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Abstract

Common fixed point results for new classes of non-commuting self-maps and non-expansive. Within the
class of all self-maps f and T of a w —starshaped subset M of X where f is affine or w —affine. We apply
them to obtain several invariant approximation results which unify, extend, and complement well-known
results.

Keywords: Best approximation; Common fixed point; affine self-maps; Invariant; f —nonexpansive;
nonexpansive maps.

1. Introduction and Preliminaries

Recently, Latif [9] has obtained the following result on common fixed point in best approximations,
which generalize and extend the recent study of AL- Thagafi [1], N. Hussain, M.A.Kutbi [5], etc. M.
Abbas and J. Kyu kim[8] obtained common fixed point and invariant approximation results. AL. Thagafi
and N.Shahzad[2, 3], common fixed point results are established for a new class of non-commuting self-
maps satisfying generalized f —contraction or f —non expansive type conditions and also extended several
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common fixed point and invariant approximation results, related to non- expansive self- maps, to the class
of C,,_ commuting self maps.

In this paper, we introduce two new classes of non- commuting self- maps. One class contains the weakly
compatible self- maps as a proper subclass. Within the class of all self-maps f and T of a w-star shaped
subset M of X where f is w-affine, the classes of commuting, R-weakly commuting, and C,,- commuting
self maps, the classes of non expansive, f-non expansive, f-contraction and self maps are subclasses of the
other class. For these new classes, we establish common fixed point results and obtain several invariant
approximation results as applications. Our results unify, extend, and complement all the above mentioned
results.

Definition 1.1 Let X be a linear space. A p —normed on X is areal valued |||, on X with 0 <p <1
, satisfying the following conditions:

@ llxll, =0 And [[x]l, =0 ifandonlyifx =0
@) 1Bxll, = 1817 1lxll,
@) llx + yll, < llxll, + v,

For all x,y € X and all Scalars 8, The pair (X, [|-||,,) is called a p — normed space. It is a metric linear
space with d, (x,y) = |lx — yll, for all x,y € X , defining a translation invariant metric d, on X. If

p = 1 then we obtain the concept of a normed linear space. It is well- know that the topology of every
Hausdorff locally bounded topological linear space is given by some p — normed 0 < p < 1(see [6]).

The space [, and L,[0,1], 0 <p <1 are p —normed spaces. A p —normed space is not necessarily a
Locally convex space, Recall that dual space X* separates points of X if for each 0 # x € X , there exists
f € X* such that f(x) # 0. In this case the weak topology on X is well-defined and is Hausdorff. Noticed
that if X is not locally convex Space, then X* need not separate the points of X . For example, if X =
L,[0,1] , 0<p <1 the power p integerable function (or X = S[0,1]) , the space of measurable
functions, then X* = {0} (see [4, 10]). However, there are some non- locally convex spaces X , (such as
the p —normed spaces 1,, 0 < p < 1) whose dual X* separates the points of X [4]. In the sequel, we will
assume that X™* separates points of a p —normed space X whenever weak topology is under consideration.

Definition 1.2 Let M be a nonempty subset of a p —normed space X, and f,T: X — X are self- map of M.

a) Apointx € X is called a fixed point of f if fx = x
b) A pointx € X is called a fixed point of T if Tx = x. We denote the set of fixed points of f

by F(f) and the set of fixed points of T byF(T).
c) Anpointx € X is called a common fixed pointof f and T if fx = Tx = x. We denote the set of
common fixed points of f and T by F(f,T).
d) Apointx € M is called a coincidence points of f and T if fx = Tx. We denote the set of
Coincidence points of f and T by C(f, T).
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Definition 1.3: Let M be subset of a p-normed space X.

a) Forw € M, the set M is called w-star shaped if kx + (1 — k)w € M forall x € M and
allk € [0,1] .
b) The set M is called convex if kx + (1 — k)y € M forall x,y € M and all k € [0,1] .

Definition 1.4:

a) A self - mapping f onap —normed space X is called affine If M be convex and
flkx+ (1 —k)y) =kfx+ (1 —k)fyforall x,y € Mandall k € [0,1].

b) The self- mapf is w-affine if M is w-star shaped and f(kx + (1 — k)w) = kfx + (1 —k)fw
forall x € M and all k € (0,1). Note that fw = w whenever f isaw-affine self map of a w-
star shaped set M

Definition 1.5: Let f, T be a self -maps of M in p —normed spaceX .

a) The self- maps f and T are called commuting if fTx = Tfx forall x € M.

b) R-weakly commuting if || fTx — Tfx||, < R||fx — Tx|[, forallx € M and some R > 0.
c) Weakly compatible if fTx = Tfx forall x € C(f, T).

d) C,-commuting if M is w —starshaped with w € F(f) and fTx = Tfx for all

x€C,(f,T)=U{C(f,T): 0= k<1 }Where Tyx =kTx+ (1 —-k)w

Definition 1.6: Let T be a self- map of p —normed space X. The self- map T is called f — non
expansive if ||Tx — Tyll,, < ||[fx — fyll, forall x,y € M and non expansive if ||Tx — Ty||, <

llx — yll, forall x,y € M and T a f — contraction if ||Tx — Ty|l, < k|lfx — fyll, forallx,y € M
and some k € (0,1)

Definition 1.7: Let X be a p —normed space. For a nonempty subset S of X and x, € X, define
dp (x0,S) = infyesllxo —ull, ,
Ps(xp) ={x €S: |lx —xoll, = d,(x0,5)}
The set P, (xg) is called the set of best S-appropximants to x, and
L) ={xeS: fxePs(x)}.
Note that Ps(xg) contain in f (D; (xo)). Assume that D{ (x9) = Ps(xp) N Csf (xg) and
Seo = {x €5 llxll, < 2llxoll,}

Let Qo denote the class of closed convex subsets of X containing 0. Note that P;(xg) S Sy, € Qo
Whenever S € Q.
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Theorem 1.8: Let M be a subset of a p- normed spaceX , f and T self maps of M, and T(M) < f(M).

Suppose that f and T are weakly compatible, T is a f- contraction, and T(M) is complete, then
F(f,T) is asingleton.

Proof: Letx € M. AsT(M) € T(M) < f(M) , we can choose a sequence {x, } in M such that
Tx,_1 = fx, forall n > 1since T is a f- contraction, there exists k € (0,1) such that

dp (Txn+lr Txn) = kdp (fxn+1'fxn) = kdp (Txn:Txn—l)

Therefore {Tx,} is a Cauchy sequence inT(M). It follows from the completeness of T(M) that

Tx, »z€ T(M) < f(M) € M. Hence, fx,, —» z where of z= fu for some u € M. Note that for
all n = 1, we have;

d,(z,Tu) < d,(z,Tx,) + d, (Tx,, Tuw)
= dp (z, Txn) + kdp(fxn:fu)
= dp (z,Tx,) + kdp (fxn, 2)

Letting n — oo, we obtain fu = z = Tu . Since f and T are weakly compatible on M, then fz =
fTu = Tfu = Tz. It follows that

d,(2,Tz) = d,(Tu,Tz) < kd,(fu, fz) = kd,(2,Tz).
hence,Tz = z and so fz = Tz = z. Clearly F(f, T) is a singleton. [

Theorem 1.8 contains theorem 2.1 of AL. Thagafi, N. shahzad [3] which established in metric space.
We expressed in p — normed space in this study.

Theorem 1.9: Let M be a subset of ap —normed spaceX, f and T self- maps on M, and T(M) <
f(M). Suppose that M is w-star shaped, f and T are C,-commuting, T is continuous and f-non
expansive, f is w-affine, and T (M) is compact, then F(f, T) is nonempty.

Proof: Let {k,} be a sequence n (0,1) suchthatk, —» 1. Forn>1, defineT,,: M - M by T,x =
k,Tx + (1 — k,)w for all x € M. Since M is w-star shaped, T(M) < f(M), and f is w- affine, then
fw =wandT,(M) € f(M) for all n. As f and Tare C,,-commuting and f is w-affine, then f and T, are
weakly compatible for all n. Since T is f — nonexpansive, we have;

1T, x — Tyll, = (k)P ITx — Tyll, < (k)P llfx — fyll,, Forallx,y € M. ThuseachT, isa
f-contraction. As T(M) is compact, each T,, (M) is also compact. It follows from theorem 2.1 that
F(f,T,) = {x,} for some x, € M. Since {Tx,} is a sequence inT (M), there exists a subsequence
{Txnj} of {Tx,} and z € T(M) such that Ty = 7 50

Xn; = Tn].xnj = kanxnj + (1 - knj) w-z
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Now the continuity of T implies that Tz = z. Since T(M) < f(M) , there exists u € M such thatfu =
Tz = z. Moreover, for each j, we have;

Xnj _Z” '

|7, =], = 720, = 1], = :

Which, on letting j — oo .Implies that fu = Tz = z = Tu. So C(f, T) is nonempty. Since f and T are
also weakly compatible, we have

fz=fTu=Tfu=Tz=2z.
Therefore, F(f, T) is nonempty.[]

Corollary 1.10: Let M be a subset of a p — normed space, T a self map of M, and T(M) € M.
Suppose that M is w —starshaped, T is nonexpansive, and T(M) is compact, then F(T) is nonempty.

Definition 1.11: Amap T : M — X is said to be semicompact if there is {x, } a sequence in M such that
x, — Tx, — 0 strongly, then {x,,} has a subsequence {xnj} in M such that Xn; = Z € M strongly.

Note that if T(M) is compact, then T(M) is complete, bounded and T is semicompact.

Definition 1.12: Let f and T be self maps of a subset M of a p —normed space X. Forevery x,y € M,
define

(pf,T(x: }’) = max{llfx - fy”p: ”fx - Tx”pr ”fy - T}’”p; ”fx - T}’”p; ”fy - Tx”p}

dist(fx,Ty) = inf{llfx —Tiyll, : 0< k <1}, and

Yrr(x,y) = max{llfx — fyll,, dist(fx, Tx), dist(fy, Ty), dist(fx, Ty), dist(fy, Tx)}.
If £ is the identity self maps of M, ¢f 1 (x,y) and ¥ 7 (x, y) will be denoted by @7 (x,y) and Y1 (x, y),

respectively, note that ¢ r(x,y) < @f 7, (x,y) and Y7 (x,y) < @7, (x,y) forall x,y € M and all
k € [0.1].

Theorem 1.13: Let M be a subset of a p —normed spaceX, f and T self maps of M, T(M) < f(M), and
T (M) complete. Suppose that f and T are occasionally weakly compatible and

d, (Tx,Ty) < (k)P s r(x,y) forall x,y € M and some k € [0, 1) then F(f, T) is a singleton.

The proof above theorem by AL-thagafi said in metric space [2]. The theorems follows extends from each
of theorems (2.3, 2.4) of AL-thagafi and shahzad[2].

Theorem 1.14: Let M be a w —starshaped subset of a p —normed space , f and T self maps of M,
T(M) € f(M) = M, and T(M) complete. Suppose that T(M) is bounded, T is semi compact, f and T are
continuous and ultra occasionally weakly compatible, and |[Tx — Ty|l, < ¢ r(x,y) for all x,y € M,
Then F(f, T) is nonempty.
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Proof: Let {k,} be a sequence in (0,1) such thatk,, » 1 forn > 1, define T, M > M by T, = k,Tx +
(1 —k,)w forall x € M. Since M is w —starshaped, T(M) € M = f(M), and T(M) is complete, then
each T,,(M) is complete and satisfies T,,(M) € M = f(M) moreover,

ITwx = Toyll, < (k)P IITx = Tyll, < (k)P yrr(x,y) < (k)P @1, ¢ (x,¥)

For all x,y € M. Since f and T are ultra occasionally weakly compatible, then f and T,, are occasionally
weakly compatible for all n. It follows from theorem 2.6 that F(f, T;,) = {x,, } for some x,, € M since
{x,} is bounded, k,, - 1, and

— 14
I, — Txu ll, = 2ty — Txnll, < (k™" = 1) (Iwll, + llx,ll,)

For alln , then x,, — Tx,, — 0 strongly, it follows from the semi compactness of T that {x,,} has a
subsequence {xnj} such that x,; —z € M strongly. Since Tx, = ky, _1xn]. + (1 — kn, _1) w, then
Txn]. — z strongly, by the continuity of both f and T, we have fz = Tz = z. therefore, F(f,T) is
nonempty.[]

2. Main results

Theorem 2.1: Let X be a p —normed space, f and T self maps of X with x, € F(f,T), and S € X with
T(6S N S) € S. Suppose that Ps(xg) is closed and w —star shaped, f and T are C,, —commuting on
Ps(x0) , f(Ps(x0)) = Ps(xp), f is w —affine on Ps(xp), T is continuous on P (x) and f —non expansive

on Ps(x0) U {xo} , and T(Ps(xp) ) is compact, then Ps(xo) N F(I, T) is nonempty.

Proof: Let x € Ps(xp). Then |lkx + (1 — k)xo — xoll, = (k)P llx — xqll,, < dy (x0,S) for all k € (0,1).
Thus {kx + (1 —k)xg:k € (0,1)}NS =0 and so x €5SNS. Since T(SNS) S, it follow that
Tx € S. Since fx € Ps(xp) and T is f —nonexpansive on Pg(xg) U {xy}, We have

ITx = xoll, = ITx = Txoll, < llfx = fxoll, = lIfx = xoll, = dp (x0,5)

And hence Tx € Ps(xp), Therefore T(Ps(xg)) S f(Ps(xq)) = Ps(xo). Now the result follows from
theorem 1.9 with M = Pg(xp) . O

Theorem2.2: Let X be a p —normed space, f and T self-maps of X with xq € F(f,T) and S € Q, with
T(Sy,) € f(S) €S. Suppose that |Ifx —xoll, = llx —xoll, for all x€S, T is f —nonexpansive

on Sy, U {x0}, and £(S,,) is compact.. Then Ps(x,) is nonempty, closed, and convex and T (Ps(x)) €
f(Ps(xq)) € Ps(x). If, in addition, f is nonexpansive on Ps(xo), then Ps(xo) N F(f) and Ps(xo) N F(T)
are nonempty. If, for some w € Ps(xy), f is w —affine, f and T are C,, —commuting on Ps(xg), and

T(Ps(xq)) S f(Ps(x0)), then Ps(xo) N F(f, T) is nonempty.
Proof: We may assume that xy ¢ S. If x € S\ S, then [|x|l, > 2||x,ll, and, so

llx = xoll, = llxll, = lixoll, > llxll, = dp(xo,5).
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Thus a = d,, (%o, Syy) = d, (%0, S). Suppose f(S,,) is compact. Since the norm is continuous, there
exists z € f(S,,) such that g = d,, (xo,f(Sxo)) = ||z — xoll,. Hence

@ < B < dy (%0, f(Sep)) < Ify = x0ll, = lly = xoll,

Forall y € S, . This show a = . Thus, Ps(xp) is nonempty, closed, and convex and f(Ps(xg))

P (xo). To show that T(Ps(xo)) S f(Ps(x0)), let y € T(Ps(x,)). Since T(Ps(x0)) S T(Sy,) S f(5),
there exists z € Ps(xp) and w € S such that y = Tz = fw. Then the f —nonexpansiveness of Ton
Sxo U {xo} implies

Iw = xoll, = lIfw = xoll, = 1Tz = xoll, < 1Ifz = xoll, = Iz = x0ll, = d}y (x0,5).

Thus, w € Ps(x,) and y € f(Ps(x,)). Hence, T(Ps(x0)) € f(Ps(x0)) S Ps(x0). Now, suppose that f is
nonexpansive on Ps(xp). Then the f —nonexpansive ness of T on S,,U{xp} implies that T is

nonexpansive on Ps(xo). Since f(S,,) is compact, then f(Ps(xy)) and T(Ps(xo)) are compact.

Moreover, f(Ps(xo)) € Ps(x,) and T(Ps(xo)) S Ps(x,). It follows from corollary 1.10 that Ps(x,) N
F(f) and Ps(x,) N F(T) are nonempty. The last part follows from theorem 2.2 with = Ps(x,) .[J

Theorem 2.3: Let M be a w —starshaped subset of ap —normed space, f and T self maps of M,
T(M) € f(M), and T(M) complete. Suppose that f is w —affine, T(M) is bound, T is semicompact, f
and T are continuous and ultra occasionally weakly compatible, and ||Tx — Ty|l, < ¥¢r(x,y) for all
X,y € M, Then F(f,T) is nonempty.

Proof: Let {k,} and {T,, } be as in the proof of theorem 1.14. Since M is w —starshaped , T(M) < f(M),
T(M) is complete, and f isw —affine, Then each T, (M) is complete and satisfies T,,(M) < f(M).
Moreover;

ITox = Toyll, = kP IITx = Tyll, < (kn)Ppr(x,y) < (kp)P @y, (x, )

For all x,y € M. Since f and T are ultra occasionally weakly compatible, then f and T, are occasionally
weakly compatible for all n. It follows from theorem 1.13 that F(f,T,,) = {x,} for some x,, € M, Since
{x,} is bounded, k, — 1, and

— p
2y = Txally = M = Ty lly < (k" = 1) (Iwll, + llxall,)

For alln, then x,, — Tx,, — 0 strongly, it follows from the semi compactness of T that {x,} has a
subsequence {xnj} such that x,,; — z € M strongly. Since Tx,,; = ky, _1xn]. + (1 — ko, _1) w

Then Txnj — z strongly, By the continuity of both f and T, we have fz = Tz = z therefore, F(f,T) is
nonempty.[]
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Theorem 2.4: Let X be a p —normed space, f and T self-maps of X with x; € X, and S € X with
T(6S N S) C S. Suppose that Cs” (xp) is closed and w —starshaped, f (Csf(xo)) =C/ (x0), T (Csf(xo))

is complete, and T is semi compact on Cs (xp), f and T are continuous and ultra -occasionally weakly
compatible on Cs’ (xo), ITx — Tyll, < ¥sr(x,y) forall x,y € Cs/ (xp),

ITx = xoll, < lIfx = xoll,, for all x € G5/ (xo), and lIfx — xoll, = llx — xoll, for all x € T (G5 (x0)),
Then Ps(x,) N F(f,T) is nonempty.
Proof: Let x € Cs/ (xg). As Csf (xg) = f(xg) € Ps(x) , then x € Ps(xg). Therefore

llkex + (1 = K)xo — xoll, = ()P llx — xoll, < dy (xp, S) for all k € (0,1). Thus

{kx + (1= K)xp:k € (O,D}NS =0 and, hence x € 6SNS. Since ||Tx —xpll, < [Ifx — xoll, and
fx € Ps(xo), then Tx € Ps(xo). Since [|fTx — xoll, = ITx — xoll, and Tx € T (G5 (x0)) N Ps(xo),

Then Tx € C5 (xg). Thus T (Csf(xo)) cf (Csf(xo)) = Cs (o). Now the result follows from theorem
2.7with M = ¢/ (xp).0

Theorem 2.5 Let X be a p —normed space, f and T self-maps of X with x5 € X, and S € X with T(6S n
S) € S. Suppose that Dg/ (xg) is closed and w —starshaped, f (Dsf(xo)) =D/ (xp), T (Dgf(xo)) is

complete, and T is semicompact on D/ (x,), f and T are continuous and ultra -occasionally weakly
compatible on Dg/ (x), || Tx — Tyll, < Ysr(x,y) forallx,y € D/ (xp),

ITx = xoll, < lIfx = xoll,, for all x € Dy/ (xo), and lIfx = xoll, = llx = xoll, for all x € T (Ds” (x0)),
Then Ps(x,) N F(f,T) is nonempty.
Proof: Let x € D/ (xg). As Ds' (xg) S Ps(xp) , therefore x € Pg(x;). Then;
llkx + (1 — k)x — xoll, = (k)P llx — xoll,, < db, (xo, S) Forall k € (0,1). Thus;
{kx + (1 —k)xyp:k € (0,1)}nS =0 And, hence x € SN S.

Since T(6SNS) € S, thenTx € S. As ||[Tx — xoll, < llfx — x0ll, and fx € Ps(xp), we have Tx €
Py (x0). Since || Tx = xoll, = ITx = xql, and Tx € T (D5’ (x0)) N Py (xo), Then Tx € Cs” (x), thus
Tx € Dg/ (xo) , and hence T (Dsf(xo)) cf (Dsf(xo)) = D¢/ (x,). Now the result follows from
theorem 1.14 with M = D5/ (x,).0.

Theorem 2.6: Let X be a p —normed space, f and T self-maps of X with xy € X, and S € C, with
T(Sxo) c f(S) =S. Suppose that [|Tx — xoll, < |lx — xoll, for all x € s, lIfx —x0ll, = llx — xoll,
for all x € S is compact. Then Ps(xg) is nonempty, closed, and convex and
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T(Ps (x)) S f(PS(xo)) C Ps(xg). If, in addition, f and T are continuous and ultra-occasionally weakly
compatible on Pg(xo) , and [[Tx — Ty|l, < ¢rr(x,y) forall x,y € Ps(xo), Then Ps(x,) N F(f,T) is
nonempty.

Proof :We may assume that x, & S. If x € S\ S, then ||x[[, > 2[|x,ll,, and, so
llx = xoll, = llxll, — lIxoll, > llxll, = dp (xo, ).

Thus a = d,, (xo, Sy) = dp (%0, S). Suppose T(S,,) is compact. Since the norm is continuous, there
exists z € T(S,,) such that g = d,, (xO,T(Sxo)) = ||z — xoll,,. Hence

a<p<d, (x0,T(Se)) < ITy = xoll, = lly — xoll,

For all y € S,,. This show a = . Thus, Ps(xp) is nonempty, closed, and convex. Note that the

compactness of T(Ps(xo)) implies that T is semi compact on P (xp). Since ||fx — xoll, = llx — xoll,,
Forall x € Sand [ITx — xoll, < Ilx — xoll, for all x € Ps(xp), then f(Ps(xp)) S Ps(xp),

CSf(xo) = Ps(xg), and T(Ps(xo)) C Pg(x,). Moreover, as Ps(xg) €S = f(S) and [|fx — xoll, =
llx — xll, for all x € S, we havePs(xg) S f(Ps(x)). Therefore T(Ps(x)) € f(Ps(x)) = Ps(x,). The
rest follows from theorem 2.7 with M = Ps(x, ).
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