
SOME REMARKS ON CONVEXITY OF C̆EBYS̆EV SETS

Hossein Asnaashari

Faculty of basic sciences, Zabol University, Zabol, Iran

h.asnaashar@gmail.com

Abstract. In this paper, we study a part of approximation theory that presents

the conditions under which a C̆ebys̆ev set in a Banach space is convex. To do

so, we use Gateaux differentiability of the distance function.
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1. Introduction

In a finite dimensional smooth normed space a C̆ebys̆ev set is convex and for

infinite dimensional, every weakly closed C̆ebys̆ev set in a smooth and uniformly

convex Banach space is convex. Every boundedly compact C̆ebys̆ev set in a smooth

Banach space is convex and in a Banach space, which is uniformly smooth, each

approximately compact C̆ebys̆ev set is convex (The concept of approximatively com-

pact sets introduced by N. V. Efimov and S. B. Stechkin), and that in a strongly

smooth space or in a Banach space X with strictly convex dual X∗, every C̆ebys̆ev

set with continuous metric projection is convex, ([2]). There are still several open

problems concerning convexity of C̆ebys̆ev sets. Can we prove that in some Banach
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spaces, a nonempty subset is a C̆ebys̆ev set if and only if it is closed and convex?

This is unsolved, even in the special case of infinite-dimensional Hilbert space. As

addressed above, it is unknown. In the last part of the paper, we present some

conditions under which a C̆ebys̆ev subset is convex.

2. Main results

As the first step, let us fix our notation. Through this paper, (X, ∥.∥) denotes a

real Banach space and S(X) = {x ∈ X; ∥x∥ = 1}.

For an element x ∈ X and a nonempty subset K in X, we define the distance

function dK : X → R by dK(x) = inf{∥y − x∥; y ∈ K}. It is easy to see that

the value of dK(x) is zero if and only if x belongs to K, the closure of K. The

subset K is called proximinal (resp. C̆ebys̆ev), if for each x ∈ X \K, the set of best

approximations to x from K

PK(x) = {y ∈ K; ∥y − x∥ = dK(x)},

is nonempty (resp. a singleton). This concept was introduced by S. B. Stechkin

and named after the founder of best approximation theory, C̆ebys̆ev.

One interesting and fruitful line of research, dating from the early days of Banach

space theory, has been to relate analytic properties of a Banach space to various

geometrical conditions on the Banach space. The simplest example of such a condi-

tion is that of strict convexity. It is often convenient to know whether the triangle

inequality is strict for non collinear points in a given Banach space. We say that

the norm ∥.∥ of X is strictly convex (rotund) if,

∥x+ y∥ < ∥x∥+ ∥y∥

whenever x and y are not parallel. That is, when they are not multiples of one

another.

Related to the notion of strict convexity, is the notion of smoothness.

We say that, the norm ∥.∥ of X is smooth at x ∈ X \ {0} if, there is a unique

f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥. Of course, the Hahn-Banach theorem

ensures the existence of at least one such functional f .

The spaces Lp(µ), 1 < p < ∞, are strictly convex and smooth, while the spaces
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L1(µ) and C(K) are neither strictly convex nor smooth except in the trivial case

when they are one dimensional.

If the dual norm of X∗ is smooth, then the norm of X is strictly convex and if

the dual norm of X∗ is strictly convex, then the norm of X is smooth. Note that,

The converse is true only for reflexive spaces. There are examples of strictly convex

spaces whose duals fail to be smooth.

Let f : X → R be a function and x, y ∈ X. Then f is said to be Gateaux differen-

tiable at x if, there exists a functional A ∈ X∗ such thatA(y) = lim
t→0

f(x+ ty)− f(x)

t
.

In this case f is called Gateaux differentiable at x with the Gateaux derivative A

and A is denoted by f ′(x). In this case, the A(y) is denoted usually by < f ′(x), y >.

If the limit above exists uniformly for each y ∈ S(X), then f is Fréchet differen-

tiable at x with Fréchet derivative A. Similarly, the norm function ∥.∥ is Gateaux

(Fréchet) differentiable at non-zero x if the function f(x) = ∥x∥ is Gateaux differ-

entiable.

In the general, Gateaux differentiability not imply Fréchet differentiability. For ex-

ample the canonical norm of l1 is nowhere Fréchet differentiable and it is Gateaux

differentiable at x = (xi)i∈N if and only if xi ̸= 0 for every i ∈ N.

The norm of any Hilbert space, is Fréchet differentiable at nonzero points.

Suppose f : X → R is a function and x ∈ X. The functional x∗ ∈ X∗ is called a

subdifferential of f at x if ⟨x∗, y − x⟩ ≤ f(y) − f(x), for all y ∈ X. The set of all

subdifferentials of f at x is denoted by ∂f(x) and we say that f is subdifferentiable

at x if ∂f(x) ̸= ∅.

The following theorems presents relationship between various notions of differen-

tiability for norm and the properties of the related space.

Theorem 1. [4] The norm ∥.∥ is Gateaux differentiable at x ∈ X \ {0} if and only

if X is smooth in x.

Theorem 2. [4] If the dual norm of X∗ is Fréchet differentiable, then X is reflex-

ive.

Theorem 3. [4] Let f : X → R be a convex function continuous at x ∈ X and

∂f(x) is a singleton. Then f is Gateaux differentiable at x.
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For a real-valued function ϕ on X and x ∈ X, set

Fϕ(x) = sup
∥y∥=1

sup
z∈X

lim sup
t→0+

ϕ(x+ tz + ty)− ϕ(x+ tz)

t
.

Lemma 1. [3] Let ϕ is a real-valued function on X, x ∈ X and y0 ∈ S(X) such

that the Gateaux derivative of ϕ in x exists and ⟨ϕ′(x), y0⟩ = Fϕ(x). If the norm of

X is Gateaux differentiable at y0 with Gateaux derivative fy0 , then ϕ is Gateaux

differentiable at x and for each y ∈ X we have ⟨ϕ′(x), y⟩ = Fϕ(x)fy0(y).

Now the Lemma 1, give us the following corollary, since distance functions are

Lipschitz.:

For nonempty closed subset K of X and x, y ∈ X, set

d−K(x; y) = lim inf
t→0+

dK(x+ ty)− dK(x)

t

and

d+K(x; y) = lim sup
t→0+

dK(x+ ty)− dK(x)

t
.

Corollary 1. [1] Suppose K ⊆ X is closed and nonempty, x ∈ X\K, x is a

nearest point for x in K. If the norm of X is Gateaux differentiable at (x− x) and

d−K(x;x− x) = dK(x), then dK is Gateaux differentiable at x.

Theorem 4. [4] If the dual space ofX is strictly convex, then each closed nonempty

subset K in X satisfying lim sup
∥y∥→0

dK(x+ y)− dK(x)

∥y∥
= 1 for all (x ∈ X\K) is con-

vex.

Remark 1. Suppose that the norm of X and the dual norm of X∗ are Fréchet

differentiable, K ⊆ X is C̆ebys̆ev and x ∈ X\K. Then X is reflexive, since the

dual norm of X∗ is Fréchet differentiable. Moreover X is smooth, since the norm

of X is Fréchet differentiable. Thus X∗ is strictly convex. If now dK is Gateaux

differentiable at x, then K is convex.
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Remark 2. Suppose that K ⊆ X is C̆ebys̆ev, x ∈ X\K and X∗ is strictly convex.

By the definition of C̆ebys̆ev sets, there is unique x ∈ K such that ∥x−x∥ = dK(x).

If now d−K(x;x− x) = dK(x), then by corollary 1 and Remark 1, K is convex.
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