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Abstract
In this paper, we introduce a modified viscosity implicit iteration for asymptotically nonexpansive mappings in complete

CAT(0) spaces. Under suitable conditions, we prove some strong convergence to a fixed point of an asymptotically nonexpansive
mapping in a such space which is also the solution of variational inequality. Moreover, we illustrate some numerical example
of our main results. Our results extend and improve some recent result of Yao et al. [Y.-H. Yao, N. Shahzad, Y.-C. Liou, Fixed
Point Theory Appl., 2015 (2015), 15 pages] and Xu et al. [H.-K. Xu, M. A. Alghamdi, N. Shahzad, Fixed Point Theory Appl.,
2015 (2015), 12 pages]. c©2017 All rights reserved.
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1. Introduction

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x

to y) is a mapping c from a closed interval [0, r] ⊂ R to X such that

c(0) = x, c(r) = y, d(c(t), c(s)) = |t− s|

for all s, t ∈ [0, r]. In particular, c is an isometry and d(x,y) = r. The image of c is called a geodesic (or
metric) segment joining x and y. When it is unique, this geodesic is denoted by [x,y]. We denote the point
w ∈ [x,y] such that d(x,w) = αd(x,y) by w = (1 −α)x⊕αy, where α ∈ [0, 1].
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The space (X,d) is called a geodesic space if any two points of X are joined by a geodesic and X is said
to be uniquely geodesic if there is exactly one geodesic joining x and y for each x,y ∈ X. A subset D ⊆ X
is said to be convex if D includes geodesic segment joining every two points of itself. A geodesic triangle
4(x1, x2, x3) in a geodesic metric space (X,d) consists of three points (the vertices of 4) and a geodesic
segment between each pair of vertices (the edges of 4). A comparison triangle for geodesic triangle (or
4(x1, x2, x3)) in (X,d) is a triangle 4(x1, x2, x3) = 4(x1, x2, x3) in the Euclidean plane R2 such that

dR2(xi, xj) = d(xi, xj)

for i, j ∈ {1, 2, 3}. A geodesic metric space is called a CAT(0) space ([5]) if all geodesic triangles satisfy the
following comparison axiom:

Let 4 be a geodesic triangle in X and 4 be a comparison triangle for 4. Then 4 is said to satisfy the
CAT(0) inequality if, for all x,y ∈ 4 and all comparison points,

d(x,y) 6 dR2(x,y).

If x,y1,y2 are points of a CAT(0) space and y0 is the midpoint of the segment [y1,y2], which is denoted
by y1⊕y2

2 , then the CAT(0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
6

1
2
d2 (x,y1) +

1
2
d2 (x,y2) −

1
4
d2 (y1,y2) . (1.1)

The inequality (1.1) is called the (CN) inequality (for more details, see Bruhat and Titz [6]). In fact, a
geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

It is well-known that all complete, simply combined Riemannian manifold having non-positive section
curvature is a CAT(0) space. For other examples, Euclidean buildings, Pre-Hilbert spaces, R-trees ([5]),
the complex Hilbert ball with a hyperbolic metric is a CAT(0) space. Further, Complete CAT(0) spaces are
called Hadamard spaces.

Let C be a nonempty subset of a complete CAT(0) space X. Then a mapping T : C→ C is called

(1) nonexpansive if and only if d(Tx, Ty) 6 d(x,y), ∀x,y ∈ C;

(2) asymptotically nonexpansive mapping if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1
such that d(Tnx, Tny) 6 knd(x,y), ∀n > 1, x,y ∈ C.

A point x ∈ X is called a fixed point of T if x = Tx. We will denote by F(T) the set of fixed points of
T . Kirk [12] proved the existence theorem of fixed points for asymptotically nonexpansive mappings in
CAT(0) spaces.

A mapping f : C→ C is called a contraction with coefficient k ∈ [0, 1) if and only if

d(f(x), f(y)) 6 kd(x,y), ∀x,y ∈ C.

f has a unique fixed point when C is a nonempty, closed, and subset of a complete metric space was
guaranteed by Banach’s contraction principle [3]. The existence theorems of fixed points and convergence
theorems for various mappings in CAT(0) spaces have been investigated by many authors [7–10, 13].
Obviously every contraction mapping is nonexpansive and every nonexpansive mapping is asymptotically
nonexpansive with the sequence {kn = 1} for all n > 1.

One of the powerful numerical methods is implicit midpoint method for solving ordinary differential
equations and differential algebraic equations. For a study discussion related to this numerical method
we refer to [1, 2, 14, 15].

Very recently, Xu et al. [18] introduced the following viscosity implicit midpoint method for a nonex-
pansive mapping T : H→ H in a Hilbert space H:

xn+1 = αnf(xn) + (1 −αn)T(
xn + xn+1

2
)
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for all n > 0, where αn ∈ (0, 1) and f : H → H is a contraction. Under suitable conditions, they proved
that the sequence {xn} converges strongly to a fixed point of a nonexpansive mapping, which is also a
unique solution of the following variational inequality

〈(I− f)x∗, x− x∗〉 > 0, ∀x ∈ F(T).

Motivated and inspired by Xu et al. [18], we study and introduce the following modefied viscosity
implicit iteration for an asymptotically nonexpansive mapping in CAT(0) space X:

xn+1 = αnf(xn)⊕ (1 −αn)T
n(βnxn ⊕ (1 −βn)xn+1) (1.2)

for all n > 0, where αn,βn ∈ (0, 1), Tn : X → X be an asymptotically nonexpansive mapping and
f : X→ X is a contraction.

The purpose of this paper, we prove strong convergence theorems of the modified viscosity implicit
iteration process for an asymptotically nonexpansive mapping in CAT(0) space under suitable conditions.
We also show that the limit of the sequence {xn} generated by (1.2) solves the solution of the following
variational inequality

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, ∀p ∈ F(T).

Furthermore, we illustrate some numerical examples for support our main results.

2. Preliminaries

In this section, we always suppose that X is a CAT(0) space and write (1 − t)x⊕ ty for the unique
point w in the geodesic segment joining from x to y which is, [x,y] = {(1 − λ)x⊕ λy : λ ∈ [0, 1]},

d(w, x) = λd(x,y), and d(w,y) = (1 − λ)d(x,y).

Lemma 2.1 ([11]). Let K be a CAT(0) space. For all x,y, z ∈ X and λ,γ ∈ [0, 1], we have the followings:

(i) d(λx⊕ (1 − λ)y, z) 6 λd(x, z) + (1 − λ)d(y, z);
(ii) d2(λx⊕ (1 − λ)y, z) 6 λd2(x, z) + (1 − λ)d2(y, z) − λ(1 − λ)d2(x,y);

(iii) d(λx⊕ (1 − λ)y,γx⊕ (1 − γ)y) = |λ− γ|d(x,y);
(iv) d(λx⊕ (1 − λ)y, tu⊕ (1 − λ)w) 6 λd(x,u) + (1 − λ)d(y,w).

Lemma 2.2 ([17]). Let {an} be a sequence of nonnegative real numbers satisfying

an+1 6 (1 − γn)an + ξn

for all n > 0, where {γn} is a sequence in (0, 1) and {ξn} is a sequence in R such that

(i)
∑∞
n=1 γn = ∞;

(ii) lim supn→∞ ξn

γn
6 0 or

∑∞
n=1 |ξn| <∞.

Then limn→∞ an = 0.

The concept of quasilinearization in X was introduced by Berg and Nikolaev [4].
Denote a pair (p,q) ∈ X×X by −→pq and call it a vector. Then quasi-linearization is defined as a mapping

〈·, ·〉 : (X×X)× (X×X)→ R such that

〈−→pq,−→rs〉 = 1
2
(d2(p, s) + d2(q, r) − d2(p, r) − d2(q, s))

for all p,q, r, s ∈ X.
Let C be a nonempty closed convex subset of a complete CAT(0) space X. The metric projection

PC : X→ C is defined by
w = Pc(x)⇐⇒ d(w, x) = inf{d(y, x) : y ∈ C}

for all x ∈ X.
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Lemma 2.3 ([4]). Let C be a nonempty closed and convex subset of a complete CAT(0) space X, x ∈ X and w ∈ C.
Then w = Pc(x) if and only if

〈−→yw,−→wx〉 > 0

for all y ∈ C.

Lemma 2.4 ([16]). Let X be a CAT(0) space, C be a nonempty closed and convex subset of X, and T : C→ C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1. For any contraction
f : C→ C and λ ∈ (0, 1), let xλ ∈ C be the unique fixed point of the contraction x 7→ λf(x)⊕ (1 − λ)Tx, i.e.,

xλ = λf(xλ)⊕ (1 − λ)Tnxλ.

Then {xn} converges strongly as λ→ 0 to a point p̃ such that

p̃ = PF(T)f(p̃),

which is the unique solution to the following variational inequality:

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0

for all p ∈ F(T).

3. Main results

Now, we prove the main results as follows.

Theorem 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space (X,d) and T : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1 such that F(T) 6= ∅. Let
f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary initial point x1 ∈ C, let {xn} be generated
by

xn+1 = αnf(xn)⊕ (1 −αn)T
n(βnxn ⊕ (1 −βn)xn+1) (3.1)

for all n > 0, where {αn}, {βn} are real sequences in interval (0, 1), satisfy the following conditions:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) limn→∞ kn − 1
αn

= 0;

(iv)
|αn −αn−1|

α2
n

→ 0, as n→∞;

(v) T satisfies the asymptotically regular limn→∞ d(xn, Tnxn) = 0.

Then the sequence {xn} converges strongly to p̃ = PF(T)f(p̃), which is a fixed point of T and, also, it is a solution of
the following variational inequality:

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, ∀p ∈ F(T). (3.2)

Proof. We divide the proof into three steps.

Step 1. First, we prove that for all v ∈ C, the mapping defined by

x→ Tv(x) := αf(v)⊕ (1 −α)Tn(βv⊕ (1 −β)x)

for all x ∈ C, α,β ∈ (0, 1) and f is a contraction mapping with the contractive constant (1 − α)kn(1 − β).
Indeed, it follows from Lemma 2.1 that, for all x,y ∈ C

d(Tvx, Tvy) = d(αf(v)⊕ (1 −α)Tn(βv⊕ (1 −β)x),αf(v)⊕ (1 −α)Tn(βv⊕ (1 −β)y))
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6 αd(f(v), f(v)) + (1 −α)d(Tn(βv⊕ (1 −β)x), Tn(βv⊕ (1 −β)y))

6 (1 −α)kn(βd(v, v) + (1 −β)d(x,y))
6 (1 −α)kn(1 −β)d(x,y).

It follows that 0 < (1 − α)kn(1 − β) < 1. This implies that the mapping Tv : C → C is contraction with a
constant (1 −α)kn(1 −β). Thus the sequence {xn} defined by (3.1) is well-defined.

Step 2. Next, we prove that the sequence {xn} is bounded. By condition (iii), for any 0 < ε < 1 − α
sufficient large n > 0, we have kn − 1 6 αnε. For all p ∈ F(T), we have

d(xn+1,p) = d(αnf(xn)⊕ (1 −αn)T
n(βnxn ⊕ (1 −βn)xn+1),p)

6 αnd(f(xn),p) + (1 −αn)d(T
n(βnxn ⊕ (1 −βn)xn+1),p)

6 αn(d(f(xn), f(p)) + d(f(p),p)) + (1 −αn)kn(βnd(xn,p) + (1 −βn)d(xn+1,p))
6 αnkd(xn,p) +αnd(f(p),p) + kn(1 −αn)βnd(xn,p) + kn(1 −αn)(1 −βn)d(xn+1,p),

which implies that

d(xn+1,p) 6
αnk+βnkn −αnβnkn

1 − (1 −αn −βn +αnβn)kn
d(xn,p) +

αn

1 − (1 −αn −βn +αnβn)kn
d(f(p),p)

= (1 −
(1 − kn +αnkn −αnk)

1 − (1 −αn −βn +αnβn)kn
)d(xn,p) +

αn

1 − (1 −αn −βn +αnβn)kn
d(f(p),p)

= (1 −
−(kn − 1 −αnkn +αnkn)

1 − (1 −αn −βn +αnβn)kn
d(xn,p) +

αn

1 − (1 −αn −βn +αnβn)kn
d(f(p),p)

6 (1 −
−(αnε−αnkn +αnk)

1 − (1 −αn −βn +αnβn)kn
)d(xn,p) +

αn

1 − (1 −αn −βn +αnβn)kn
d(f(p),p)

= (1 −
(kn − k− ε)αn

1 − (1 −αn −βn +αnβn)kn
)d(xn,p)

+
(kn − k− ε)αn

(1 − (1 −αn −βn +αnβn)kn)(kn − k− ε)
d(f(p),p)

6 (1 −
(1 − k− ε)αn

αn +βn −αnβn
)d(xn,p) +

(1 − k− ε)αn
(αn +βn −αnβn)(1 − k− ε)

d(f(p),p)

6 max{d(xn,p),
d(f(p),p)
(1 − k− ε)

}.

By mathematical induction, we can prove that

d(xn,p) 6 max{d(x0,p),
d(f(p),p)
(1 − k− ε)

}

for all n > 0. This implies that the sequence {xn} is bounded, so {f(xn)} and {Tn(βnxn ⊕ (1 − βn)xn+1)}
are also bounded.

Step 3. Next, we prove that the sequence {xn} converges strongly to p̃ = PF(T)f(p̃). Set

wn = αnf(wn)⊕ (1 −αn)T
n(wn)

for all n > 0. By Lemma 2.4, the sequence {wn} converges strongly as n → ∞ to a point p̃ = PF(T)f(p̃),
which is the unique solution to the variational inequality (3.2).

On the other hand, it follows from (3.1) and Lemma 2.1, that

d(xn+1,wn) = d(αnf(xn)⊕ (1 −αn)T
n(βnxn ⊕ (1 −βn)xn+1),αnf(wn)⊕ (1 −αn)T

nwn)

6 αnd(f(xn), f(wn)) + (1 −αn)d(T
n(βnxn ⊕ (1 −βn)xn+1), Tnwn)

6 αnkd(xn,wn) + (1 −αn)kn(βnd(xn,wn) + (1 −βn)d(xn+1,wn)),
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which implies that

d(xn+1,wn) 6
αnk+βnkn −αnβnkn

1 − (1 −αn −βn +αnβn)kn
d(xn,wn)

= (1 −
−(kn − 1 −αnkn +αnk)

1 − (1 −αn −βn +αnβn)kn
)d(xn,wn)

6 (1 −
−(αnε−αnkn +αnk)

1 − (1 −αn −βn +αnβn)kn
)d(xn,wn)

= (1 −
(kn − k− ε)αn

1 − (1 −αn −βn +αnβn)kn
)d(xn,wn)

6 (1 −
(1 − k− ε)αn

αn +βn −αnβn
)d(xn,wn)

6 (1 − (1 − k− ε)αn)(d(xn,wn−1) + d(wn−1,wn))
6 (1 − (1 − k− ε)αn)d(xn,wn−1) + d(wn−1,wn).

(3.3)

In order to use Lemma 2.2, it should be proved that

lim sup
n→∞

d(wn−1,wn)
(1 − k− ε)αn

6 0. (3.4)

In fact, by Lemma 2.1, we have

d(wn,wn−1) = d(αnf(wn)⊕ (1 −αn)T
nwn,αn−1f(wn−1)⊕ (1 −αn−1)T

nwn−1)

6 d(αnf(wn)⊕ (1 −αn)T
nwn,αnf(wn)⊕ (1 −αn)T

nwn−1)

+ d(αnf(wn)⊕ (1 −αn)T
nwn−1,αnf(wn−1)⊕ (1 −αn)T

nwn−1)

+ d(αnf(wn−1)⊕ (1 −αn)T
nwn−1,αn−1f(wn−1)⊕ (1 −αn−1)T

nwn−1)

6 (1 −αn)d(T
nwn, Tnwn−1) +αnd(f(wn), f(wn−1)) + |αn −αn−1|d(f(wn−1), Tnwn−1)

6 (1 −αn)knd(wn,wn−1) +αnkd(wn,wn−1) + |αn −αn−1|M
∗,

where M∗ = supn>1 d(f(wn−1), Tnwn−1), which implies that

d(wn,wn−1) 6
1

1 − kn +αnkn −αnk
|αn −αn−1|M

∗

=
1

−(kn − 1 −αnkn +αnk)
|αn −αn−1|M

∗

6
1

−(ε− kn + k)αn
|αn −αn−1|M

∗

=
1

(kn − k− ε)αn
|αn −αn−1|M

∗

6
1

(1 − k− ε)αn
|αn −αn−1|M

∗.

By the condition (iv), we have

lim sup
n→∞

d(wn−1,wn)
(1 − k− ε)αn

6 lim sup
n→∞

|αn −αn−1|

(1 − k− ε)2α2
n

M∗ = 0.

Thus (3.4) is proved. By Lemma 2.2 and (3.3), we obtain

d(xn+1,wn)→ 0, as n→∞.

Since wn → p̃ = PF(T)f(p̃) and p̃ is the unique solution of the variational inequality (3.2), we have xn → p̃

as n→∞ and p̃ is also the unique solution of variational inequality (3.2). This completes the proof.
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Remark 3.2. Since every Hilbert space is a complete CAT(0) space, Theorem 3.1 generalizes and improves
the main results in Yao et al. [19] and Xu et al. [18].

Corollary 3.3. Let C be nonempty closed and convex subset of a real Hilbert space H and T : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1 such that F(T) 6= ∅. Let
f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary initial point x0 ∈ C, let {xn} be generated
by

xn+1 = αnf(xn) + (1 −αn)T
n(βnxn + (1 −βn)xn+1)

for all n > 0, where αn,βn ∈ (0, 1) satisfy the conditions (i)-(v) as in Theorem 3.1. Then the sequence {xn}

converges strongly to p̃ such that
p̃ = PF(T)f(p̃),

which is the unique solution of the following variational inequality

〈p̃− f(p̃),p− p̃〉 > 0, ∀p ∈ F(T). (3.5)

From Theorem 3.1, if sequence {kn := 1}, then T : C → C in Theorem 3.1 is a nonexpansive mapping,
we can obtain the following results immediately.

Corollary 3.4. Let C be nonempty closed and convex subset of a complete CAT(0) space X and T : C → C be a
nonexpansive mapping with F(T) 6= ∅. Let f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitary
initial point x0 ∈ C, let {xn} be generated by

xn+1 = αnf(xn)⊕ (1 −αn)T(βnxn ⊕ (1 −βn)xn+1)

for all n > 0, where αn,βn ∈ (0, 1) satisfy the following conditions:

(i) limn→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii)
|αn −αn−1|

α2
n

→ 0 as n→∞.

Then the sequence {xn} converges strongly to p̃ = PF(T)f(p̃), which is a fixed point of T and, also, it is a solution of
the variational inequality (3.2).

Since every Hilbert space is a complete CAT(0) space, from Corollary 3.4 we can obtain the following
result immediately.

Corollary 3.5. Let C be a nonempty closed and convex subset of real Hilbert space H and T : C → C be a
nonexpansive mapping with F(T) 6= ∅. Let f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary
initial point x0 ∈ C, let {xn} be generated by

xn+1 = αnf(xn) + (1 −αn)T(βnxn + (1 −βn)xn+1)

for all n > 0, where αn,βn ∈ (0, 1) and satisfy the conditions (i)-(iii) as in Corollary 3.4. Then the sequence
{xn} converges strongly to p̃ such that p̃ = PF(T)f(p̃), which is a fixed point of T and, also, it is a solution of the
variational inequality (3.5).

4. Numerical example

In this section, we will illustrate reckoning the convergence behavior of modified viscosity implicit
iteration process (3.1) with numerical results for supporting main theorem.

Example 4.1. Let X = R be a Euclidean metric space, which is also a complete CAT(0) space and C = [1, 4].
Let T : C→ C be defined by

Tx =
√
x.

It is obvious that T is an asymptotically nonexpansive mapping and a sequence {kn = 1} with F(T) = {1}.
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Let f : C→ C be defined by
fx =

√
x.

It is easy to see that f is contraction mapping.

Figure 1: The value of xn plotting in Table 1.

Figure 2: The value of |xn − p| (error) plotting in Table 1.

Table 1: The values of the sequence {xn} and the error values.

number of iterates xn |xn − p|

1 4.000000000000 3.000000000000
2 2.000000000000 1.000000000000
3 1.272611350577 0.272611350577
4 1.055479646443 0.055479646443
5 1.008314617547 0.008314617547
6 1.000945233243 0.000945233243
7 1.000092259589 0.000092259589
8 1.000007257835 7.2578352E-06
9 1.000000479959 4.7995897E-07
10 1.000000028340 2.8339588E-08
11 1.000000001469 1.4694320E-09

Let αn =
1
n

and βn =
1
2

for all n > 1 and initial point x1 = 4. Let p = 1 and p ∈ F(T). Then we get
numerical results in Table 1. Moreover, we also illustrate the convergence behavior of modified viscosity
implicit iteration process (3.1) by the values of xn as is shown in Figure 1. Figure 2 shows numerical
results with an error (10−9).
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Next, we will show that the fixed point of T is solution of the following variational inequality:

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, ∀p ∈ F(T),

where p̃ = PF(T)f(p̃).

Proof. Let p ∈ F(T), and since F(T) = {1} hence p = 1. By Theorem 3.1, we get

p = p̃ = PF(T)f(p̃).

For variational inequality, we have

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, 〈(1) · f(1), (1) · (1)〉 > 0, 〈(1) · (1), (1) · (1)〉 > 0.

Therefore the fixed point of T is a solution that satisfies the variational inequality.
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