 

𝐶𝑗 = 1
 

       𝑜𝑟   
𝐵𝑗
′ = 1  

𝐵𝑗 = 1
 

 0                        𝑜𝑡ℎ𝑒𝑟𝑠

                   ∀ 𝑗 (20) 

                                                                                

Ω𝑗 =  
 1                     𝑥 1 𝑠𝑖𝑛𝜃1

𝛼 + 𝐶𝑜𝑠𝜃1
𝛼 +  𝑥 2 𝑠𝑖𝑛𝜃1

𝛽
+ 𝐶𝑜𝑠𝜃1

𝛽
 >  𝑥 1

′
(𝑠𝑖𝑛𝜃2

𝛼 + 𝐶𝑜𝑠𝜃2
𝛼) +  𝑥 2

′
(𝑠𝑖𝑛𝜃2

𝛽
+ 𝐶𝑜𝑠𝜃2

𝛽
)  

   0                    𝑥 1 𝑠𝑖𝑛𝜃1
𝛼 + 𝐶𝑜𝑠𝜃1

𝛼 +  𝑥 2 𝑠𝑖𝑛𝜃1
𝛽

+ 𝐶𝑜𝑠𝜃1
𝛽
 <  𝑥 1

′
(𝑠𝑖𝑛𝜃2

𝛼 + 𝐶𝑜𝑠𝜃2
𝛼) +  𝑥 2

′
(𝑠𝑖𝑛𝜃2

𝛽
+ 𝐶𝑜𝑠𝜃2

𝛽
)
    

 
 

(21) 
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exiting facility are in opposite vector according to barrier. Equations (13) - (20) define visible and 

shadow conditions. Constraints (21) guarantee which route is selected. In this constraint, 𝜃1
𝛼  

denote the angle (in radians) enclosed by the two line segments, which one is the straight line 

segment connecting  x, y , (x
𝑒

, ye) and another is the horizontal line segment which is passed point 

 x, y , 𝜃2
𝛼  denote the angle (in radians) enclosed by the two line segments, which one is the straight 

line segment connecting  𝑥𝑗 , 𝑦𝑗  𝑎𝑛𝑑 (x
𝑠
, ys), and the horizontal line which is passed point  𝑥𝑗 , 𝑦𝑗  , 

𝜃1
𝛽 

 is the angle (in radians) enclosed by the two line segments, which one is the straight line 

segment connecting  𝑥, 𝑦  and (𝑥𝑒 , 𝑦𝑒), and the horizontal line which is passed point  x, y , 𝜃2
𝛽 

 is the 

angle (in radians) enclosed by the two line segments, which one is the straight line segment 

connecting  𝑥, 𝑦 and ( 𝑥𝑒 , 𝑦𝑒), and the horizontal line which is passed point  𝑥𝑗 , 𝑦𝑗  .  Also, according 

to calculation of distance function we have: 

 𝑥 1  denote the Euclidean norm of  𝑥, 𝑦  and 𝑥𝑠 , 𝑦𝑠 .  

 𝑥 2  denote the Euclidean norm of  𝑥, 𝑦  and 𝑥𝑒 , 𝑦𝑒 . 

 𝑥 3  denote the Euclidean norm of  𝑥𝑗 , 𝑦𝑗   and 𝑥𝑠 , 𝑦𝑠 . 

 𝑥 4  denote the Euclidean norm of  𝑥𝑗 , 𝑦𝑗   and 𝑥𝑒 , 𝑦𝑒 . 

So, in this work we should focus on minimizing rectilinear distances from the facility to the demand 

points based on the  differences conditions of visibility and shadow  that occur for the problem. 

These conditions restrict the defined Weber problem. 

 
4. Example 
 

For providing the reader an outline of the performance of proposed model and evaluate the 

effectiveness of the application of the model for the single-facility location problem with an arc-

shaped barrier, the numerical example is provided. This example problem consists of eight existing 

facilities and an arc-shaped barrier with start point of (𝑥𝑠 ,𝑦𝑠) = (3, 2) which is part of a circle with 

radius of R = 8 and corresponding angle 𝜃 =
𝜋

6
. The example problem is produced according to the 

data given in Tables 1. In this table, the coordinates of the existing facilities are provided. In all the 

instances weights are considered equal to 1, wj = 1, j = 1, …. , m. 

 

 
j 𝑥𝑗 𝑦𝑗 

1 4 2 

2 4 5.5 

3 1 6 

4 4 9 

5 7 8 

6 7 3 

7 10 2 

8 10 4 

 

 

In order to show the impact of a barrier on the locating cost, we solved this example for two cases 

with and without an arc-shaped barrier on the plane. In Table 2, the optimal coordinates and 

objective function values in both cases of with and without barrier are reported. 

 

 𝑥 𝑦 Objective Value 

Without barrier (4,7) (5,6) 39.5 

With barrier 4 7 48 

Table1. The coordinates of the existing 
facilities 



F. Akbari, S. Akbari, I. Mahdavi, S. Shiripour / TJMCS Vol .5 No.3 (2012) 153 - 159 
 

158 

 

 

In Figure 2, the example problem together with the optimal location of new facility in the case 

an arc-shaped barrier is shown. It is can be seen that the location of the new facility has been 

affected by the barrier. Optimal x-coordinate of new facility is same with optimal interval which is 

obtained when there is no barrier, but y-coordinate of new facility is changed. 

 

 
 

 

 

5. Conclusion 

 

In this study we defined the problem of finding a minimum point for a facility in the presence 

of an arc-shaped barrier. A nonlinear programming model is presented for the problem. Our 

objective was to locate a new facility such that the sum of the rectilinear distances in the plane from 

the facility to the demand points in the presence of an arc-shaped barrier is minimized. For showing 

performance of the proposed model, an example problem is provided. 
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