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Abstract 

In this chapter, we will compare the differential transform method (DTM) and variational iteration method (VIM) for 

solving the one-dimensional, time dependent reaction-diffusion equations. Different cases of the equation are discussed 

and analytical solution in series form can be derived. The results obtained by the proposed method (DTM) are compared 

with the results obtained by (VIM). Some examples are presented to show the ability of the methods for such problems. 

 

 

Keywords: Differential transformation, Variation iteration method, Cauchy reaction- diffusion problems, Taylor’s series 

expansion. 

 

1. Introduction 
 
This paper outlines a reliable comparison between two powerful methods that were recently developed. The first is the 

differential transformation method (DTM) which was first proposed by Zhou (1986), [47], who solved linear and non-

linear initial value problems in electric Circuit analysis, and was used heavily in the literature successfully applied to 

eigenvalue problems [7,17], linear and non-linear higher-order boundary value problems [13], one-dimensional planar 

Bratu problem [12], higher-order initial value problems [9, 34], systems of ordinary and partial differential equations [5, 

11], high index differential-algebraic equations [6, 39], integro-differential equations [3], and non-linear oscillators. The 

second is variational iteration method (VIM) which was first proposed by He [22, 23]. He [25, 32] has succeeded in 

applying (VIM) to autonomous ordinary differential equations, non-linear systems of partial differential equations [26], 

and construction of solitary solutions. He has also succeeded in applying compaction-like solutions to partial differential 

equations [31]. Other scientists who applied those two methods to other fields are listed in [1, 2, 15, 24, 29, 41-43, 46]. 
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In this section, we consider the one-dimensional Cauchy reaction-diffusion problems 

                
2

2
2

u u(x, t) D (x, t) p(x, t)u(x, t), (x, t) R .
t x

∂ ∂
= + ∈Ω ⊂

∂ ∂
          (1) 

where u  is the concentration, p  is the reaction parameter and D 0> is the diffusion coefficients, are subject to the 

initial and boundary conditions 

                      u(x,0) g(x), x R.= ∈                                           (2) 

                      0 1
uu(0, t) f (t), (0, t) f (t).
x

∂
= =

∂
                            (3) 

The problem given by Eqs. (1) and (2) is called the characteristic Cauchy problem in domain R R ,+Ω = ×  whilst the 

problem given by Eqs. (1) and (3) is called the non-characteristic Cauchy problem in the domain  R R .+Ω = ×  The 

solution of these problems is attempted by using the differential transformation method (DTM) and variation iteration 

method (VIM), This will be discussed later. 

We will now describe the model of the problems that will be used for our analysis experiment. 

Problem 1: Consider the Eq. (1) when p(x, t) const, t 1.= = −  In this case, we put the problem in the form: 

                
2

2
2

u u(x, t) D (x, t) u(x, t), (x, t) R .
t x

∂ ∂
= − ∈Ω ⊂

∂ ∂
                    (4) 

with the initial and boundary conditions 

                      xu(x,0) e x, x R.= + ∈                                      (5) 

                      tuu(0, t) 1 and (0, t) e 1, t R.
x

−∂
= = − ∈

∂
                     (6) 

Problem 2: Consider the Eq. (1) when p(x, t) p(t)=  only where p(t) 2t.=  In this case, we have the problem in 

the form: 

                
2

2
2

u u(x, t) D (x, t) 2 tu(x, t), (x, t) R .
t x

∂ ∂
= + ∈Ω ⊂

∂ ∂
                   (7) 

with the initial and boundary conditions 

                   
xu(x,0) e , x R.= ∈                                                        (8) 

                   
2 2(t t ) (t t )uu(0, t) e and (0, t) e , t R.

x
+ +∂

= = ∈
∂

                (9) 

Problem 3: Consider the Eq. (1) when p(x, t) p(x)=  only where 2p(x) 1 4x .= − −  In this case, we have the 

problem in the form: 

               
2

2 2
2

u u(x, t) D (x, t) ( 1 4x )u(x, t), (x, t) R .
t x

∂ ∂
= + − − ∈Ω ⊂

∂ ∂
          (10) 

with the initial and boundary conditions 

                
2xu(x,0) e , x R.= ∈                                                   (11) 
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                 t uu(0, t) e and (0, t) 0, t R.
x

∂
= = ∈

∂
                            (12) 

Problem 4: Consider the Eq. (1) when p(x, t) p(x, t)= where 2p(x, t) 2t 2 4x .= − −  In this case, we have the 

problem in the form: 

     
2

2 2
2

u u(x, t) D (x, t) (2t 2 4x ) u(x, t), (x, t) R .
t x

∂ ∂
= + − − ∈Ω ⊂

∂ ∂
         (13) 

with the initial and boundary conditions 

                                                               (14) 

        
2t uu(0, t) e and (0, t) 0, t R.

x
∂

= = ∈
∂

                              (15) 

    Our work, in this paper, relies mainly on two of the most recently methods, the (DTM) and (VIM). The two methods, 

which accurately compute the solutions in a series form or in an exact form, are of great interest to applied sciences. 

The effectiveness and the usefulness of both methods are demonstrated by finding exact solutions to the above 

problems 1-4, that will be investigated. However, each method has its own characteristics and significance that will be 

examined. 

 

2. Basic of Differential Transformation Method 

   In what follows we will highlight briefly the main points of the methods. The details can be found in [4, 8, 10, 12, 16, 

18, 19, 20, 35, 37]. 

 

(i) One-dimensional differential transformation: 

The basic definitions of the differential transformation are introduced as follows: 

Definition 1: An thk -order differential transformation (DT) of a function y(x) f (x)= is defined when a point 

 as: 

              
k

x 0k
1 dY(x) [ y(x)] .
k! dx ==                                                     (16) 

where  belongs to the set of non-negative integers, denoted as the K -domain. 

 

Definition 2: The function  may be expressed in terms of the differential transformation (DT), Y(x)  as: 

                k
0

k 0
y(x) (x x ) Y(k).

∞

=
= −∑                                           (17) 

 Upon combining (16) and (17), we obtain                         

                  
k k

0
x 0k

k 0

(x x ) dy(x) { y(x)} .
k! dx

∞

=
=

−
= ∑                                   (18) 

which is actually the Taylor’s series for y(x)  when 0x x= . 

(ii) Two-dimensional differential transformation 

2xu(x,0) e , x R.= ∈

0x x=

k

y(x)
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    Similarly, we consider a function of two variables w(x, y)  analytic in the domain K  and let 0 0(x, y) (x , y )=  in 

this domain. The function w(x, y)  is then represented by one power series whose center at located is 0 0(x , y ) . The 

differential transformation of function is the form 

          

0 0

k h

k h
(x ,y )

1W(k,h) w(x, y) .
k!h! x y

+⎡ ⎤∂
= ⎢ ⎥

∂ ∂⎣ ⎦
                                      (19) 

where w(x, y)  is the original function and W(k, h) is the transformed function. 

The differential inverse transform of W(k, h) is defined as: 

          k h
0 0

k 0 h 0
w(x, y) W(k, h)(x x ) (y y ) .

∞ ∞

= =
= − −∑ ∑                             (20) 

From Eqs. (19) and (20) we can conclude: 

        0 0(x , y )0 0k 0 h 0

k h
k h

k h
1 1w(x, y) { w(x, y)} (x x ) (y y ) .
k! h! x y= =

+∞ ∞ ∂
= − −

∂ ∂
∑∑          (21) 

When we apply Eqs. (20) at then (20) can be written by a finite series as: 

        
M N

k h

k 0 h 0
w(x, y) W(k, h)x y .

= =
= ∑ ∑                                         (22) 

The application of the differential transformation method (DTM) will be discussed, for solving problems 1-4. According to 

the (DTM) and the operations mathematics of the method, we consider Eq. (1) after taking the differential 

transformation of both sides in the following form: 

k k

r 0 s 0

1U(k,h 1) D(k 1)(k 2)U(k 2,h) P(r,h s)U(k r,s) .
(h 1) = =

⎡ ⎤
+ = + + + + − −⎢ ⎥+ ⎣ ⎦

∑∑   (23) 

By taking the differential transform to the initial (boundary) conditions (2) and (3) respectively, we get 

                   U(k,0) G(k),=                                          (24)   

                     0U(0, h) F (h),=                                   (25) 

                      1U(1, h) F (h),=                                   (26) 

By using (24)-(26) into (23), we can calculate U(k, h).When we substitute all U(k, h)  into (22) as M →∞  and 

N →∞ , the solution U(x, t)  will be consequently readily obtained. 

 

 

3. Basic Ideas of He’s Variational Iteration Method 

    In this section, the variational iteration method will be applied for solving problems 1-4. According to the variational 

iteration method, where details can be found in [14, 15, 21, 25-28, 31, 33, 36, 44, 45], we consider the correction 

functional for Eq. (1) in the form: 

~
2t n n

n 1 n20

u uU (x, t) u(x, t) (s)[ (x,s) D (x,s) P(x,s)u (x,s)]ds.
s x+

∂ ∂
= + λ − −

∂ ∂∫     (27)  

w(x, y)

0 0(x , y ) (0,0),≡
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where λ  is the general Lagrange multiplier [33], 0u  is an initial approximation which must be chosen suitably and 
~

nu  

is the restricted variation, i.e. 
~

nu 0δ =  as in [22-25]. To find the optimal value of λ  we have 

 

~
2t n n

n 1 n20

u uU (x, t) u(x, t) (s)[ (x, s) D (x,s) P(x, s)u (x, s)]ds,
s x+

∂ ∂
δ = δ + δ λ − −

∂ ∂∫  

                                                                                                      (28) 

or 

     
t n

n 1 n0

uU (x, t) u(x, t) (s)[ (x, s) P(x,s)u (x, s)]ds,
s+

∂
δ = δ + δ λ −

∂∫        (29) Therefore we have  

 
t

n 1 n n0
U (x, t) u(x, t)(1 ) u (x,s)[ (x, s) P(x, s)u (x, s)]ds 0,

x+
∂λ

δ = δ + λ − δ + =
∂∫  (30) 

 which yields   

                     ( s) P(x,s) 0,
x

∂λ
+ =

∂
                                             (31) 

                    s t1 (s) 0 ,=+ λ =                                                     (32) 

    Thus we have 

              (s) p(x,s) ds p(x, t) dt 1.λ = − −∫ ∫                         (33) 

and we obtain the following iteration formula: 

 
2t n n

n 1 n 20

u uU (x, t) u (x, t) [ p(x,s)ds p(x, t)dt 1][ (x,s) D (x,s)
s x+

∂ ∂
= + − − −

∂ ∂∫ ∫ ∫      

                   nP(x,s)u (x, s)]ds.−                                                  (34) 

and for sufficiently large values of n  we can consider nu  as an approximation of the exact solution. 

 

4. Test problems 

   To give a clear overview of the analysis introduced above, four illustrative examples have been selected to 

demonstrate the efficiency of the method. 

Example 1: In this example we solve problem 1, when D 1,=  p(x, t) 1.= −  

(i) By using Differential Transformation Method (DTM), 

When taking the differential transformation of (4), we can obtain: 

    [ ]1U(k, h 1) (k 1)(k 2)U(k 2,h) U(k, h) .
(h 1)

+ = + + + −
+

             (35) 

From the initial condition (5), we can write 

r 2 3 4

r 0

1 1 1U(k,0)x (1 x x x x ) (k 1) (h),
2! 3! 4!

∞

=

= − + − + − + δ − δ∑ L       (36) 

which gives 
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k

1, if k 0
U(k,0) 0, if k 1 .

( 1) , if k 2,3, 4,
k!

⎧
⎪ =
⎪⎪= =⎨
⎪ −⎪ =
⎪⎩

L

                                         (37) 

From the boundary condition (6), we have 

    

U(0,h) (k) (h),
1, if k h 0

U(0,h)
0, if otherwise.

= δ δ

= =⎧
= ⎨
⎩

                                                  (38) 

and  

  2 3 4r

r 0

1 1 1U(1, h)t (1 t t t t ) (k) (h),
2! 3! 4!

∞

=
= − + − + − − δ δ∑ L                    (39) 

which gives 

  

h

0, if k 0,h 0
U(k,0) 1, if k 1,h 1 .

( 1) , if k 2,3, 4,
h!

⎧
⎪ = =
⎪⎪= − = =⎨
⎪ −⎪ =
⎪⎩

L

                                          (40) 

For each k, h  substituting Eqs. (37), (38) and (40) into Eq. (35) and by recursive method, all other of U(k, h)  are 

equal to zero. when we substitute all values U(k, h)  into (22) as  and , we obtain series for 

u(x, t) . Then when we rearrange the solution, we get the following closed form solution: 

                      hk

k 0 h 0
u(x, t) U(k, h) x t ,

∞ ∞

= =
= ∑∑  

                      

2 3 4 5

2 3 4 5

1 1 1 1u(x, t) (1 xt xt xt xt xt
2 6 24 120

1 1 1 1x x x x ),
2 6 24 120

= − + − + − +

+ − + − +

L

L

 

                     

2 3 4 5

2 3 4 5

1 1 1 1u(x, t) x (1 t t t t t )
2 6 24 120

1 1 1 1(1 x x x x x ),
2 6 24 120

= − + − + − +

+ − − − + − +

L

L

            

                      t xu(x, t) x e e .− −= +   (41) 

(ii) By using Variational Iteration Method (VIM), 

Using the variational iteration method for solving problem 1, if , the Lagrange's multiplier  is given by 

                             (s) t s 1.λ = − −                                   (42) 

Substituting the value (s)λ of (42) into the functional (34) gives the iteration formula: 

M →∞ N →∞

D 1= λ(s)
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2

n n
n 1 n n2

t

0

u uU (x, t) u (x, t) (t s 1)[ (x,s) (x,s) u (x,s)]ds.
s x+

∂ ∂
= + − − − +

∂ ∂∫       (43) 

We can select 0u (x, t) exp( x) x= − +  by using the given initial value. Accordingly, we obtain the following 

successive approximations: 

x
0

x 2
1

x 2 3 4
3

x 2 3 4 5 6
4

u (x, t) e x,
1u (x, t) e x (1 t t ),
2
1 1 1u (x, t) e x (1 t t t t ),
2 3! 4!
1 1 1 1 1u (x, t) e x (1 t t t t t t ),
2 3! 4! 5! 6!

−

−

−

−

= +

= + − +

= + − + − +

= + − + − + − +

M

 

n
n

Recall that
u(x, t) u (x, t)lim

→∞
=  

Consequently, the exact solution is the form: 

                    x tu(x, t) e x e .− −= +                                               (44) 

From Eqs. (42) and (44), the approximate solution of the given problem 1 by using differential transformation method is 

the same results as that obtained by the variational iteration method and by the Adomian decomposition method [38] 

respectively and it clearly appears that the approximate solution remains closed form to exact solution. 

Example 2: In this example we solve problem 2, when  and p(x, t) 2 t.=  

(i) By using Differential Transformation Method (DTM), 

Taking the differential transformation of (7), we have 

k h

r 0 s 0

1U(k, h 1) (k 1)(k 2)U(k 2, h) (r, h s 1)U(k r,s) .
(h 1) = =

⎡ ⎤
+ = + + + + δ − − −⎢ ⎥+ ⎣ ⎦

∑∑  (45) 

From the initial condition (8), we can write 

         
1, if k m and h n

U(k,0)
0, if k 2,3,4, and h 0.

= =⎧
= ⎨ = =⎩ L

                         (46) 

From the boundary condition (9), consequently we can calculate the following values in Table 1. 

Table 1. 

   

D 1=

U(0, h) U(1, h), h 0,1, 2,= = L
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U(0,0) U(1,0) 1
7U(0,3) U(1,3)
6
331U(0,6) U(1,6)
720

= =

= =

= =

L

M

                   

3U(0,2) U(1, 2)
2
27U(0,5) U(1,5)
40

= =

= =

L

L

M

 

 

Using the values in Table 1 into (45), and by recursive method, we have 

               
1U(k,1) , k 2,3,4,
k!

= = L                                             (47) 

and 

3 1 1 1 1U(2,2) , U(3, 2) , U(4,2) , U(5, 2) , U(6, 2) , ,
4 4 16 180 480

= = = = = L  

7 7 7U(2,3) , U(3,3) , U(4,3) , ,
12 36 144

= = = L     
25 55U(2, 4) , U(3,4) , ,
48 144

= = L  

 
27 9 9U(2,5) , U(3,5) , U(4,5) ,
80 80 32

= = = L   (48) 

and so on, when we substitute all values U(k, h)  into (22) as M →∞  and N →∞ , we obtain series for u(x, t) . 

Then when we rearrange the solution, we get the following closed form solution: 

         
2(x t t )k h

k 0 h 0
u(x, t) U(k,h) x t e .

∞ ∞
+ +

= =
= =∑ ∑                          (49) 

(ii) By using Variational Iteration Method (VIM), 

Using the variational iteration method for solving problem 2, when  , p 2 t= . The Lagrange's multiplier (s)λ  is 

given by 

                                             2 2(s) s t 1.λ = − −                                   (50) 

Substituting the value (s)λ of (50) into the functional (34) gives the iteration formula: 

       (51) 

We can select 0u (x, t) exp(x)=  by using the given initial value. Accordingly, we obtain the following successive 

approximations: 

x 3 4

x 3 4 5 6 7 8

x
0

2
1

2
2

u (x, t) e ,
2 1u (x, t) e (1 t t t t ),
3 4

3 11 1 2 11 1u (x, t) e (1 t t t t t t t t ),
2 12 2 9 105 24

=

= + + + +

= + + + + + + + +

 

U(0,0) U(1,1) 1
25U(0, 4) U(1,4)
24
1304U(0,7) U(1,7)
5040

= =

= =

= =

L

M

D 1=

t n n
n 1 n n0

2
2 2

2
u uU (x, t) u (x, t) (s t 1)[ (x,s) (x,s) u (x,s)]ds.
s x+

∂ ∂
= + − − − +

∂ ∂∫
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x 3 4 5 6 7 8
3

9 10 11 12

23 7 13 5 25 139u (x, t) e (1 t t t t t t t t
2 6 20 12 126 1260

197 173 211 1t t t t ),
4536 12600 41580 720

= + + + + + + + +

+ + + +
 

M  

Recall that 

n
n

u(x, t) u (x, t)lim
→∞

=  

Consequently, the exact solution is the form: 

 
2t txu(x, t) e e .+= ×                               (52) 

From Eqs. (50) and (52), the approximate solution of the given problem 2 by using differential transformation method 

gives the same results as that obtained by the variational iteration method and by the Adomian decomposition method 

[38] respectively and it clearly appears that the approximate solution remains closed form to exact solution. 

Example 3: In this example we solve problem 3, when  and 2p(x, t) 1 4x .= − −  

(i) By using Differential Transformation Method (DTM), 

Taking the differential transformation of (10), we have 

      k h

r 0 s 0

(k 1)(k 2)U(k 2, h) U(k,h)
1U(k, h 1) .

(r 2,h s)U(k r,s)(h 1)
= =

+ + + −⎡ ⎤
⎢ ⎥+ = ⎢ ⎥− δ − − −+
⎢ ⎥⎣ ⎦
∑∑

          (53) 

From the initial condition (11), we can write 

         

0, if k 1,3,5
1U(k,0) , if k 0,2, 4,6 and h 0.k( )!
2

=⎧
⎪⎪= ⎨ = =
⎪
⎪⎩

L

L                       (54) 

From the boundary condition (12), consequently we can write 

                                     (55)         

                   U(1, h) 0, forall h 0.= ≥                            (56) 

Using (54)-(56) into (53) by recursive method, we have the following values in Table 2 with 

 and  h 1≥ . 

 

Table 2 

D 1=

1U(0, h) , forall h 0.
h!

= ≥

U(k, h) 0 for k 3, 5, 7,= = L
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U(2,1) 1
1U(2, 2)
2
1U(2,3)
6
1U(2, 4)
24
1U(2,5)

120
1U(2,6)

720
1U(2,7)

5040

=

=

=

=

=

=

=

M

     

1U(4,1)
2
1U(4, 2)
4
1U(4,3)

12
1U(4, 4)
48
1U(4,5)

240
1U(4,6)

1440
1U(4,7)

10080

=

=

=

=

=

=

=

M

  

1U(6,1)
6
1U(6, 2)

12
1U(6,3)
36

1U(6, 4)
144

1U(6,5)
720

1U(6,6)
4320

1U(6,7)
30240

=

=

=

=

=

=

=

M

   

1U(8,1)
24
1U(8,2)
48
1U(8,3)

144
1U(8,4)

576
1U(8,5)

2880
1U(8,6)

17280
1U(8,7)

120960

=

=

=

=

=

=

=

M

 

when we substitute all values U(k, h)  into (22) as M →∞  and N →∞ , we obtain series for u(x, t) . Then when 

we rearrange the solution, we get the following closed form solution: 

             
2(x t)k h

k 0 h 0
u(x, t) U(k, h)x t e .

∞ ∞
+

= =
= =∑ ∑                                      (57) 

(ii) By using Variational Iteration Method (VIM), 

Using the variational iteration method for solving problem 3, when , 2p(x, t) ( 1 4x )= − − , The Lagrange's 

multiplier (s)λ  is given by 

               2 2(s) (1 4x ) t (1 4x )s 1.λ = + − + −                           (58) 

When we substitute the value (s)λ of (58) into the functional (34), we get the iteration formula: 

2
2 2 n n

n 1 n n2

t

0

u uU (x, t) u (x, t) ((1 4x )t (1 4x )s 1)[ (x,s) (x,s) u (x,s)]ds.
s x+

∂ ∂
= + + − + − − +

∂ ∂∫    

                                                                  (59) 

We can select 2
0u (x, t) exp(x )= . By using the given initial value. Accordingly, we obtain the following successive 

approximations: 

0

1

2

2x

2x 2

2x 2 3 4

2x 2 3 4
3

u (x , t ) e ,
1u (x , t ) e (1 t t som e term s of x t , 1, 1),
2
1 11 3u (x , t ) e (1 t t t t som e term s of x t , 1, 1),
2 6 8
1 1 119u (x , t ) e (1 t t t t som e term s of x t, 1, 1),
2 6 24

βα

βα

βα

=

= + − + α ≥ β ≥

= + + − + + α ≥ β ≥

= + + + − + α ≥ β ≥

M

 

Recall that 

n
u(x, t) u (x, t)lim n→∞

=  

D 1=
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and all terms x tα β  are neglected whereas x 0→ , or t 0→ . 

Consequently, we find the exact solution is the form: 

              
2(x t)u(x, t) e .+=                             (60) 

From Eqs. (57) and (60), the approximate solution of the given problem 3 by using differential transformation method is 

the same results as that obtained by the variational iteration method and by the Adomian decomposition method [38] 

respectively and it clearly appears that the approximate solution remains closed form to exact solution. 

 

Example 4: Finally, we solve problem 4, when  and 2p(x, t) 2t 2 4x .= − −  

(i) By using Differential Transformation Method (DTM), 

Taking the differential transformation of (13), we have 

k h

r 0 s 0
k h

r 0 s 0

(k 1)(k 2)U(k 2, h)
1U(k, h 1) 2 (r, h 1 s)U(k r,s) .

(h 1)

4 (r 2,h s)U(k r,s) 2U(k, h)

= =

= =

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥

+ = + δ − − −⎢ ⎥+ ⎢ ⎥
⎢ ⎥

− δ − − − −⎢ ⎥
⎣ ⎦

∑∑

∑∑

      (61) 

From the initial condition (14), we get 

          

0, if k 1,3,5,
1U(k,0) , if k 0,2, 4,6,k( )!
2

=⎧
⎪⎪= ⎨ =
⎪
⎪⎩

L

L                            (62) 

From the boundary condition (15), consequently we have 

        

0, if h 1,3,5,
1U(k,0) , if h 0,2, 4,6,h( )!
2

=⎧
⎪⎪= ⎨ =
⎪
⎪⎩

L

L                          (63)  

and        
                   U(1, h) 0, forall h 0.= ≥                                            (64) 

Using (62)-(64) into (61) by recursive method, we have the following values in Table 3 when h 1≥  we have, 

 

U(k, h) 0,
if k h 1,3, 5,
if k 1,3, 5, and h 2,4,6,

=
= =
= =

L

L L

                                                         (65) 

Table 3 

D 1=
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U(2,2) 1
1U(2,4)
2
1U(2,6)
6
1U(2,8)
24

1U(2,10)
120

1U(12,2)
120

=

=

=

=

=

=

M

    

1U(4, 2)
2
1U(4, 4)
4
1U(4,6)

12
1U(4,8)
48

1U(4,10)
240
1U(10, 4)

240

=

=

=

=

=

=

M

     

1U(6, 2)
2
1U(6, 4)

12
1U(6,6)
36
1U(6,8)

144
1U(6,10)

720
1U(10,8)

2880

=

=

=

=

=

=

M

     

1U(8,2)
24
1U(8,4)
48
1U(8,6)

144
1U(8,8)

576
1U(8,10)

2880
1U(10,10)

14400

=

=

=

=

=

=

M

     

L

L

L

L

L

L

M

 

when we substitute all values U(k, h)  into (22) as M →∞  and N →∞ , we obtain series for u(x, t) . Then when 

we rearrange the solution, we get the following closed form solution: 

           
2 2(x t )u(x, t) e +=                                   (66) 

(ii) By using Variational Iteration Method (VIM), 

Using the variational iteration method for solving problem 4, when , 2p(x, t) (2t 2 4x )= − − , we have the 

Lagrange's multiplier )(sλ  is given by 

         2 2 2 2(s) s 2s 4sx t 2 t 4tx 1.λ = − − − + + −                          (67) 

When we substitute the value (s)λ of (67) into the functional (34), we get the iteration formula: 

      
t n

n 1 n 0

2 2 2 2 uU (x, t) u (x, t) ( s 2s 4sx t 2t 4tx 1)[ (x,s)
s+

∂
= + − − − + + −

∂∫  

                                                                     (68) 

We can select 2
0u (x, t) exp (x )= . By using the given initial value. Accordingly, we obtain the following successive 

approximations: 

0

1

2

3

2x

2x 2 2 4

2x 2 4 5 6 7 8

2x 2 4 5 6 7 8 9

u (x , t ) ,
2 1u (x , t ) (1 t t t som e term s of x t , 1, 1),
3 2
1 4 1 13 1u (x , t ) (1 t t t t t t som e term s
2 15 30 105 24

of x t , 1, 1),
1 119 74 1 4u (x , t ) (1 t t 2 t t t t t
2 90 105 56 945

197
37800

e

e

e

e

βα

βα

=

= + − + + α ≥ β ≥

= + − + + − + +

α ≥ β ≥

= + + − + − + +

− 10 11 12271 1t t t som e term of x t, 1, 1),
41580 720

βα− + + α ≥ β ≥

M

 

n
n

Recall that
u(x, t) u (x, t)lim

→ ∞

=  

and all terms x tβα  are neglected whereas x 0→ , or t 0→ . 

D 1=

n
n

2

2
u (x,s) u (x,s)]ds.
x

∂
− +
∂
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Consequently, we find the exact solution is the form: 

                                                     (69) 

From Eqs. (66) and (69), the approximate solution of the given problem 3 by using differential transformation method is 

the same results as that obtained by the variational iteration method and by the Adomian decomposition method [38] 

respectively and it clearly appears that the approximate solution remains closed form to exact solution. 

 

5. Discussions 

    The main goal of this work is to conduct a comparative study between the differential transformation method (DTM) 

and He’s variational iteration method (VIM). The two methods are so powerful and efficient that they both give 

approximations of higher accuracy and closed form solutions if existing. Differential transformation method (DTM) 

provides the components of the exact solution when these components follow the summation given in (18) and (22). 

However, He’s variational iteration method (VIM) gives several successive approximations through using the iteration of 

the correction functional. Moreover, the differential transformation method (DTM), which is based on the Taylor series 

expansion, constructs an analytical solution in the form of polynomial series solution by means of an iterative procedure; 

whereas He’s variational iteration method (VIM) requires the evaluation of the Lagrange multiplierλ . For the examples 

presented in this paper a closed-form solution is always obtained. In all examples symbolic numerical computations in 

Maple may need to be performed in general. 
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