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Abstract  
 
     In this paper, we solve nonlinear fractional differential equations by Bernstein polynomials. 
Firstly, we derive the Bernstein polynomials (BPs) operational matrix for the fractional derivative 
in the Caputo sense, which has not been undertaken before. This method reduces the problems to a 
system of algebraic equations. The results obtained are in good agreement with the analytical 
solutions and the numerical solutions in open literatures. Also, the solutions approach to classical 
solutions as the order of the fractional derivatives approach to 1. 
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1. Introduction  
 
    Differential equations of fractional order have been the focus of many studies due to their 
frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics and 
engineering. Recently, a large amount of literatures developed concerning the application of 
fractional differential equations in nonlinear dynamics [1-4]. Several methods have been suggested 
to solve fractional differential equations, for example, homotopy methods [5-8], Adomian’s 
decomposition method [9-11], variation iteration method [12, 13] and differential transform 
method [14]. 
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    In this work, we consider the nonlinear fractional differential equations as follows: 
 

  ,10,)(,)(  ttytgtyD                                      )1(                                                                                                                  

 
and the initial condition 
 

  ,1,,1,0,)0( 0

)(  iyy ii                                                                                                                        )2(  

 

where  is constant and   RRg 1,0:  is polynomial function. 

 
    The rest of this paper is as follows. In Section 2, we present some preliminaries in fractional 
calculus. In Section 3, BPs are introduced and then we approximate functions by using BPs and we 
show the properties of BPs by several Lemmas and corollaries. We make a new operational matrix 
for fractional derivative by BPs in Section 4. In Section 5, we apply BPs for solving nonlinear 
fractional differential equations. In Section 6, numerical examples are simulated to demonstrate the 
high performance of the proposed method. Finally, Section 7 concludes our work in this paper. 
 
2. Some preliminaries in fractional calculus 
 
    In this section, we give some basic definitions and properties of the fractional calculus which are 
used further in this paper. 
 
Definition 2.1. (See [15]) We define  

    ,0)()()(00)()( 11 CtfandpwheretfttfandtfortftfC p  , and 

  CtftfC nn  )()( )(  where RNn  , . 

 
Definition 2.2. (See [15]) The Riemann-Liouville fractional integral operator of order 0 , of a 

function 1,  Cf , is defined as  
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                                                                                 )3(  

and for nCftnnn 1,0,,1   , the fractional derivative of )(tf  in the Caputo sense 

is defined as  
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)(

1
)()(

0

)(1


 




t
nnnn dxxfxt

n
tfDItfD 


                                                                   )4(  

 

Property 2.3. (See [16-18]) For 0,,1,  Cf   we have 

,
)1(

)1( 



 




 ttI                                                                                                                                      )5(  

 

and for  nnn ,1  and 1,  
nCf  we see the following properties 
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3. Bernstein polynomials and their properties 
 
    The Bernstein polynomials (BPs) of mth-degree are defined on the interval ]1,0[ as follows: 

 

.,,1,0,)1()(, mixx
i

m
xB imi

mi 







                                                                                                       )9(  

 

Corollary 3.1. Set  )(,,)(,)( ,,1,0 xBxBxB mmmm   is a complete basis in Hilbert space ]1,0[2L  and 

polynomials of degree m  can be expanded in terms of linear combination of  

),,1,0()(, mixB mi   as follows 





m

i

mii xBcxP
0

, .)()(                                                                                                                                            )10(  

 

Lemma 3.2. We can write ),()( xTAx mm   where A  is a matrix upper triangular,  

  Tm

m xxxT ,,,1)(   and  T

mm xBxBxBx )(,,)(,)()( 20  . 

 

Proof. Using binomial expansion of imx  )1( , we have 
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Therefore we can write 
 

),()( xTAx mm                                                                                                                                                   )11(  
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Lemma 3.3. (See [19]) Let  1,02L  be a Hilbert space with the inner product 


1

0
)()(, dxxgxfgf , and  1,02Ly . Then, we can find the unique vector 

 T

mcccc ,,, 21   such that 

.)()()(
0
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T
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Corollary 3.4. In lemma 3.3, we have  ,, 1 Qfc m

T  such that 

  
1
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Lemma 3.5. Suppose that 1)1( mc  is an arbitrary vector. The operational matrix of product  

)1()1(
ˆ

 mmC  using BPs can be given as follows: 
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Proof. From (11) we have 
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Now, we approximate all functions )(, xBx mi

k  in terms of )(xm . Thus we define  
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Then, we have 
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where ),1,0( mkVk   is an )1()1(  mm  matrix that has vectors ike ,  ),,1,0( mi   for each 

column’s. If we define  cVcVcVC m,,, 10  , then we get 
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,)()()( TT
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and therefore we obtain the operational matrix of product .ˆ TACC   

 

Corollary 3.6. Suppose )()( tcty m

T , )()( tdtx m

T and 
)1()1(

ˆ
 mmC  be the operational 

matrix of product using BPs for vector c . We can get the approximate function for )()( tytx  using 

BPs as follows: 
 

.ˆ)()()( dCttxty T

m                                                                                                                                         )16(  

 
Proof. By using Lemma 3.5, it is clear. 
 
  

Corollary 3.7. Suppose )()( tcty m

T  and 
)1()1(

ˆ
 mmC  be the operational matrix of product using 

BPs for vector c . We can get the approximate function for )(ty k  )( Nk , using BPs as follows: 
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 where .ˆ~ 1cCC k
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Proof. By using induction, we can obtain approximation for )(,)( kty k as follows: 

 

 For 1k  by (12) we have )()( tcty m

T . Also, for 2k  by Lemma 3.5 we obtain  
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Then, for 3k  we get  cCtcCttcty T

m
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T 23 ˆ)(ˆ)()()(  . 

 
So, by induction we can write 
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4. BPs operational matrix for fractional derivative 
 
   In this section, we obtain the operational matrix for the fractional derivative. We can write 

,10),(
)(

1
)( )(1 
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where   denotes the convolution product.  
 
By (11) we obtain 
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Now, we approximate   ),,( mit i    with respect to BPs by using (12). Therefore, we can 

write 
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Now, we suppose P  is an )1()1(  mm  matrix that has vector zero in    first column and 

vector iP   in (i+1)th column’s for   mi ,, .  

 
Finally, from (18)-(25), we obtain 
  

),()( tDtD mm  
                                                                                                                                        )26(  

 
where  
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,
~ TPAD                                                                                                                                                         )27(  

 
 is called the Bernstein polynomials operational matrix of fractional derivative. 
 
 
5. BPs for solving nonlinear fractional differential equations 
 
Using Lemma 3.3, we can approximate the functions )(tx  as follows: 

 

),()( tCty m

T                                                                                                                                                     )28(                                                                                    

                                                                                        

where 1 mRC . 

 
by (28) and (26) we can write 
 

).()( tDCtyD m

T  
                                                                                                                                         )29(  

 
Therefore, the problem (1) and (2) reduce to the following problem: 
 

 ,)(,)( tCtgtDC m

T

m

T                                                                                                                          )30(    

                                                                                                                                           
and the initial condition 
                                                                       

i

mi

T yDC 0)0(  ,    1,,1,0  i                                                                                                              )31(   

                                                                                                              
Now, using Lemma 3.3 we can approximate all of the known functions in (30). Then, by using 
Lemma 3.5, Corollaries 3.6 and 3.7, since function g is polynomial, we obtain the following 

approximations: 
 

    ),()(, tCGtytg m                                                                                                                                   )32(  

 

where )1(11)1(:   mm RRG . 

 
Also, by using tau method [20] we can generate algebraic equations from (30) and (32) as follows 
 

       mjdttBtCGDCG mjm

T

j ,,0,0)()(
~

,

1

0
                                                             )33(  

and from (31) we set 
 

i

mi

T

im yDCG 01 )0(
~

    for   1,,1,0  i . 

 
Finally, the problem (1) and (2) has been reduced to the system of algebraic equations 
 

  ,0
~

CG j  .,,0 mj                                                                                                                                  )34(                                                                                                                                                                                                                                                                            

                                                                                                
The above system can be solved for C  by Newton’s iterative method. Then, we get the approximate 

value of the functions )(ty  from (28). 

 
 
6. Numerical examples 
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   To demonstrate the application of the proposed method and its performance, the obtained results 

for some examples are presented in this section. We define )(tym  and )(ty  for the approximate 

solution and the exact solution, respectively. These examples are considered because either exact 
solutions are available for them, or they have also been solved using other numerical schemes, by 
other authors. 
 
Example 1.  Consider the following fractional differential equation 
 

,10,4)()( 5.35.15.1  tt
t

tyttyD


  

 
with the following initial conditions 
 

.0)0(,0)0(  yy  

 

We know that the exact solution is 2)( tty  . The obtained results of BPs for 10m  are reported 

in Table 1 and are plotted in Fig 1. We observe that our method is very effective. 
 
 

 
Table 1. Absolute error for different t  in example 1. 

 
  
           t      

        
         0.1                   0.3                       0.5                            0.7                           0.9 

 
Absolute error 

 
3.62030 ×10-11   3.40588 ×10-9     8.04365 ×10-9          1.32341 ×10-8          1.61286 ×10-8 
 

 
 
 

 
Fig 1. Plot of absolute error function for 10m  in example 1. 

 
 
Example 2. Consider the nonlinear fractional differential equation [21] 
 
 

,10,1)()( 2  ttytyD  

 
subject to the initial condition as 
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.0)0( y  

 
 The exact solution of the equation for 1  is given as 
 

.
1

1
)(

2

2






t

t

e

e
ty  

 
Numerical results compared to Ref. [21] are given in Table 2 and also, Fig 2 show the absolute error 

for our method for 1  and Fig 3 show behavior )(10 ty  for different  . 

 
 
Table 2. Numerical results for 1 and 10m  in example 2 with comparison to exact solution 
and Ref. [21]  
 

t  Exact Present method 
10m  

Ref.[21] 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.09966799462495585 
0.197375320224904 

0.2913126124515909 
0.37994896225522495 
0.4621171572600097 
0.5370495669980353 
0.6043677771171635 
0.664036770267849 

0.7162978701990244 
0.7615941559557649 

0.0996679945194735 
0.19737532033276264 
0.2913126132161784 
0.3799489605488069 
0.4621171587819068 
0.537049567016221 

0.6043677753913671 
0.6640367728588771 
0.7162978670585518 
0.7615941454790327 

0.099668 
0.197375 
0.291313 
0.379944 
0.462078 
0.536857 
0.603631 
0.661706 
0.709919 
0.746032 

 
 
 

 
Fig 2. Plot of absolute error function for 1  and 10m  in example 2.  
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Fig 3. Plot of )(10 ty  for  different   and exact solution for 1  in example 2. 

 
 
Example 3. Consider the differential equation of fractional order [21] 
 

,10,1)()(2)( 2  ttytytyD  

 
subject to the initial condition as 
 

.0)0( y  

 
 The exact solution of the equation for 1  is given as 
 

.
12

12
log

2

1
2tanh21)(
































 tty  

 
Numerical results compared to Ref. [21] are given in Table 3 and also, Fig 4 show the absolute error 

for our method for 1  and Fig 5 show behavior )(10 ty  for different  . 

 
Table 3. Numerical results for 1 and 10m  in example 3 with comparison to exact solution 
and Ref. [21]  
 

t  Exact Present method 
10m  

Ref.[21] 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.11029519691696243 
0.2419767996211093 

0.39510484866037854 
0.567812166292939 
0.756014393431376 
0.953566216471923 

1.1529489669796236 
1.3463636553683758 
1.5269113132806247 
1.6894983915943833 

0.11029518739630002 
0.24197681569579768 
0.3951048273012639 
0.5678121822516022 
0.7560144002158702 
0.9535661806115561 
1.1529490195918712 
1.346363598686117 

1.5269113915752475 
1.6894986909366667 

0.110294 
0.241965 
0.395106 
0.568115 
0.757564 
0.958259 
1.163459 
1.365240 
1.554960 
1.723810 
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Fig 4. Plot of absolute error function  for 1  and 10m  in example 3.  

 
 

 
Fig 5. Plot of )(10 ty  for  different   and exact solution for 1   in example 3. 

 
 
7. Conclusion 
 
    In this work, we get operational matrices of the product, power and fractional derivative by 
Bernstein polynomials. Then by using these matrices, we reduced the nonlinear fractional 
differential equations to a system of algebraic equations that can be solved easily. Finally, numerical 
examples are simulated to demonstrate the high performance of proposed method. We observed 
that the obtained results were in good agreement with the exact solution. Also, we saw that the 
solutions approach to the solutions for differential equation with derivative order 1, as the order of 
the fractional derivative approaches to 1. 
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