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Abstract 
     In this paper, we use a method based on the operational matrices to the solution of the fractional partial 

differential equations. The main approach is based on the operational matrices of the Haar wavelets to 

obtain the algebraic equations. The fractional derivatives are described in Caputo sense. Some examples 

are included to demonstrate the validity and applicability of the techniques. 
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1. Introduction 

     In recent years, fractional calculus is one of the interest issues that attract many scientists, specially 
mathematics and engineering sciences. Many natural phenomena can be present by boundary value 
problems of fractional differential equations. Many authors in different fields such as chemical physics, 
fluid flows, electrical networks, viscoelasticity, try to modeling of these phenomena by boundary value 
problems of fractional deferential equations [1-4]. For achieve extra information in fractional calculus, 
reader can refer to more valuable books that are written by authors [5-9]. Many physical phenomena in 
areas such as damping laws, diffusion processes, etc, can be modeled with partial differential equations 
of fractional order. Many authors developed wavelet-based numerical solutions of partial differential 
equations [10-16].  
     Useful applications of wavelet operational matrix for numerical solutions of differential equations can 
be found [17-23]. This issue with characteristic of wavelet functions is motivations for using them to find 
the solutions of differential equations of fractional order and mostly fractional partial differential 
equations. 
In this paper, we use a method based on the operational matrices to the solution of the fractional partial 
differential equations. The main approach is based on the operational matrices of the Haar wavelets to 
obtain the algebraic equations. 
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2. Haar wavelets operational matrixes 

The operational matrix of an orthogonal matrix )(t , F , can be expressed by                                                                                                                                              

                                                                 1
  BFF                                                             )1.2(

where BF  is the operational matrix of the block pulse function 
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If the transform matrix   is unitary, that is T1 then )1.2(  can be rewritten as: 

                                                                            T

BFF                                                                 )3.2(  

   The approach is simple and computer oriented, therefore very useful in practice. Wavelets have 
become an increasingly popular tool in the computational sciences. They have numerous applications in 
a wide range of areas such as signal analysis, data compression and many others. The Haar wavelets 
have the following features:(1) highly energy packing; (2) the base functions are consisted of three 
simple integers, 0 and -1, and 1 only. The properties are useful in speeding up the computation. So we 
will use the Haar wavelets and its operational matrix for demonstration throughout this paper. Let us 
begin by briey reviewing the Haar functions [24,25]. The Haar functions are an orthogonal family of 
switched rectangular waveforms where amplitudes can differ from one function to another. They are 
defined in the interval [0,1) by 
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   where rmmi 2,1,...,2,1  and r is a positive integer. j and k   represent the integer decomposition 

of the index i , i.e. 12  kji . Theoretically, this set of functions is complete [24]. In the construction, 

 (t)h0 is called the scaling function and (t)h1  the mother wavelet. There are two basic operations 

involved in this set of Haar functions: (1) translation and (2) dilation [25]. Starting from the mother 

wavelet, (t)h1 , compression and translation are performed to obtain  (t)h2 and  (t)h3 as shown in Fig. 1. 

Any function  y(t) which is square integrable in the interval 10  t , that is 
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                                                                                dtty
1

0

2 )(                                                                            )5.2(  

can be expanded into Haar series by 

                                                                           ,)()()()( 221100  thcthcthcty                                           )6.2(  

where dtthtyc jj 
1

0
)()( . 

   In usual, the series expansion of (2.6) contains infinite terms for a general smooth function y(t) . 

However, if y(t)  is approximated as piecewise constantduring each subinterval, (2.6) will be terminated 

at finite terms, i.e. 
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The continuous curve of (2.7) can be written into the discrete form by  

                                                       ,)()()()()( 11221100 thcthcthcthcty mm                                          )8.2(  

 

 

 

 

 

 

 

 

                                                            Fig 1: Haar wavelets functions with .4m   

     where m is the dimension and usually
r2  m  , is a positive integer.  1-m10

T y ,,y ,y  y 


 is the discrete 

form of the continuous function y(t) , the discrete values yi are obtained by sampling the continuous 

curve y(t)  at a space
m

1
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Eq.(2.8) is then expressed Hcy TT .


 , where  ]c,,c ,[c  c T

1-m10 

 is called the coefficient vector of 

y


and it can be calculated from 1.  Hyc TT 
. Similarly, a two-dimensional function t) y(x,  which is 

square integrable in the interval  1  x 0  and  1  t  0  can be expanded into Haar series by  
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Thus, Eq. (2.10) can be written into the discrete form by  

                                                                         )()(),( tHCxHtxY T                                                               )12.2(  

where  

                                                                   





























1,11,10,1

1,11,10,1

1,01,00,0

....

mmmm

m

m

ccc

ccc

ccc

C









                                            )13.2(  

is the coefficient matrix of Y , and it can be calculated by 

                                                                                
THYHC   .                                                                  )14.2(  

For deriving the operational matrix of Haar wavelets, we let  H   in Eq. (2.3), and obtain 

                                                                                ,HFH  F T

BH                                                               )15.2(  

where HF  is the operational matrix for integration of  H. For example, the operational matrix of the 

Haar wavelet in the case of  m = 4 is given by 
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For any  2  m r where r is a positive integer, we can establish the corresponding operational matrix 
accordingly. 

3. Numerical evaluation of fractional calculus  

    Fractional calculus is a generalization of integration and differentiation to non-integer order. In this 
section, we use the operational matrix of orthogonal functions to express the fractional derivatives [26]. 
It consists of the following three steps: 

Step 1: Sample the continuous function  f(t) into the discrete vector form  T
1-m10 f,...,f ,f  f 


,where f 


 

is a column vector expression. 

Step 2: Transfer the vector  f


into the Haar wavelet domain by using the Haar wavelets transform 

                                                                                 Hc f TT 


,                                                                           )1.3(  

where Tc is the coeffcient vector and H is the Haar wavelet matrix. 

Step 3: To find the numerical solution of 





dt

fd
fDt  , where   is a real number, we use 

                                                                        )()( HDcHcDfD ttt
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                                                          )2.3(  

From the definition of the operation matrix, it yields: 

                                                                                 HFHD Ht                                                                   )3.3(  

where HF is the operational matrix for integration of Haar wavelets. Substituting (3.3) into (3.2) yields: 

                                                                       HFcHcDfD Htt   
).(                                                   )4.3(  

 where 
HF is Haar wavelet operational matrix with fractional order and it can be derived from the 

following equation 

                                                                                   T

BH HFHF   ,                                                            )5.3(  

where 
BF is the operational matrix of the block pulse function for integration with the order , i.e. 
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4. Analysis of the method 
    The numerical method for the linear fractional partial differential equation is illustrated in this section. 
This is based on the operational matrices of Haar wavelets.  

Obviously, (3.4) can be extended to the case of a function with two variables, the integration order of  

)(),( tHCHtxY T  with respect to variable t yields 
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Similarly, the fractional integration order of  t) (x, Y with respect to variable x can be expressed as 
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In general, performing the double integration to the function t) (x, Y  with fractional order to variable t 

and fractional order   to variable x , we obtain 
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Similarly, we have 
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5. Applications and results 

Example 1. We consider the following fractional Heat equation 
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along with the following initial and boundary conditions 
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The exact solution of (4.1)-(4.3) is . )(-tEx sin  t) u(x, 
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Now, we consider (4.1) with the following conditions 
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    Now, we apply the procedure in previous section for (5.1),(5.4) and (5.5). Operating the Riemann-

Liouville operator 
tI on both sides of Eq.(5.1) 
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Then, integrating (5.6) with respect to x two times, we get 
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By multiplying  (x) H T to the right side and H(t) to the left side of each term in (5.8), it gives 
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If the Haar wavelets with order m is used, (5.10) can be simplifed as: 
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Solving the above equation to  8  m and
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Figure 2: The approximate solution of (4.1)-(4.3) in the case 2/1 . 

 

Example 2. Consider the following fractional Wave equation 
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(5.14) we have 

                                                            .)
),(

(),( 2

0
1

0 




x

txu
Ikdtbdxtxu t

tx




                                              )15.5(  
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Operating the Riemann-Liouville operator  I x
 on both sides of Eq.(5.15) and with boundary conditions 

(5.13) we get 
 

                                           .)1(),()1()1(),( 1
2

21
1

1
xtttxxx IIbtxuIkIIbItxuI                                       )16.5(  

Let H(t)C(x)H  t) u(x, T  . Substituting (4.1)-(4.4) into (5.16), we obtain 

  
,H(t)FJ)(F(x)Hbk-H(t)FC(x)Hk 

H(t)FJ)(F(x)Hb- H(t)J)(F(x)H-H(t))(F(x)H

H
T

H
T2

H
T2

H
T

H
T

1
T

H
TT

H
T










1
2

11

 

where J is same as (5.9) . 

By multiplying (x) H T to the right side and  H(t) to the left side of each term in the above equation, for 

Haar wavelets with order m, we have 

    
.)(

)()()(

1
2

22

1
1





mmm

mmm

Hm
T

HHmm

m
T

Hm
T

Hmm
T

H

FJFbKFCk

JFbJFCF










                       )17.5(  

 

Example 3. Consider the following fractional Diffusion-Wave equation 

                                                                    ,21,
),(),(

2

2
















x

txu

t

txu
                                      )18.5(  

subjected to the initial conditions 

                                                                     0  t ,b  t) (0,
x

u
0,  t) u(0, 2 




                                             )19.5(  

                                                                      0,  t ,b  0) (x,
x

u
0,  0) u(x, 1 




                                           )20.5(  

where 1b and 2b are constants. 

 

Operating the Riemann-Liouville operator  I t
 on both sides of Eq.(5.18) and with boundary conditions 

(5.20) we have 

                                                                    .),(),(
0

1
0

txuIdtbdxtxu xt

tx

 
                                          )21.5(  

Then, integrate (5.21) with respect to x two times, we get 

                                                        

.),(

),(

0
2

0 0 0
1

0 0 00



    





x

txt

x x tx x xx

dxbItxuI

dxdxdtbdxdxdxdxtxu



                        )22.5(  

Let H(t)C(x)H  t) u(x, T  . Substituting (4.1)-(4.4) into (5.22), we obtain 

       
.H(t)FJ)(F(x)Hb-H(t)FC(x)H 

H(t)FJ)(F(x)Hb- H(t)J)(F(x)H-H(t)C)(F(x)H

H
T

H
T

H
T

H
T

H
T

1
T

H
TT

H
T





 1
2

1232
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    By multiplying (x)H T to the right side and  H(t) to the left side of each term in the above equation, for 

Haar wavelets with order m, we have 

          


mmm

mmmm

Hm
T

HHmm

Hm
T

Hm
T

Hmm
T

H

FJFbFC

FJFbJFCF








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)()()(

1
2

12
1

32

                                

)23.5(  

In the case of  1  b ,
2

 1
   8,  m

1
  and  2  b2  , we get the numerical solution by solving the equation as 

below 

                     

8888888 8
1

288
1

8
2

18
3

88
2 )()()()( H

T
HHH

T
H

T
H

T
H FJFbFCFJFbJFCF                         )24.5(  

See Figure3. 

 

 

 

 

 

 

 

 

Figure 3: The approximate solution of (4.1)-(4.3) in the case .2b,1b,2/1 21   
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