
241 
 

Journal of mathematics and computer Science        7 (2013) 241 - 248 

 

Approximate Solutions of the Q-discrete Burgers Equation  

Yu-Xiang Zeng, Yi Zeng1  

Key Laboratory of Numerical Simulation of Sichuan Province and  

College of Mathematics and Information Science, Neijiang Normal University, 

Sichuan 641100, China 

Article history: 

Received May 

Accepted June 

Available online June 

Abstract 

Q-difference equations are a class of non-classical models. In this study, a combined method which 

has the merits of the varitional iteration method and the Adomian decomposition method is proposed. 

Then, the method is applied to a q-Burgers equation and approximate solutions are obtained. 
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1. Introduction 

The q-derivative is a deformation of the classical derivative and usefully employed to describe 

nonlinear phenomena in quantum diffusion systems, i.e., the non-equilibrium system [1], q-soliton [2, 

3], fractal geometry [4], variational q-calculus [5]. Then the q-difference method is used to modeling 

the nonlinear problems and now to find approximate solutions of such models is undertaking. Some 

analytical methods have been proposed [6-9]. 
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The variational iteration method (VIM) [10-12] and the Adomian decomposition method (ADM) [13, 

14] have their own merits and they have been two often used methods in the past ten years, i.e., for 

initial value problems of differential equations [15], Fuzzy equation [16] and fractional calculus [17].  

Recently, the variational iteration method is successfully extended to q-difference equations [10-

12]. In this study, the ADM [13, 14] is a famous linearization technique which is used to handle 

nonlinear terms of the governing equations and make the VIM more efficient. A q-Burgers equation is 

illustrated as an example.  

2. Preliminaries  

In this section, some properties of the q-calculus are introduced.  

For 0 1,q   let 
qT  be the time scale: ={ : } {0}n

qT q n Z   where Z  is the set of integers. 

2.1 The q - integration of ( )f t  is defined by  
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For 0,x  0
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2.2 The Leibniz rule for a q -derivative of a product of two functions is  

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )].
q q q

d d d
f x g x g qx f x f x g x

d x d x d x
                     (3)  

         2.3 q -Integration by parts holds 
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( ) ( ) ( ) ( ) ( ) ( ) .
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More results and recent developments in this area are available in [18-20].   

3. The VIM for q-difference equations 

Following the VIM’s rule:  (a) establishing the correction functional; (b) identifying the Lagrange 

multipliers; (c) determining the initial iteration. For a nonlinear q-difference equation   

   
( , )=0,
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                                                                (5) 

one can first construct the correction functional by using (1), 
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Then, a q-Lagrange multiplier can be optimally determined by the variational q-calculus [5]. Three 

cases have been discussed in [9, 21, 22].  After determination of the initial iteration 0u from the q-Taylor 

series [19], the approximate solution tends to the exact solution of (5) for .n  

Now if ( , )f t u  has a nonlinear term, we consider to using the famous linearized technique, the 

Adomian series to expand the ( , )f t u  approximately. We don’t given the detail expressions here. 

Readers who feel interested in the ADM are referred to the original idea [13, 14] and the recent 

development [23-30]. For the q-difference equations (5), analysis of the existence and the uniqueness of 

the solution can be found in [20]. 

4. Approximate solutions of the q-discrete Burgers equations 

The Burgers equation is the simplest nonlinear generalization of the diffusion equation. It occurs in 

various areas of applied mathematics, such as modeling of gas dynamics and traffic flow. The equation 

of motion in one dimension has the following form 

2

2
+ =x

u u
uu v

t x

 

 
 

where = ( , )u u x t is the velocity and v  is the viscosity coefficient. 

http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Gas_dynamics
http://en.wikipedia.org/wiki/Traffic_flow
http://en.wikipedia.org/wiki/Velocity
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In order to describe a non-equilibrium distribution, for 0 1,q   let 
qT  be the time scale: 

={ : } {0}n

qT q n Z   where Z  is the set of positive integers. We consider a q-discrete Burgers 

equation as follows  
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We revisit the identification of the Lagrange multiplier [9]. First, construct the correction function as  
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Then, through the integration by parts and the term being handled as restricted variation, one can 

derive  
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Namely, the simplest Lagrange multiplier can be identified as ( , ) 1t    and ( , ) 1t q    .  

As a result, substituting this result into (8), we obtain the variational iteration formula  
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On the other hand, let 
=0

=
n

n i

i

u v and the nonlinear term xuu can be approximately expanded as the 

Adomian polynomials nA [14]  
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Here the initial iteration value 0v  can be determined as 0 = ( ,0)=sin(2 ).v u x x  The above idea using 

the Adomian polynomials was proposed by Abbasbandy in [31].  

The iteration formula now can be modified as  

1 , 0
0
( ) , sin(2 ).

t

n n xx n qv v A d v x      

Since Eq. (2) is a q-difference equation of first order, it is interesting to point out that the approximate 

solution here is the same as the one derived by the ADM.  As a result, one can obtain iv without any 

difficulty 

 

where[1] =1q！ and [2] =[1] [2] =1+ .q q q q！   

If the second order approximation is enough, we can derive the approximate solution as 

0 1 2+ + ,u v v v

                                                                                          

(10) 

The following figures illustrate the approximate solutions at various (0< 1)q q  . 
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0.5q   1q   

Fig. 1 The q-discrete Burgers’ flow for 0.5q  and 1q   

5. Conclusions  

In this study, a combined method of the VIM and the ADM is proposed for nonlinear q-difference 

equations. Then it is used to approximately solve the q-Burgers equation on time scale. It follows two 

main steps: identification of the q-Lagrange multipliers and linearization of the nonlinear terms by the 

ADM.  

The obtained solutions have a q parameter and they are illustrated for different values of q. The 

presented method is direct and has the merits of both the VIM and the ADM which also can be used in 

other initial value problems of the q-difference equations.  
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