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Abstract 
In this paper first a series of basic transformation such integral, Rising and Falling has been 
defined. then the integrals have been proved. So falling and rising planes have been studied and a theorem about it has 
been proved. At the end, operations fuzzy time planes is shown and related proposition to it is proved.  
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Introduction 
[1] Basic transformation about fuzzy interval time has been studied. First, basic concepts in fuzzy plane time have been 
studied and we argue a series of operations on fuzzy time planes by using [1], [20], [4, 7 and 18].we define summary of 
formula of basic unary transformation such as integral, Rising and Falling. Then we continue to argue about integrals 
and we prove some theorems. Time planes usually don't appear from nowhere, but they are constructed from other time 
planes. Plane operators are more general construction functions. They take one or more fuzzy time planes and construct 
a new one out of them.  
We distinguish two ways of constructing new fuzzy time planes, first by means of Y-functions and then by means of 
plane operators. Y-functions map fuzzy values to fuzzy values. They can therefore be used to construct a new plane 
from a given one by applying the y-function point by point to the membership function values. Plane operators are more 
general construction functions. 
 In fact, our gold for presenting of this paper is that there are fuzzy planes which can be defined 2-dimension basic 
transformation for them, be defined some theorems for them. 
 
1Corresponding author Tel/Fax: +98-112-5342460 
 
Basic Unary Transformations 
Definition (Basic Unary Transformations) 
Let p FR  be a fuzzy plane. We define the following (parameterized) plane operators: 

Ŝ sup ,  [1] 
 
f first maximom [1] 
 
l last maximom [1] 
 
identity p p 
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integrate p f x                    lim
∞
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p f y , y  dy dy

p f y , y  dy dy
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∞

lim
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p f y , y  dy dy

p f y , y  dy dy
 

Integrate 
This operator integrates over the membership function and normalizes the integral to values 1. The two integration 
operators integrate  and integrate  can be simplified for finite fuzzy time planes. 
Proposition (Integration for Finite planes) 
If the fuzzy plane p is finite then 

integrate p f x
,  

| |  And          

integrate p f x  
,  

| |   

The proofs are straightforward [1]. 
Proposition (Integration for planes with Finite Kernel) 
If the infinite fuzzy plane p has a finite kernel with p p ∞, ∞  and p p ∞, ∞  then integrate p f x

  and  integrate p f x  . 

Proof: by using [2] 
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. 
Rising and Falling Fuzzy planes 
Definition (Rising and Falling Fuzzy planes and plane Operators) 
A fuzzy set p is rising  for its membership function , 1,1  for all  

, . P is falling  for its membership function , 1,1  for all , . 
Proposition 
The basic unary transformations  and are rising plane operators and the unary transformations  and 

 are falling plane operators. 
Proof: Any composition …  where f is a rising (falling) plane operator is again a Rising (falling) plane operator. 
The proofs are straightforward [1]. 
Linear Y-Functions 
A small, but important class of y-functions are linear y-functions. They are important firstly because very natural 
operators, like standard complement, intersection and union of fuzzy time planes can be described with linear y-
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functions. Secondly they are important because they allow us to transform planes represented by polygons in a very 
efficient way: only the vertices of the polygons need to be transformed. 
The main characterization of linear y-functions is therefore that they map non intersecting straight plane segments to 
straight plane segments. 
Definition (Y-Functions) 
 : 0,0 , 1,1 0,0 , 1,1  Is the set of n-place y-functions. 
They map fuzzy values to fuzzy values. 
  . 
Definition (plane Operators) 

µ : Is the set of n-place plane operators. 
They map fuzzy planes to fuzzy planes. 

µ µ  . 
Every y-function can be used to construct a new fuzzy time plane from given ones by applying the y-function to the 
fuzzy values. 
Definition (Associated plane Operators)  
If is a y-function then  µ  defined , , … , , , , … , , is the 
associated plane operator. 
Definition (Linear Y-Function) 
A y-function   is linear if the mapping 

  ′ , , , … , , , , , , … , ,  
Maps non-intersecting plane segments  

, , , , , … , , , , ,  
To a line segment 

, , , … , , , , , … , , . 
One-place linear y-functions can be characterized in the following way 
Proposition (Characterization of One-Place Linear y-Functions) 
A one-place y-function f is linear if and only if , 0,0 1,1 0,0 . ,   holds. 
Proof: Suppose f is linear. We take the straight plane segment between 0,0 , 0,0  and 1,1 , 1,1 . The mapping  
f ′ z, x, y z, f x, y  maps this plane segment to a plane segment between 0,0 , 0,0  and 1,1 , 1,1  . 
Therefore 

, 0,0 , ,
, ,

. , 0,0    (Line equation) 

              0,0 1,1 0,0 . ,  
Other direction: clearly. 
An example for a one-place linear y-function is the standard negation   

, 1 , . 
The characterization of two-place linear y-functions 
Proposition (Characterization of Two-Place Linear y-Functions) 
A two-place y-function f is linear if and only if the following condition holds: 

, , , = 
 

0,0 , 0,0
,
, , 1,1 0,0 , 0,0 . ,                                         , ,

0,0 ,
, ,

1,1 , 1,1 0,0 ,
, ,

1,1 , . ,                                   otherwise

 

 
Proof: Suppose f is linear. We consider the case , ,  first. To this end we take the straight plane segment 
between 0,0 , 0,0  and 1,1 , 1,1 . The line equation for this curve is just y x . Now take an arbitrary x , y

0,0 , 1,1  and an arbitrary x , y x , y . The line equation for the plane segment starting 

At 0,0 , 0,0  and crossing x , y , x , y  is x, y , ,
, ,

. w , w   . For  

w , w 1,1  We get , ,
,

. 

Since f is linear we have 

, , , 0,0 , 0,0
, , 1,1 0,0 , 0,0

0,0 1,1 . ,  

                                      0,0 , 0,0 ,
,

, 1,1 0,0 , 0,0 . ,  

Now consider the case , , . 
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  The plane starting at 1,1 , 1,1   and crossing x , y , x , y   crosses the y-axis 

At , , ,
, ,

 . 

   Since f is linear we have 

, , , 0,0 , ,
1,1 , 1,1 0,0 , ,

1,1 0,0
. ,  

                                     0,0 , , ,
, ,

1,1 , 1,1 0,0 , , ,
, ,

. ,  

The other direction, showing that the two conditions imply linearity, is again straightforward. 
  Simple examples for linear two-place y-functions are the minimum and maximum function. The minimum function is 
used to realize standard intersection of two fuzzy time planes, and the maximum function is used to realize standard 
union of two fuzzy time planes. 
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