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Abstract
In this paper, we use a method based on the operational matrices to the solution of the fractional partial
differential equations. The main approach is based on the operational matrices of the Haar wavelets to
obtain the algebraic equations. The fractional derivatives are described in Caputo sense. Some examples
are included to demonstrate the validity and applicability of the techniques.
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1. Introduction

In recent years, fractional calculus is one of the interest issues that attract many scientists, specially
mathematics and engineering sciences. Many natural phenomena can be present by boundary value
problems of fractional differential equations. Many authors in different fields such as chemical physics,
fluid flows, electrical networks, viscoelasticity, try to modeling of these phenomena by boundary value
problems of fractional deferential equations [1-4]. For achieve extra information in fractional calculus,
reader can refer to more valuable books that are written by authors [5-9]. Many physical phenomena in
areas such as damping laws, diffusion processes, etc, can be modeled with partial differential equations
of fractional order. Many authors developed wavelet-based numerical solutions of partial differential
equations [10-16].

Useful applications of wavelet operational matrix for numerical solutions of differential equations can
be found [17-23]. This issue with characteristic of wavelet functions is motivations for using them to find
the solutions of differential equations of fractional order and mostly fractional partial differential
equations.

In this paper, we use a method based on the operational matrices to the solution of the fractional partial
differential equations. The main approach is based on the operational matrices of the Haar wavelets to
obtain the algebraic equations.
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2. Haar wavelets operational matrixes
The operational matrix of an orthogonal matrix ®(t), F,, can be expressed by
Fp=0-Fg- & (2.1

where F; is the operational matrix of the block pulse function

1 1 . 1
2
0]
2.2
.1 _ (2.2)
Bm ~ m A
o 11
2
0] 0] 1
L 2]
If the transform matrix @ is unitary, thatis @ = ®" then (2.1) can be rewritten as:
T
Fo=0-F-® (2.3)

The approach is simple and computer oriented, therefore very useful in practice. Wavelets have
become an increasingly popular tool in the computational sciences. They have numerous applications in
a wide range of areas such as signal analysis, data compression and many others. The Haar wavelets
have the following features:(1) highly energy packing; (2) the base functions are consisted of three
simple integers, 0 and -1, and 1 only. The properties are useful in speeding up the computation. So we
will use the Haar wavelets and its operational matrix for demonstration throughout this paper. Let us
begin by briey reviewing the Haar functions [24,25]. The Haar functions are an orthogonal family of
switched rectangular waveforms where amplitudes can differ from one function to another. They are
defined in the interval [0,1) by

1
ho(t) =—=
m
1
i K——
22 ;jlsts j2
() = —— T 24)
Jm % k—E "
-2 Y <ts2—j
0 otherwise

where i=12,...m-1, m=2"and r'is a positive integer. jand k represent the integer decomposition
of the index 1, i.e. i =2j+k—1. Theoretically, this set of functions is complete [24]. In the construction,
h,(t) is called the scaling function and h,(t) the mother wavelet. There are two basic operations
involved in this set of Haar functions: (1) translation and (2) dilation [25]. Starting from the mother
wavelet, hl(t), compression and translation are performed to obtain h2 (t) and h,(t) as shown in Fig. 1.

Any function Y(t) which is square integrable in the interval 0<t <1, that is
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1
joyz(t)dt< o (2.5)
can be expanded into Haar series by
y(t) = Coho (t) +Cahy (t) + Cohy (1) +--, (2.6)

1
where c; :.[o y(t)h;(t)dt.

In usual, the series expansion of (2.6) contains infinite terms for a general smooth function y(t).

However, if Y(t) is approximated as piecewise constantduring each subinterval, (2.6) will be terminated
at finite terms, i.e.

m-1
y(®) =Y cihi(®) 2.7)

i=0

The continuous curve of (2.7) can be written into the discrete form by

y(t) = cohg (t) + ¢ hy (t) + Cohy () + -+ Cg Mg (), (2.8)
1 ':fn{f) 1 h—:{f)
1 1
/2
12 1/2 |
0 ya  1/2  3/4 1 " o &R 3a !
—1/2 -2
SRV B
-1 i
4 nlr) 4 h(r)
1 A
Y2 -
1/2 12 ‘ |
0 72 142 3/4 1 " 0 74 1/2  34a 1 "
—1/2 | —1/2
— ]_..-" -\.'E —————————————————
-1 -1

Fig 1: Haar wavelets functions with m=4.

where m is the dimension and usuallym=2", is a positive integer. y' =[y0 , yl,...,ym_l]is the discrete
form of the continuous function y(t), the discrete values yi are obtained by sampling the continuous

curve Y(t) ata space% . Similarly,

ﬁ0T :[ho,o,ho,lyho,zn---:ho,mfl]f F11T :[h1,0ah1,1’h1,2a---’h1,m71]r---' ﬁm—lT = hm—l,O'hm—l,llhm—l,Z!---’hm—l,m—l] of the
Haar wavelet bases; the discrete values are taken form the continuous curves hy(t),h(t),..., hy (1),
respectivly
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h, (t) hoo  Mox - homa
Ho| m® ho Mg oo Py
Np_a () Pnto Mmoo Mpoyma

(2.9)

Eq.(2.8) is then expressed )7T =C".H, where C= [c,.c, ,...,Cm_l]T is called the coefficient vector of

Y and it can be calculated from C' = §'.H ™. Similarly, a two-dimensional function Y(X,t) which is

square integrable in the interval 0 <X <1 and O <t <1 can be expanded into Haar series by

3
LN

-1m-1
Yy =" ¢ 0)h; (1)
i=0 j=0

Il
o
—

where
1 1
o) = [ YD (9 ax [y Ot

Thus, Eq. (2.10) can be written into the discrete form by

Y(x,t)=HT(x)-C-H(t)

where
C0,0 C0,1 te CO,m—l
C _ Cl,O Cl,l cce Cl,m—l
Cm—l,O Cm—l,l te Cm—l,m—l

is the coefficient matrix of Y, and it can be calculated by

C=H-Y-HT.

For deriving the operational matrix of Haar wavelets, we let ® =H in Eq. (2.3), and obtain

F,=H-F,-H,

(2.10)

(2.12)

(2.12)

(2.13)

(2.14)

(2.15)

where F,, is the operational matrix for integration of H. For example, the operational matrix of the

Haar wavelet in the case of m =4 is given by

Fy,=Hs-Fg, -HT
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For any m=2" where r is a positive integer, we can establish the corresponding operational matrix
accordingly.

3. Numerical evaluation of fractional calculus

Fractional calculus is a generalization of integration and differentiation to non-integer order. In this
section, we use the operational matrix of orthogonal functions to express the fractional derivatives [26].
It consists of the following three steps:

Step 1: Sample the continuous function f(t) into the discrete vector form f:[fo, fl,...,fm_l]T ,where f
is a column vector expression.
Step 2: Transfer the vector f into the Haar wavelet domain by using the Haar wavelets transform

fT=¢" .H, (3.1
where ¢ is the coeffcient vector and H is the Haar wavelet matrix.
Step 3: To find the numerical solution of D f =dd—f, where ¢ is a real number, we use
ta
Df f=Df(C-H)=cD(H) (3.2)
From the definition of the operation matrix, it yields:
DPH=F,“-H (3.3
where F,, is the operational matrix for integration of Haar wavelets. Substituting (3.3) into (3.2) yields:
Df f=Df(C.H)=CF,”-H (3.9)

where F ["is Haar wavelet operational matrix with fractional order and it can be derived from the
following equation

Fi=H-F -H", (3.5)
where Fg' is the operational matrix of the block pulse function for integration with the order &, i.e.
1 & St |
01 & - Sm-2
0o 1 "
o=+ 1 | . “n-3 (3.6)
m* T(a+2)|: :
- =)
0 0 1

with & = (k+1)*" —2k*? + (k-1)**™ .
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4. Analysis of the method
The numerical method for the linear fractional partial differential equation is illustrated in this section.
This is based on the operational matrices of Haar wavelets.

Obviously, (3.4) can be extended to the case of a function with two variables, the integration order ¢ of
Y(x,t)=H" -C-H(t) with respect to variable t yields

1ZY(x1) = 17(HT(x)-C-H(t))
=HT()-CIFHO =HT()-C-F§-H(

or
1¥Y=H".C-F§-H (4.)
Similarly, the fractional integration order & of Y (x,t) with respect to variable x can be expressed as

7Y (1) = 1/ (HT (0)-C-H()
] CHM =FE HT(0-C-H® = HT(x)-(F)T-C-H()

or
1Y =HT -(F{)T-C-H (4.2)

In general, performing the double integration to the function Y (xt) with fractional order & to variable t
and fractional order f to variable X, we obtain

112y =HT - (FA)T-C-FS-H. (4.3)
Similarly, we have

121 Y =HT-(F/)" .C-F¢-H. (4.4)
5. Applications and results

Example 1. We consider the following fractional Heat equation

o%u(xt) 1 d%u(xt)
== (5.2
- 7% P
along with the following initial and boundary conditions
ou o
u(0,t)=0, &(O,t)zﬂ'Ea(-t ), t>0 (5.2)
u(O,t)=sinzx, x>0 (5.3)

The exact solution of (4.1)-(4.3) is u(x,t) =sinax E_ (4% ).
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Now, we consider (4.1) with the following conditions
au
u(0,t)=0, &(O,t)z X, t>0 (5.4)

u(0,t)=2x, x>0 (5.5

Applying the double Laplace transform to both sides of (5.1), we have

s¢| L Lou(x,t)—syt = iz s? L, L u(x,t) —— |.
Sl_ /4 Sy

Hence,

2 a 2
a1 7T 1 TSy =S
(s§ ——)LtL u(xt)=sgt Lo L TS

Thus, we have
L, Lyu(xt) = %i .
S1
Consequently, u(x,t)=rzx.

Now, we apply the procedure in previous section for (5.1),(5.4) and (5.5). Operating the Riemann-
Liouville operator 1 on both sides of Eq.(5.1)

g (us)ds=— LiEugxn . (5.6)

1 t
u(x,t)—u(x,0)=
(-u00)= = ],
Then, integrating (5.6) with respect to x two times, we get
“’ u(x, t) dx dx — ndexdxdx_ [I u(x,t) - ;rj I“(l)dx) (5.7)

Let u(xt)=HT (X).C.H(t). Substituting (4.1), (4.2) and (4.4) into (5.7), we obtain

HT()-(FR3)T-C-H®-7zHT(x)-(F3)T-J-H()

= HT0-C- (RN -HO-—HT (- (F)T -3 -F{ -H) >0
where
1
J:H.? 1 1 HT . (5.9)
11 m
By multiplying H' (X) to the right side and H(t) to the left side of each term in (5.8), it gives
(FE)-C(F)T -3 == -C-F§ — = (FA) -3 -F§ (5.10)
If the Haar wavelets with order m is used, (5.10) can szimpIifed as:
(F4,)" ~Covn =2 (F3, )" -3 = =5 Cou - Fif, = (F5, ) -3 -Fi 519
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Solving the above equation to m=8 and« =%, the matrix form of u(xt) is given by

109.1780  116.1585  88.4466 752536  —24.6560 —156.6537 -342.2363 —586.5817 ]
860.1673  822.8567  970.9540  1041.566  1575.925  2281.514  2371.886  4572.098
1077.383 1136713  901.1135 7892779 -58.8275 -1180.506 -2762.631 —4857.286
3851.943 3375387  5266.210  6171.852  13009.15 2202391 3461770  51016.62
-10971.47 -8817.750 -17360.79 —-21462.56 —52400.09 -93148.34 -1.49910° -2.234062°
50170.69 4224890  73663.42  88787.45 2.0271383° 3.526208° 5.6076830° 8.2889910°
~1.764110° -1.46910° -263810° -3.20310° -7.45010° -1.30310° -2.07610° -3.06710°
6.73010107  5.641410° 9.956010° 1.204410° 2.773410° 4.834110° 7.678210° 1.130210" |

Figure 2: The approximate solution of (4.1)-(4.3) inthe case ¢ =1/2.

Example 2. Consider the following fractional Wave equation

o%u(x,t) . d%u(xt)
=k , l<a<2,1<pB<2 5.12
o ~ B (5.12)
along with the following initial and boundary conditions

au
u(O,t)=0, &(O,t)=b2, t>0 (513)

au
u(x,0)=0, &(x,0)=b1, t>0 (5.14)

where b;and b, are constants.

Operating the Riemann-Liouville operator I on both sides of Eq.(5.12) and with boundary conditions
(5.14) we have

u(xt)— j dx— blj dt = k2 & (22U ;X(X Oy, (5.15)
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Operating the Riemann-Liouville operator Ixﬁ on both sides of Eq.(5.15) and with boundary conditions
(5.13) we get

12u(xt) = 1272 @) by 1 15@) = k(18 u(x ) b, 17 12 @), (5.16)
Letu(xt)=H T (x)- C - H(t). Substituting (4.1)-(4.4) into (5.16), we obtain

HT()-(F)T-HO-HT (- (FF™)" -3 -H(®)-by HT(9-(F)" -3 -F - H(Y)
=k* HT(%-C-F§ -H(O-k* b, HT (9 (F3 )" - R - H(D),

where J is same as (5.9) .

By multiplying H' (X)to the right side and H(t) to the left side of each term in the above equation, for
Haar wavelets with order m, we have

(FE )" Com —(FEHT -3 =0y (FY )T -3,

(5.17)
= k? C nxm 'Fl-!fm _K2b2 (FI}Im)T I 'FI-T," .
Example 3. Consider the following fractional Diffusion-Wave equation
a 2
grulxh 07U qcg e, (5.18)
at” X
subjected to the initial conditions
u(0,t)=0, g—u(o,t):bz, t>0 (5.19)
X
au
u(x,0)=0, &(X,O):bl, t>0, (5.20)

where b;and b, are constants.

Operating the Riemann-Liouville operator | on both sides of Eq.(5.18) and with boundary conditions
(5.20) we have

u(x,t)—joxdx—blﬁdt=|t“u;(x,t). (5.20)

Then, integrate (5.21) with respect to x two times, we get

u(x,t)—joxdx—joxjoxj':dxdxdx - bljoxj:j;dtdxdx

(5.22)
X
- It“ux(x,t)—lt“jo b, dx.

Letu(x,t)=HT (x)-C- H(t). Substituting (4.1)-(4.4) into (5.22), we obtain

HT () (F7)" -C-Ht)-HT (- (F3 )" -3 - Ht)-by HT(0-(F3)" -3 -F5 - H(Y)
= HT(X)-C-FS -H®)-b,HT ()-(F5 )" -J-FS - H().
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By multiplying H T (X) to the right side and H(t) to the left side of each term in the above equation, for
Haar wavelets with order m, we have

(FE)" Conn —(F3 )T - J =By (FE )T -3 i
= Crum - Fl—!fm —b, (Fl}im )T U 'Fl—oitm
(5.23)

In the case of m:8,a:1§,b1=1 andb, =2, we get the numerical solution by solving the equation as

below
(F3,)" -Cos—(F3,)" - Jg —bu(F3 )T -Jg-Fi, =Cgq-F —by (Fi) - 35+ FS, (5.24)

See Figure3.

2ol
e !
07 g ==

Aolel
09 UE/

08 05 7 ?\7_\/_‘5_/ 02
02
01 o 0

Figure 3: The approximate solution of (4.1)-(4.3) in the case ¢ =1/2,b, =1,b, =2.
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