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Abstract 

This paper considers a stochastic online scheduling problem in which a set of independent jobs are to 
be processed on a single machine. Each job has a processing time, which is a random variable with 
normal distribution. All the jobs arrive overtime, which means that the existence and the parameters of 
each job including its processing time specifications and weight are unknown until its release date. 
Moreover, the actual processing time of each job is unknown until its completion. During the 
processing, jobs are allowed to be preempted and restarted later. So, the processing time devoted to the 
job before the preemption is lost and considered as preemption penalty. The objective is to minimize 
the expected value of the total weighted completion time. Since the problem is strongly NP-hard, a 
heuristic algorithm is proposed in this paper and is validated using numerical examples. The proposed 
method utilizes the properties of the normal distribution but it can be used as a heuristic for other 
distributions, as long as their means and variances are available. 
 
Keywords:Stochastic scheduling, online scheduling, preemption penalty, job preemption, preemption-restart 
 
 

 

1. Introduction 
In stochastic scheduling, the processing time is uncertain and we don’t have exact information about it. 
The problem will be more complicated when jobs arrive online, or in other words, jobs and their 
characteristics are unknown before arriving to the shop. In addition, any job can be preempted at any 
time. In the previous stochastic researches, preemption is usually assumed to be ‘free’ which means 
that each job can be preempted at any point of time and resume later without a penalty. However, this 
is usually not true in practice. In many cases such as melting furnaces, all the operations performed 
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before the preemption are considered lost (preemption-restart model). Thus, the time that has been 
spent on the job before the preemption is considered as preemption penalty. 
Several papers have studied online scheduling problem with preemption in deterministic mode. Potts 
and Wassenhove [1] proposed considering preemption penalties under the lot-sizing model. Liu and 
Cheng [2] considered a single-machine scheduling problem with job-independent setup times and used 
a greedy algorithm for minimizing the total completion time. Zheng et al. [3] proposed an algorithm 
for the unit length and general length cases for online scheduling in preemption-restart model with 
preemption penalties. Zheng et al. [4] considered a case that the preemption penalty is equal to value of 
the job. Stanley P.Y. Fung [5] considered online deadline scheduling problem with preemption and 
proposed lower bounds for it. Megow [16] considered the shortest weighted remaining processing time 
rule (SWRPT) in which at any moment the job with largest ratio of weight over remaining processing 
time is processed. Heydari et al. [6] proposed a heuristic algorithm to minimize the total flow time in 
single machine online scheduling with preemption penalties. Heyadi and Mohammadi [17]�considered 
the single-machine scheduling problem of minimizing the total flow time subject to job release dates 
and fuzzy preemption penalties. 
Some other papers have considered preemptive stochastic scheduling in offline mode. These studies 
include Chazan et al [7], Konheim [8] and Sevcik [9]. Weiss [10] proposed a rule, namely Gittins 
index priority policy (GIPP) for preemptive stochastic scheduling problem 1 ( )j jptmn E w c    
which solves the problem optimally. Kämpke [11] investigated the problem ( )j jP ptmn E w c    
with multiple machines, and proved that the SEPT (shortest expected processing time) policy is 
optimal when the weights are agreeable. 
Few researches have addressed the issue of preemptive stochastic online scheduling. Megow and 
Vredeveld [12] considered stochastic online scheduling in preemption allowed mode and proposed two 
policies. These policies have been derived from GIPP. They also applied the policies for a problem 
with two parallel machines and proved that they are 2-approximative for preemptive stochastic online 
problem ,j j jP r ptm n E w c   . Manzhan and Xiwen [13] proposed the optimal policy, named 

SMPR, for the single machine preemptive stochastic scheduling problem, where jobs have a common 
arriving time, for minimizing the expected value of the total weighted completion time. They also 
introduced Uniform-Machine Priority Rule (UMPR), which is devised for the preemptive stochastic 
online scheduling on two uniform machines. Then, they proved that UMPR has an approximation 
factor of 2. 
Therefore, most of the previous studies have considered preemption-resume mode and less attention 
has been paid to stochastic online scheduling with preemption penalties. We have not found a 
considerable study that performed to solve the problem of preemptive stochastic online scheduling in 
preemption-restart mode. Preemptive online stochastic scheduling problem 1 , ( )j j jr ptmn E w c   , is 

well known to be NP-hard, even in the case of equal release dates [14, 15]. 
The remainder of this paper is organized as follows: in Section 2, research assumptions and definitions 
have been introduced. Section 3 introduces problem in preemptive stochastic mode considering all of 
completed and uncompleted jobs. In Section 4, we generate priority rules and propose a heuristic. In 
section 5, a numerical example has been solved with proposed algorithm. The performance analysis of 
the proposed heuristic method is presented in section 6. Finally, the conclusions are discussed in the 
last part. 
 
2. Research Assumptions and Definitions 
Each job j  has associated stochastic processing time jt and release time jr . The job is not available 

before its arrival and can be processed right on or after jr . Parameter jc  denotes the completion time 
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yr

of job j . Moreover, we have no information about the job before jr . The processing time is a random 

variable with normal distribution. 
2( , )j j jt N    

Which j and 2
j  are mean and variance of processing. A machine can process at most one job at a 

time, and preemption is allowed for all jobs. The ultimate objective is to minimize expected value of 
total weighted completion time. Uncompleted jobs are scheduled at any time with weighted shortest 
expected processing time rule (WSEPT). This heuristic assigns the job with the largest ratio of weight 
to expected processing time, among the jobs that have arrived but haven’t been completed yet.  

  

 
3. Preemptive stochastic problem 
 
Assume that during the processing of job x the job y arrives to the shop at yr . The processing time of 

job x and y are random variables with normal distribution and following characteristics: 
2

2

( , )

( , )

x x x

y y y

t N

t N

 

 




 

Considering the jobs before and after x and y , the status is demonstrated in Figure 1. 

 

xtyt1xt

xt yt

2xt

1xt

1xt

 
Figure  1. Schedules 1S and 2S  in general mode 

 
Where A is the subset of completed jobs and subset B is the uncompleted jobs. As shown in the Figure 

1, Schedules 1S and 2S
 are either related to preemption or not preemption of job x at arrival of job y  

with regard to the situation of tasks before and after x . In both schedules, the distribution of total 
weighted completion time must be computed. 

1 1 1 1 1

2 2 2 2 2 

j x y j
j A j B

j x y j
j A j B

R f f f f f

Q f f f f f

   

   

    

    

  

  
    

Since the jobs before x  have been completed, their processing time is definite. Therefore, their 
expected weighted completion time is constant value and equal in both schedules: 

 1 2j j
j A j A

f f 
   

      

The jobs in the set B have been arrived to the shop at a point of time before start time of job x , thus:  

j xj B r s    

Where xs is the start time of job x . The job x is being processed and index j is used for it. We 

assume the number of jobs which are present in the shop is k and the number of uncompleted jobs is 
k j . Also, assume that jobs are indexed with priority in set B as shown in Figure 2. 
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3jt 2jt 1jt  kt

 
Figure  2. Jobs in set B 

 
In schedule 1, total weighted completion time in set B is given by: 

 

1 1
1

1( 1) 1 1 1

1( 2) 2 1 1 2
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1 1 1 2 3
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( )

( )

.

.

( ... )
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k
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j j x x y x j j j

k k x x y x j j j k

k

j h
j B h j
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w

   

  

   

    

  

   



    

     

      

        

 



 

 

1
1 1 1

( ) ( )
k k h

x x y x h l
h j h j l j

s t w  
     

     

   

Based on the above calculations to obtain the mean and variance of R we have: 

 

1 1 1 1

1 1 1( ) ( )

j x y j
j A j B

x x x y x y x x y j
j B

R f f f f

w s t t t w s t t f
 



   

        

 


  

1 1
1 1

( ) ( )( ) ( ) ( ( ))
k h

x y x x y x y x x h x x y x l
h j l j

E R w w s t w w w w s t     
   

              

2 2 2 2 2 2 2 2 2

1 1

var( ) ( ) ( )
k h

y x y x x h x y l
h j l j

R w w w w    
   

        

Also mean and variance of 2Q f are computed by: 

 
1 1

2 2 2 2 2 2 2 2 2

1 1

( ) ( ) ( ) ( )

var( ) ( ) ( ))

k h

x x y x x y y y h x x y l
h j l j

k h

x x y y y h x y l
h j l j

E Q s w w w w w w s

Q w w w w

     

    

   

   

         

     

 

 
    

The preemption will occur if the total weighted completion time value in first schedule is less than in 
the second one. Let G R Q  . Distribution function of G is as follows: 
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1 1
1

1
1

2 2 2 2 2 2 2 2 2 2

1 1

1

( ) ( 0)

( ) ( ) ( ) ( )( )

( )
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k
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k
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h j
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y x y x x y h x y l
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E G E R E Q w w t w w w t

w w t w w w

G R Q

w w w w w

G N w w t w w
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 
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 

 

 

   

  
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


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2 2 2 2 2 2 2 2 2 2

1 1 1

), ( 2 ) (2 ) 2 ( ))
k k h

h y x y x x y h x y l
h j h j l j

w w w w w w    
     

       

    

If the probability ( 0)p G   is greater than the specified value of   then the preemption will occur, 

and otherwise the preemption is not allowed. The probability 
 

( 0)p G   is given by: 

1
1

2 2 2 2 2 2 2 2 2 2

1 1

( )

( 2 ) (2 ) 2 ( )

( 0) ( )

k

x y y x x x y h
h j

k h

y x y x x y h x y l
h j l j

w w t w w w

w w w w w

p G

 


    



 

   

   


     

   



    

Where  is cumulative distribution function (cdf) of standard normal. 
 

4. Proposed algorithm 
 
In this section, we first extract rules for preemption based on the results of previous section.  

Lemma 1- For 0.5  , preemption will not occur if x x

y y

w

w




 . 

Proof: if x x

y y

w

w




  then ( 0)p G   and preemption will not occur because: 

1
1

0.5

0

( ) 0

0 ( ) 0.5

x x
x y y x

y y

k

x y y x x x y h
h j

w
w w

w

w w t w w w




 



 

  

 



   

     

    

 

So, preemption is not allowed.  
Lemma 2- If 0.5   then the necessary condition for the preemption of job x  is 

1
1

( )
k

x y y x x x y h
h j

w w t w w w 
 

     . 

Proof: If this condition is not satisfied we have: 
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1
1

1
1

( )

( ) 0

0 ( ) 0.5

k

x y y x x x y h
h j

k

x y y x x x y h
h j

w w t w w w

w w t w w w

 

 

  

 

 

   

     

    



    

Therefore, according to the proof of lemma 1, in this situation preemption will not occur. 
Hence, a heuristic algorithm is proposed to minimize expected value of the total weighted completion 
time for single machine stochastic online scheduling problem in preemption-restart mode. In addition, 
a schematic exhibition of the algorithm is shown in Figure 3. 
Step 0: (parameter definition): Parameter k denotes the total number of jobs in the shop and j  is the 

job counter parameter whit primary value of 1. Processing time of each job ( )jt  is a random variable 

with normal distribution. Arrival time of job j  is jr . Parameter x  denotes the job that is being 

processed and y  denotes new job that arrives to the shop. 

Step 1: Prioritize all uncompleted jobs with WSEPT rule, from j  to k . 

Step  2: Start the processing of job j  and assign index x  to its characteristics until it is completed or 
a new job arrives to the shop. If a new job arrives to the shop then assign index y  to its characteristics 

and go to step 4, otherwise go to next step. 
Step 3: After completion of job x , if x  was the last job then finish the algorithm else increment the 
counter j by one and go to step 1. 

1j j   

Step 4: if 0.5   then go to next step, otherwise go to step 7. 

Step 5: If ( x x

y y

w

w




 ) then follow the algorithm, otherwise go to step 9. 

Step 6: If 1
1

( )
k

x y y x x x y h
h j

w w t w w w 
 

      then follow the algorithm, otherwise go to step 9. 

Step 7: If ( )    then follow the algorithm, otherwise go to step 9. 
 
Step 8: The priority of job y is more than job x . Thus, job x will be preempted and job y  will be 

preferred. From this point of time, index j  and parameter x will be used for job y . Increment the 
counter k  by one, and then go to step 2. 

1k k   
Step 9: Preemption is not allowed and the processing of job x will be continued. Prioritize newly 
arrived job among uncompleted jobs with WSEPT rule. Increment the counter k  by one, and then go 
to step 2.   

1k k   
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 1j  , ( k Total count of jobs) 

(
2( , )

j j j
t N    Processing time of job j )  
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No 
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( )x job y ,  1k k   

Preemption 
refused 

 1k k   

1
1

( )
k

x y y x x x y h
h j

w w t w w w 
 

    

x x

y y

w

w



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Figure 3. Proposed heuristic algorithm 

Complete job x  
and then: 

1j j   
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No 
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Yes 

Complete job x  
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5. Numerical example 
In this section, the performance of the proposed algorithm is evaluated through numerical examples. 
Firstly, assume that we have 3 jobs in the shop at time zero. The processing time of job j has normal 

distribution with specifications given in Table 1. In this example we assume that 0.8  . 
 

Table 1. Specifications of jobs, which are present in the shop at time zero 
j  

j  
j  jR  jr  jw

 
j

j

w
  

1 6 1 7 0 5 0.83 

2 15 3 14 0 3 0.2 

3 12 2.3 15 0 4 0.33 

 
In the Table 1, jr

 
is arrival time and jR is the actual processing time of job j  (it is not known until 

processing is completed). These jobs have been sorted with WSEPT rule and are shown in Figure 4 
(4.1).  In addition, 3 jobs arrive to the shop over time, which are given in Table 2. 

  
Table 2. Jobs which arrive to the shop over time 

i  
i  i  iR  ir  iw

 

4 3 0.5 1.5 2 8 

5 5 1 2.5 9 9.5 

6 9 2 5 11 1.5 

 
The machine will start to process the jobs according to the primary sequence. Job 4 with release time 

4 2r   arrives to the shop as shown in Figure 4 (4.1). Job 1 is processing at this time. Therefore,  

1

1

3

1

4

2x

j

k

x job

y job

t











 

First, we should check the condition given in lemma 1, in step 4 of algorithm: 

2

0.625

x

y

x

y

x x

y y

w

w

w

w











 

 

According the algorithm, we should go to step 5. Hence, for the inequality of 

1
1

( )
k

x y y x x x y h
h j

w w t w w w 
 

    
 
we have: 
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1
1

33

( ) 40

x y y x

k

x x y h
h j

w w

t w w w

 

 

 

  
 

Therefore, the preemption is refused and the priority of job 4 is determined with WSEPT rule between 
non-started jobs and the sequence would be as shown in Figure 4 (4.2). Processing of jobs is continued 

and during the processing of job 3, the job 5 with release time 5 9.5r   arrives to the shop as shown in 

Figure 4 (4.2). Thus, the parameters at this time are as follows: 

1

3

4

3

5

1x

j

k

x job

y job

t











 

Since inequalities x x

y y

w

w




  and 1
1

( )
k

x y y x x x y h
h j

w w t w w w 
 

     are satisfied; the last 

condition needs to be examined as bellow: 
1.87

( ) 0.97 0.8







  
 

Therefore, preemption is allowed. Job 3 is preempted and the processing of job 5 will start. 
Consequently, the scheduling of jobs will be as shown in Figure 4 (4.3). Job 6 arrives to the shop at 
time 11 and job 5 is processing at this time as shown in Figure 4 (4.3). Because the inequality 

x x

y y

w

w




  is not satisfied, preemption is not allowed. The priority of job 6 is determined with WSEPT 

method and final schedule will be as shown in Figure 4 (4.4). 

1t
3t 2t

4t

5 9.5r 

1t
3t 2t

4t 5t

6 11r 

6t1t
3t 2t

4t 5t

1t
3t 2t

4 2r 

 
 

Figure 4- scheduling a sample problem with proposed algorithm 
 
In this example, one preemption was allowed and the expected completion times of the jobs are given 
in Table 3. 
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Table 3- expected completion times of the jobs 

j  
j  

j  jR  jr  ( )jE c ( )j jr E t
 jw

 
1 6 1 7 0 6 6 5 
4 3 0.5 1.5 2 9 5 8 
5 5 1 2.5 9.5 15 14.5 9 

3 12 3 15 0 27 12 4 
2 15 2.3 14 0 42 15 3 
6 9 2 5 11 51 20 1.5 

 
The total weighted completion time value is computed as follows:

 
 

6

1

6

1

( ) ( ( )) 547.5

( ) ( ( )) 323.5
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6. Performance analysis 
A stochastic online method   is a  -approximation, for some 1  , if for all problem instances  , 

[ ( )] [ ( )]E E OPT     
Where [ ( )]E    and [ ( )]E OPT  are the expected values that the policy   and optimal method, 

respectively, achieve on instance I. The value   is called performance guarantee of policy . In this 

paper the trivial bound [ ( )] [ ( )]j j jj
E OPT w r E t    is used for approximation factor computation 

and evaluation of proposed method. For performance evaluation of the proposed algorithm, we have 
used it on some problems with variety of sizes and the results are compared to trivial optimum (OPT). 
We have produced 10,000 problems in 100 categories with different quantities in the number of jobs, 
the processing time specification and the value of  coefficient. Other assumptions are as follows: 

1. Release dates are generated using uniform distribution within the interval [0,3000] 
2. Weights of jobs are generated using uniform distribution within the interval [1,10] 
3. All jobs are preemption-restart. 
4. The actual processing time is assumed to be equal to the mean of processing time. 
5. We have produced 100 problems for each category and based on the comparison between 

results of each method, the maximum of factor  is calculated for these problems. 
To compare the performance of the proposed method (BHM) against OPT; we first analyze the 
performance with respect to the number of jobs which is changed from 10 to 200 and 20 categories 
produced. The processing time follows a normal distribution. We assume that 0.8   and the mean of 
processing time is a random value within the interval [40,80] and standard deviation of processing time 
is equal to 10. Since the mean of processing time follows uniform distribution, the expected value of 
the processing time is ( ) 60jE   . Table 4 and Figure 5 summarize the details of our 

implementations. As can be observed, the approximation factor for BHM is less than 2 when the 
number of jobs is less than 150. Note that when n extends beyond 50, the density of jobs will increase 
illogically and we have ( ) 3000jn E    while 3000jr  . Therefore, when the density of jobs 

increases illogically,   value increases faster. Moreover, in this paper   is calculated based on 
comparison of the results with trivial optimum. While calculating a lower bound for the optimal 
solution of the stochastic online scheduling problem with preemption penalty would result in 
significant improvement in the approximation factor. We have also compared the performance of the 
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Table 5- The performance of BHM against OPT where the number of jobs is 50 
Mean of 

processing time 
0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   

[40 45] 1.0257 1.024 1.0212 1.021 1.0209 1.0191 1.0192 1.0192 
[40 50] 1.0332 1.0276 1.0258 1.0266 1.0241 1.0225 1.0231 1.0222 
[40 60] 1.043 1.0398 1.036 1.0363 1.0362 1.0338 1.0345 1.0318 
[40 70] 1.0608 1.0527 1.0516 1.0508 1.0494 1.0471 1.0441 1.0502 
[40 80] 1.0803 1.0814 1.0734 1.0752 1.0688 1.0679 1.0653 1.0634 
[40 90] 1.101 1.1003 1.0933 1.0983 1.0956 1.0902 1.0952 1.0907 

[40 100] 1.1409 1.1324 1.1315 1.1221 1.1225 1.1205 1.113 1.1128 
[40 200] 1.4954 1.5108 1.5082 1.5119 1.4656 1.4812 1.4934 1.4979 
[40 500] 2.6798 2.6097 2.599 2.6173 2.6067 2.5883 2.6394 2.6131 

[40 1000] 4.2528 4.2194 4.1734 4.1968 4.1599 4.1503 4.1011 4.1088 

 

 
 

 
Figure 6-   versus mean of processing time for 0.7   

 

 
 

7. Conclusion 
In this paper, the stochastic online scheduling problem with preemption penalty, with objective 
function of minimizing the expected value of the total weighted completion time on single machine 
had been investigated. The problem has specifications such as being online, preemption penalty and 
stochastic processing times. Moreover, a heuristic algorithm was presented and the implementation of 
the proposed method was demonstrated using some numerical examples. The performance of the 
proposed method in this paper had been compared to trivial optimum and the approximation factor had 
been computed. Primary results indicated that the proposed method had the approximation factor less 
than 2 for a wide range of problems. The proposed method utilized the properties of the normal 
distributions and this method can be used as a heuristic method for other distributions, as long as their 
means and variances are available. Scheduling with preemption penalties is a novel research area in 
scheduling field especially for online problems and we strongly believe that this research could be well 
extended for problems with two uniform machines or flow shop problem and problems with stochastic 
setup times. 
 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[40 45] [40 50] [40 60] [40 70] [40 80] [40 90] [40 100] [40 200] [40 500] [40 1000]

B
M

H
/O

P
T

Mean of processing time

release time: [0 3000]                         n=50   



   M. Heydari, M. Mahdavi Mazdeh and M. Bayat / J. Math. Computer Sci.    6 (2013), 238‐250 
 

250 
 

8. References 
 

[1] C.N. Potts, L.N.V. Wassenhove,  J. Oper. Res. Soc. 43,pp-395(1992). 

[2] Z. Liu, T.C.E. Cheng,  Information Process. Lett., 82, pp-107(2002). 

[3] F. Zheng, W. Dai, P. Xiao, Y. Zhao,. Competitive strategies for on-line production order 
disposal problem. In: Proc. of 1st International Conference on Algorithmic Applications in 
Management., pp 46(2005). 

[4] F. Zheng, Y. Xu, E. Zhang,  J Comb Optim 13,pp-189(2007). 

[5] P.Y.F. Stanley, Inf Process Lett 108, pp-214(2008). 

[6] M. Heydari, S.J. Sadjadi, E. Mohammadi, Minimizing   Int J Adv Manuf  Technol, 47, pp-
227(2009). 

[7] D. Chazan, A.G. Konheim, B. Weiss.  Journal of Combinatorial Theory, 5, pp-344(1968). 

[8] A.G. Konheim.  Probability Theory and Related Fields, 9, pp-112(1968). 

[9] K.C. Sevcik.  Journal of the ACM, 21, pp-65(1974). 

[10] G. Weiss.  Advances in Applied Probability, 27, pp-827(1995). 

[11] T. Kämpke. Operations Research 37 (1), pp-126(1989). 

[12] N. Megow, T. Vredeveld. Approximation results for preemptive stochastic online scheduling, 
Technical Report 8, Technische Universität Berlin(2006). 

[13] Manzhan Gu , Xiwen Lu.  Information Processing Letters 109, pp-369(2009). 

[14] J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinooy Kan. Preemptive scheduling of 
uniform machines subject to release dates. In W. R. Pulleyblank, editor, Progress in Combinatorial 
Optimization, pages 245–261. Academic Press, New York(1984). 

[15] J. K. Lenstra, A. H. G. Rinooy Kan, and P. Brucker.   Annals of Discrete Mathematics, 1,pp-
243(1977). 

[16] N. Megow.  Coping with incomplete information in scheduling stochastic and online models, 
Ph.D. Thesis, Technische Universität Berlin, Published by Cuvillier Verlag Göttingen, 
Germany(2007). 

[17] Heydari M. Mohammadi E. Single machine scheduling with fuzzy preemption penalties, The 
Journal of Mathematics and Computer Science Vol .2 No.1, pp-122 (2011). 


