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Abstract 

    This paper introduces a cutting-plane algorithm for solving semi-infinite linear programming 
problems in fuzzy case; the problem contains  a crisp objective linear function and the infinite 
number of fuzzy linear constraints. In the first step; the designed algorithm solves a LP problem, 
which was created  by the ranking  function method based on a fuzzy sub-problem of the original 
one. In each iteration of the proposed algorithm, a cutting is created by adding  a fuzzy constraint of 
the original problem to the fuzzy sub-problem.  The convergence of the algorithm is proved and 
some numerical examples are given. 
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   1.   Introduction. 

  Fuzzy set theory has  extensively developed since Zadeh' s pioneer work in 1965 [13] till now.  Linear 

programming (LP) is one of the field has been evolved with the help of fuzzy set theory very rapidly. But, 

in spite of  more adaption of linear semi-infinite programming (LSIP) models with the real life is than LP, 

rare  efficient effort has been done for modeling the natural phenomena as fuzzy linear semi-infinite 

programming (FLSIP). This many cause since these kind of models have not studied theoretically and 
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more important, no solution method has been presented. The purpose at this paper is to introduce non-

symmetric fuzzy linear semi-infinite programming (NFLSIP) model  and provide a solution method for it.  

 In this paper we introduce a NFLSIP in section2; then a cutting plane algorithm for solving these kind of 

problems is illustrated in section 3, which designed based on cutting-plane algorithm for solving LSIP 

and ranking method function. Also the convergence of the introduced algorithm is proved in this section. 

Next section is devoted to present several useful numerical test examples in order to demonstrate the 

application of the method and its efficiency. 

 

2. Non-Symmetric Fuzzy  Linear Semi-Infinite Programming 
LSIP is a generalization of  LP problem in which either the number of constraints or variables (but 
not both) is allowed to be infinite. The case in which the number of constraints is infinite is as 
follows [10], [7]: 

( )

. : ,

0.

t t

P Min z c x

S to a x b t T

x



  



 

 

Here , n

t
c a R and T is an arbitrary infinite index set. In real world Many problems can be 

modeled as LSIP, such as robot trajectory planning[2], optimal signal sets, production planning  and 
digital filter design [5], air and water pollution control ([5],[4]), design of finite impulse response 
filters [1]. But in the real world, such problems have fuzzy nature and their goal function or 
constraints for the possible actions are not crisp.  For example when we investigated the air 
pollution rate, depending to the politic, environmental and other limitations, we would find a rang 
for its changes. Therefore, the sign   in its modeling, does not mean  the usual  strictly 
mathematical sense; so, the model (P) can be remodeled as: 

( ) :

. : , ;

0,

t t

PF Min z c x

S to a x b t T

x





 



  

 
where the sign 


  denotes the fuzzy version of   and has the linguistic interpretation "essentially 

greater than or equal to". We call this problem Non-Symmetric Fuzzy  Linear Semi-Infinite 
programming (NFLSIP). 

3. Fuzzy Cutting-Plane Algorithm 
The most important methods for solving LSIP problems are cutting-plane algorithms, since their 
applicability under the mild conditions and their strong convergence. In this paper we synthesize 
the Alternating cutting-plane algorithm, which was proposed for LSIP continuous problems by 
Gustafson and Kortanks in [4] and method to solve non-symmetric fuzzy linear programming 
(NFLP) based on ranking functions[10];  then, we designed a solution method for NFLSIP. 
 
In each iteration,  the Alternating cutting plane algorithms creates a sub-problem, which is a LP and 
can be solved by simplex method. But in fuzzy case in each iteration a NFLP problem is created. 
which is modeled as follows: 

:

. : , 1,2,..., ; (3)

0,

t t

Min z c x

S to a x b t r

x





 



  

 
 In order to solve (3), first, for each fuzzy constraint a membership function should be defined; then, 
one could setup a fuzzy variable linear programming (LPPFV), which has the same optimal solution 
as (3) with regard to [10].  In order to define a membership function for the t-th constraint of (3), it 

is assumed that t
p  is the maximum tolerance for this constraint; also, without losing the generality, 



A. Fakharzadeh, S. Khosravi, H. R. Maleki/ TJMCS Vol .5 No.3 (2012) 212-218 

 

214 

 

it is supposed that 0
t

a    and 0
t

b  . Now, the membership function of the t-th constraint can be 

defined as: 
 

( )

1,

( ) 1 ,

0, . .

t

t t

t t
a x t t t t

t

a x b

a x b
x b p a x b

p

o w

 

 


 
    





 

 

Therefore, ( ( )) { | ( ) 0} [ , )
t ta x a x t t

S x x x b p       . But, we remind that to use Ranking 

function method, which is explained  in [10], ( ( ))
ta x

S x   have to be bounded. To overcome this 

difficulty, we consider corresponding crisp problem of (3) as: 
:

. : , 1,2,..., ; (4)

0.

t t

Min z c x

S to a x b t r

x



  



 

 

Let 
*

r

t t
a x  , in which 

*

rx is an optimal solution of the problem ( r
P ). Now the membership 

function of the t-th constraint of (4) can be redefined as: 

*

( )
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( ) 1 ,

0, . .

t

t t

t t
a x t t t t

t

b a x

a x b
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

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 Now, the following LPPFV problem and the problem (3) have the same optimal point provided  that 
they have the same membership functions (see[10]): 

. : ( , , ,0), 1,2,..., (5)

0,

t t t t
R

j
R

Min z c x

S to a x b p t r

x





  









 

where ( , , , 0)
t t t

b p  is a quasi-trapezoidal fuzzy number and 
R

c d   if and only if ( ) ( )R c R d  , 

which R is a ranking function and  in this section will be defined. Now problem (5) is a LPPFV 
problem and its corresponding auxiliary problem (ALLPFV), which is a fuzzy number linear 
programming, is defined as follows: 

1

. : , (6)

0,

r

t t

t

Max z b y

S to Ay c

y









 

 

 

where ( , , , 0)
t t t t

b b p , [ ]
ti r n

A a


 and ry R .   Problem (6) can be transformed by 

applying one of the  Ranking function based methods. It is preferred to apply the Roubence ranking 
function [12] since it is a linear ranking function which maps each real number to itself; the 
definition of this function is as follows: 

1

0

1
( ) (inf sup ) ,

2
R a a a d       
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where a
  is an  α-level set of  the fuzzy number a ; for example if a is a trapezoidal fuzzy number 

( , , , )L Ua a a   , then: 
1

0

1 1 1
( ) [ ( ) ] [ ( )].

2 2 2

L U U LR a a a d a a                  

Now, we use Roubence ranking function and  obtain: 

1

: ( )

. : ; (7)

0,

r

t t

t

Max z R b y

S to Ay c

y









 

 

 
(7)  is a classic LP  ([10]). Dual problem Corresponding to (1-6) problem is defined as  follows: 
 

. : ( ), 1,2,..., (8)

0.

t t

Min z c w

S to aw R b t r

w



  



  

Proposition: Optimal solution  of problems (8) and (3) are the same.  

Proof:  Let  1

BY B c  be an optimal basic feasible solution for  (7), then according to theorem 7. 

[10]  1( )
Bt

X R b B   is a fuzzy optimal solution for (3). Also as for relation between primal and 

dual problems in classic  LP,  1( )tW R b B   is optimal feasible solution of (8). Now we have: 

1 1( ) ( ) .
B Bt tX R b B R b B W      

  Let 0   and  0
T  are given ( 0T T , 0

T is finite and the obtained sub-problem of (PF) by 

replacing T with 0
T   has  non-empty bounded level sets 

(
0( ) { | , ; }n

t tL x R a x b t T c x        is called an α-level set). By supposing  r=0,  the 

description of Fuzzy cutting-plane algorithm (FCP) is as follows; the convergence of this algorithm 
is proved. 
Step1.  Solve the following LP problem: 

( )

. : ( ),

0.

r

t t r

PF Min z c w

S to aw R b t T

w



  



  

If ( )rPF is inconsistent, then stop, since the problem PF is inconsistent too. Otherwise, calculate the 

optimal solution of ( )rPF ; say it rx and then go to Step2. 

Step2. Compute  ( ( ))r t t
t T

s Inf a x R b


   . 

 If  rs   then rx is optimal solution of (PF) and stop; otherwise, define 

arg min ( ( ))r

r t t
t T

t a x R b


   and go to Step3. 

Step3. Consider 1 { }r r rT T t   ,  r=r+1 and then loop to Step1. 

  The following convergence theorem, which is similar to the theorem 11.2 in [4],  hold: 

Theorem 3.1. Assumes that PF is consistent; that is, the set { | }ta t T is bounded  and the slack 

function ( )t ta x b   is bounded from below at each iteration of the introduced algorithm. Then, the 

algorithm terminates after a finite number of iterations or generates an infinite sequence, which its 
cluster points are optimal solution  of (PF). 
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Proof : Suppose the introduced algorithm generates an infinite sequence. Also let rF is the feasible 

set in r-th iteration. Since, 1r rT T   for r N ,  1r rF F  for r = 0,1, 2,...; then 

  0 0
ˆ { | }rx F x F c x c z     , where z is a given feasible solution of the PF problem. Since 0F̂ is a 

compact set,  rx has at least a cluster point  (e.g.  a subsequence  rk
x  of  rx is existed such 

that lim rk

r
x x


 . Now we have: 

( ) ( )r r

r

k k

k
r r r

c x c Lim x Lim c x Limv PF v PF
  

      , 

where v(PF) is the optimal value of the problem (PF) and 0F̂ ( )
rk

v PF is the optimal value of the 

rkPF problem. Therefore, if we prove that x  is a feasible solution of the (PF) (i.e. ( ) 0g x

 ),   proof  

will be completed. In this regard, first, we consider ( ) ( , )
t T

g x Inf g t x


 , which was called the 

marginal function and is continuous [4].  

We consider sequence  rt such that for all r, arg min ( )rk

r t t
t T

t a x b


  . Therefore  

p

r r

k

t ta x b for all p r


  .  

So, taking p with r fixed, we obtain 
r rt ta x b


   (i.e. for all r ( , ) 0rg t x


 ) 

   Now, we have  

( ) ( ) [ ( ) ( )]

( , ) [ ( ) ( )]

( , ) ( , ) [ ( ) ( )]

( ) [ ( ) ( )].

r r

r r

r r

r r

r

k k

k k

r

k k

r r

k k

t

g x g x g x g x

g t x g x g x

g t x g t x g x g x

a x x g x g x



  

  

  

   


 

 

But [ ( ) [ ( ) ( )]] 0r r

r

k k

t
r

Lim a x x g x g x


      (since lim rk

r
x x


 and ( )g x is continuous function) 

, so ( ) 0g x

 . 

4. Examples 
In this section, the ability of the introduced  algorithm for solving NFSILP problems is illustrated by 
solving several important test examples from LSIP literature, which here were modeled as NFLSIP 
problems. 
Example 4.1. This test problem was remodeled based on the one presented in [7], page 137: 

8
1

1

8
1

1

:

1
. : , [0,1];

2

0

i

i

i

i

i

Min i x

S to t x t
t

x

















   

 

The algorithm was run under the following settings: 0
T = { | 0,1, ...,10

10

i
i  } and  = 0.00001. 

The algorithm stopped at iteration r = 20 and Table 2 summarizes the achieved results and their 
accuracy. 
Example 4.2. The following problem was reconstructed from the LSIP problem presented in [9]: 
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9
1

1

9
1

2
1

:

1
. : , [0,1],

1

0.

i

i

i

i

i

Min i x

S to t x t
t

x

















   

Here, we supposed 0
T  = {

1
|

10

i 
i = 1, 2, ..., 11} and  =0.0000001. 

Example 4.3. The forth test example was made based on a famous LSIP problem (see [4] page 
264): 

8
1

1

8
1

1

:

. : tan( ), [0,1],

0.

i

i

i

i

i

Min i x

S to t x t t

x
















   

For solving this problem, we chose 0
T  = {

2 1
|

20

i 
 i = 1, ..., 10} and  1010  . 

Example 4.4. We solve the  problem of  the designing   finite impulse response (FIR) filters [10] in 
this example. It can be reformulated as a NFLSIP problem as follows: 

10

2 1

1

10

1

:

. : 2 cos((2 1) ) 1, [0,0.5]

0,

i i

i

i

i

Min r x

S to i t x t

x












  





   

where i
r = 0.95i,  0

T were chosen as 0
T = {

1
|

18

i 
 i = 1, ..., 10} and the parameter 1010  . 

  The obtained results of solving example 4.1 - 4.4 by the introduced algorithm and the optimal 
value of crisp cases  are summarized in the following table: 

 
Table 1. Numerical  results of examples 4.1 - 4.4 

Problem Estimate  
Value  

(crisp) 

CPU 

time 

(sec) 

4.1 0.6473219234 0.6931481482 5.86 

4.2 0.7234516332 0.7853995317 6 

4.3 0.5546777321 0.6156532236 5 

4.4 -0.4022345123 -0.4835484027 26.92 

 
 

5. Conclusion 
According to the demonstrated theorem 3.1 in section 3, the introduced  algorithm terminated in the 

finite iteration for given 0  , which was confirmed by expressing the result in Table 1. In addition, 
the 4th column of Table 1 indicates that the convergence rate of the introduced algorithm is acceptable. 

Moreover, the obtained results of examples 4.1 - 4.4 in comparison with the solutions of their 
corresponding crisp problem, which were expressed in column 3, were precisely better. Naturally, 
these results were anticipated since in fuzzy case one, can accept some solutions with small 
violation of the constraints.  
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