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Abstract
In this paper, we obtain the solutions of a cauchy problems for differential equations with the
Caputo fractional derivative and the solution of fractional Diffusion-Wave equation by using Sumudu
transform techniques. The results presented here are in compact and elegant expressed in term of

Mittag-Leffler function and generalized Mittag-Leffler function which are suitable for numerical
computation.
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1. Introduction

In turns out that the Sumudu transform has very special and useful properties and can help with
intricate applications in science and engineering. The sumudu transform, was proposed originally
by Watugala [1,2,3]. In [4,5] some fundamental properties of the Sumudu transform were
established. Subsequently exploited by Weerakoon [6,7] and they have been used by Chaurasia et
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al. for Schodinger equation [8]. Recently Kilicman et al. [9] applied this transform to solve the
system of differential equations.

In this work, we apply Sumudu transform method to derive fundamental system of solutions to
homogeneous equation of the following form

Dg+y(t) —\y(t) =0, 1ER, m—1<a<m, meN (1)
subject to
y®(0) = by, k=0,..,m-1, (2)
and the solutions of fractional Diffusion-Wave equation

Ut 2dPUxD)
gt € T oxa ©)

with the boundary conditions

a
U(x' 0) = fl(t)' EU(xJ O) = fZ(t)J (4)

wheref;(t), i = 1,2 are continuous and c is constant.

Definitionl. ([1,2]) The Sumudu transform over the set functions

11

A= {f(O1IM, 11,75, |f ()] < MeT,if t € (—1) x [0, +00)}, (5)
is defined by
Gw) =S[F®O] = [y fut)e™ dt, u€ (~14,72), (6)

Definition 2. ([10,11]) A real function f(¢t) > 0,t > 0 is said to be in the space Co HER, if there
exists a real number n(> p), such that f(t) = t"f1(t), where f1(t) € C[0, ), and it is said to be in
the space C} if and only if if and only if /() € C,, k € N.

Definition 3. ([10,11]) The Riemann-Liouville fractional integral operator of order of ¢ > O, of a
function f € C,,u = —1 is defined as

195 = —— [ ¢ = 9)eir e dr, @
I'a) J,

1F () = 1% £ (D).

Definition 4. ([10,13]) The fractional Caputo's derivative of f is given by

1 t
DF@) = D) = s fo (t - 1O ) ar, ®)
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where, f€C*, k—1<a<k ke N.

Definition 5. ([10,11]) The Mittag-Leffler function E,(z) for « > 0 and z € C is defined by the
series representation

Zk

Ea(Z)=Z;;‘°:0m, a>0z€eC

and generalized Mittag-Leffler function E, ;3 (2) is defined by
k
o z
Ea,ﬂ (2) = Zk=om, a,f >0, zeC

(4) — Yo (®)rz*
ED) =3ior O ap>0, b,z€C

where (§)g = landfork € N: (§);, =66+ 1) ..(6 + k —1).

Definition 6. ([12]) Linearly independent solutions of the equation (1) form the fundamental
system of solutions if

Y0 =0, kj=0..m-1 k%#}j
y =1 k=0.,m-1 k=]

2. Main Results.

Lemma 2.1. The following results are satisfied to inverse Sumudu transform

i. §71 [u”_l(l — wuﬁ)_s] = tV_lE[}SJ, (wth),

u’r -
.. _ _ _ 1
it 57 || = D e (<be?).
r=0

Proof. i.It can be easily established by expanding the binomial function

tn

appearing in i and interpreting it with the help of formula S~1[u"; t] =

(8]

r(n+1)’
ii. To find inverse Sumudu transform of this function, we have

-p —p+pB
- u = u — Ziozo(_a)r u(a—ﬁ)r+a—p(1 _ bua)—r—l.
u~%+au~F +b (u=atB+bub) (1+ _aa )
u—a4bub

Now, using result $i$, it gives the desired result.

Definition 7. ([8]) The Sumudu transform of the Caputo's derivative of the function f is given by
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(k)
SIDEf();u]l =u™f(u) — Zf a(g), m—I/<a<m.

(k)
SIDEf(x,t);u]l = u™*f(x,u) — Zf (xO) m—I<a<m.

Now, we apply Sumudu transform method to derive explicit solutions to Cauchy problem (1-2).
Theorem 2.1. The functions

yi(t) = t'Eq 11 (A8%), i=0,..,m-1
yields the fundamental system of solutions to Cauchy problem (1-2).

Proof. Applying the Sumudu transform to (1), we have

@ - ) yPOut - 25w = 0

or

bou ®+bul=* + ... 4+ p,_un—e1 =
0 1 n—1 _
u -2

yw) =

where y(u)denotes S[y(t)]. Thus, from Lemma (2.1), we derive the following solution to the Eq.(1)

m—1

YO) = D bt By ()
r=0

It follows

¥y =0, ki=0,.m-1 k=l
YOO =1, k=0.m-1 k=L

By the above relations Wronskian W (t) = [yl(k)(t)]fk_:lo at the point zero is equal 1: W (0) = 18$.
Thus the proof is complete.

Theorem 2.2. Fractional Diffusion-Wave equation

0Ux,t) _ 2 FU(x,t)
ot« 0x%

along with initial conditions
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a
U(x, O) = fl(t)' aU(xl O) = fZ(t)l

where f;(t), i = 1,2, are continuous and c is constant has its solution given by

+00(

Ux,t) = O 1 (~bt®) fr (k) dke= [ teTHRIE, 1 (~bt)f5 (k) dk

o
where f;"(k), i = 1,2, are the fourier transform of f;(t), i = 1,2.

Proof. Applying the Sumudu transform with respect to time variable t and using initial condition
(4) in (3), we find

0P U (x,u)

u U (x,u) —u ™ f1(x) —ul ™ fo(x) = c? 7

Taking the fourier transform of the above equation, we get

u™ U (k,u) —u=f; (k) —ul=f," (k) = —c?|k|PU* (k,w).
Solving for U*(k,u), we get

wU AR u (k)
u=e+c2|k|f ul—a+c?|k|f
Inverting the sumudu transform with the help Lemma (2.1), we obtain

U*(k,u) =

U*(k,t) = Ey 1 (=bt*) fi" (k) + tE, 1 (=bt*) f>" (k),
where b = —c?|k|P. Finally, by taking fourier transform we get the required result of Diffusion-
Wave equation in terms of generalized Mittag-Leffler function

+00(

Ux,t) = W 1 (=bt®) f; () k= [ teHIE, 1 (=bt®) 5 (k) dk.
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