

On Fuzzy Isomorphism Theorem Of Hypernear-modules

M. Aliakbarnia. Omran¹, Y. Nasabi², E. Hendukolaie³

 ¹Amol Institution of higher education, Amol, Iran, Mehdiomran@gmail.com
 ²Young Researchers Club, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran, Yaser.nasabi@yahoo.com
 ³Young Researchers Club, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran, Edrishendoii@gmail.com

Article history:ReceivedFebruary 2013AcceptedMarch 2013Available online April 2013

Abstract

In this paper, introduce the concept of normal fuzzy subhypernear-modules of hypernear-modules and establish three isomorphism theorems of hypernear-modules by using normal fuzzy subhypernear-modules.

Keywords: Near-module, Hypernear-module, Normal fuzzy subhypernear-module, Isomorphism theorems

1 Introduction

Hyperstructures, in particular hypergroups, were introduced in 1934 by a French mathematician, Marty, at the VIIIth Congress of Scandinavian Mathematicians ([20]). Since then, hundreds of papers and several books have been written on this topic. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science see [1, 2, 4, 6, 7, 9, 13], and they are studied in many countries of Europe, America and Asia. In 1971, Rosenfeld [23] introduced fuzzy sets in the context of group theory and formulated the concept of a fuzzy subgroup of a group. Since then, many researchers are engaged in extending the concepts of abstract algebra to the framework of the fuzzy setting. In 1990 Dasic [10] has introduced the notation of hypernear-rings in a particular case. The hypernear-rings generalize the concept of near-ring. More recently, Sen, Ameri and Chowdhury introduced and analyzed fuzzy semihypergroups in [24]. The fuzzy hyperring notion is defined and studied in [17]. Ameri and Hendoukolaie introduced and analyzed fuzzy hypernear-ring and a fuzzy hypernear-module on a hypernear-ring in [2, 3]. in [14] Hendukolaie analyzed the fuzzy homomorphism between Hypernear-rings and in [15] Hendukolaie, Ghasemi, Ghasemi introduced and analized the fuzzy isomorphism theorem of Γ -hypernear-rings by Γ -hyperideals. J. Zhan, B. Davvaz, K.P. Shum, introduced the concept of normal fuzzy

subhypermodules of hypermodules and analized three isomorphism theorems of hypermodules by using normal fuzzy subhypermodules in [29]. In this paper, introduce the concept of normal fuzzy subhypernear-modules of hypernear-modules and establish three isomorphism theorems of hypernear-modules by using normal fuzzy subhypernear-modules.

2 Preliminaries

First of all,Recalled some notions and results that used in the following paragraphs. (see [1],[5],[6],[20]). A nonempty set R with two binary hyperoperations " \cdot and " + is called a *Near* - *ring* if:

(*i*) (R, +) is a group;

(*ii*) (R, \cdot) is a semigroup;

(*iii*) $x \cdot (y+z) = x \cdot y + x \cdot z$, $\forall x, y, z \in R$.

Definition 2.1 A right R-nearmodule M over a Near-ring R consists of an group (M,+) and an operation $M \times R \rightarrow M$ such that for all x, y of M and r, s of R, We have:

(*i*)
$$(x+y).r = x.r + y.r$$
;

- (*ii*) x.(r+s) = x.r + x.s;
- $(iii) \quad x.(r.s) = (x.r).s ;$
- (*iv*) $x \cdot 1_R = x$ if *R* has multiplicative identity 1_R .

Example 2.2 every module M over a ring R is a near-module.

Example 2.3 If K is a field, Then the concepts K-vectorspace (a vector space over K) and K-nearmodule are identical.

Let *H* be a nonempty set and let $P^*(H)$ be the set of all nonempty subsets of *H*. A *hyperoperation* on *H* is a map $\circ: H \times H \to P^*(H)$ and the couple (H, \circ) is called a *hypergroupoid*.

If A and B are nonempty subsets of H, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b , \qquad A \circ x = A \circ \{x\}, \qquad x \circ B = \{x\} \circ B.$$

A hypergroupoid (H,\circ) is called a *semihypergroup* if for all x; y; z of H we have $(x \circ y) \circ z = x \circ (y \circ z)$, which means that

$$\bigcup_{u\in x\circ y}u\circ z=\bigcup_{v\in y\circ z}x\circ v.$$

An element e of H is called an *identity* (scalar identity) of (H,\circ) if for all $a \in H$, we have $a \in (e \circ a) \cap (e \circ a)$, $(\{a\} = (e \circ a) \cap (e \circ a))$.

A *hypergroup* is a semihypergroup such that for all $x \in H$, we have $x \circ H = H = H \circ x$.

A subhypergroup (K,\circ) of (H,\circ) is a nonempty set K, such that for all $k \in K$, we have $k \circ K = K = k \circ K$.

Definition 2.4 The triple $(R,+,\cdot)$ is a hypernear - ring if:

(1) (R, +) is a quasicanonical hypergroup, i.e. the following axioms hold for (R, +):

(i) $(x+y)+z = x+(y+z), \quad \forall x, y, z \in R;$

(*ii*) $\exists 0 \in R$ such that x + 0 = x = 0 + x, $\forall x \in R$;

(*iii*) $\forall x \in H, \exists x' \in H \text{ such that } 0 \in (x+x') \cap (x'+x);$

(*iv*) $\forall x, y, z \in R$ and $z \in x + y \Longrightarrow x \in z + (-y)$, $y \in (-x) + z$.

(2) (R,\cdot) is a semihypergroup having 0 as a right absorbing element, i.e. $0 \cdot x = 0$, $\forall x \in R$;

(3) $(x+y) \cdot z = x \cdot z + y \cdot z, \quad \forall x, y, z \in R.$

Let $(R,+,\cdot)$ be a *hypernear* - *ring*. A non-empty subset A of R is called a subhypernear-ring of R if $(A,+,\cdot)$ itself a hypernear-ring. A subhypernear-ring $A \subseteq R$ is called *normal* if for all $x \in R$ holds:

$$x + A - x \subseteq A.$$

Since $A \subseteq x + A - x$, it follows A = x + A - x, for all $x \in R$.

Definition 2.5 Let $(R, +, \cdot)$ be a hypernear-ring. A nonempty set M, endowed with two hyperoperations \oplus , e is called a *right hypernear – module over* $(R, +, \cdot)$ if the following conditions hold:

(1) (M, \oplus) is a hypergroup (not necessarily commutative).

- (2) $\Theta: M \times R \to P^*(M)$ is such that for all a, b of M and r, s of R, we have:
- (i) $(a \oplus b) \mathbf{e}r = (a\mathbf{e}r) \oplus (b\mathbf{e}r);$
- (*ii*) $a\mathbf{e}(r+s) = (a\mathbf{e}r) \oplus (a\mathbf{e}s)$;
- (*iii*) ae(r.s) = (aer)es;
- $(iv) \quad ae0 = 0 \text{ and } 0.r = 0.$

Let (M, \oplus, \mathbf{e}) be a *hypernear – module*. A non-empty subset A of M is called a subhypernear-module of (M, \oplus, \mathbf{e}) if (A, \oplus, \mathbf{e}) itself a hypernear-module.

A subhypernear-module A of M is called normal if the relation $x+A-x \subseteq A$ holds for all $x \in M$.

Example 2.6 Every right hypermodule M over a hyperring R is a right hypernear – module.

Example 2.7 Let (R,+) be a hypergroup (not necessarily commutative) and let $(M_0(R),+,\circ)$ be a hypernear-ring of mapping from R into itself (see[8]). Then (R,\oplus, e) be a hypernear-ring over $(M_0(R),+,\circ)$, Where the action $\mu: R \times M_0(R) \to R$ is given by $(a, f) \to (a) f$, for all $a \in R$ and $f \in M_0(R)$.

Let A be a subhypernear-module of an R-hypernear-module M. Then the hyperquotient group $M/A = \{m+A \mid m \in M\}$ endowed with the following external composition $M/A \times R \rightarrow M/A, (m+A, r) \rightarrow mr + A$, is an R-hypernear-module, and M/A is called the quotient R-hypernear-module of M by A.

In what follows, all the hypernear-modules are right hypernear-modules.

Definition 2.8 A fuzzy subset μ of a hypernear-module M over a hypernear-ring R is called a

fuzzy subhypernear-module of M if the following conditions hold:

(i) $min\{\mu(x), \mu(y)\} \le inf_{z \in x+y}\mu(z)$, for all $x, y \in M$;

(*ii*) $\mu(x) \le \mu(-x)$, for all $x \in M$;

(*iii*) $\mu(x) \le \mu(x.r)$, for all $r \in R$ and $x \in M$.

A fuzzy subhypernear-module μ of M is called *normal* if $\mu(y) \le \inf_{z \in x+y-x} \mu(z)$, for all $x, y \in M$.

If μ be a fuzzy subhypernear-module of M, then it is clear that $\mu(-x) = \mu(x)$, $min\{\mu(x), \mu(y)\} \le inf_{z \in x-y}\mu(z)$, for all $x, y \in M$.

Let M be an R-hypernear-module. Then, for a fuzzy subset μ of M, the level subset μ_t and the strong level subset $\mu_t^>$ are defined by

 $\mu_t = \{x \in M \mid \mu(x) \ge t\}, t \in [0,1]$

and

 $\mu_t^{>} = \{x \in M \mid \mu(x) > t\}, t \in [0,1].$

A fuzzy subhypernear-module can be characterized by using its level subsets and strong level subsets. The following proposition is obvious.

Proposition 2.9 Let μ be a fuzzy subset of an *R*-hypernear-module *M*. Then the following statements are equivalent:

- (1) μ is a fuzzy subhypernear-module of M,
- (2) each non-empty strong level subset of μ is a subhypernear-module of M,
- (3) each non-empty level subset of μ is a subhypernear-module of M.

Definition 2.10 A mapping $f: M \to M$ is called a homomorphism if for all $a, b \in M$ and $r \in R$, we have:

f(a+b) = f(a) + f(b), f(a.r) = f(a).r and f(0) = 0

It is clear that a homomorphism f is an isomorphism if f is both injective and surjective and write $M \cong M'$ if M is isomorphic to M'.

3 The isomorphism theorem

In what follows, M is always a hypernear-module over a hypernear-ring R unless state otherwise.

Definition 3.1 Let μ be a normal fuzzy subhypernear-module of *M*. Define the following relation on *M*.

 $x \equiv y(mod\mu)$ if and only if there exists $\alpha \in (x-y)$ such that $\mu(\alpha) = \mu(0)$.

now denote the above relation by $x\mu^*y$. Then, for this relation, we have the following lemma.

Lemma 3.2 The relation μ^* is an equivalence relation.

Proof. For all $x, y, z \in M$, we have

(*i*) $0 \in x - x$ implies $x \mu^* x$, i.e., μ^* is reflexive;

(*ii*) if $x\mu^*y$ then there exist $\alpha \in (x-y)$ such that $\mu(\alpha) = \mu(0)$. Since

 $\mu(\alpha) = \mu(-\alpha)$ and $-\alpha \in (y-x)$, $y\mu^*x$. Thus, μ^* is symmetric.

(*iii*) To prove that μ^* is transitive, let $x\mu^*y$ and $y\mu^*z$. Then there exist then there exist $\alpha \in (x-y)$ and $\beta \in (y-z)$ such that $\mu(\alpha) = \mu(\beta) = \mu(0)$. Therefore, $x \in \alpha + y$ and $-z \in y + \beta$. Hence, we have $-z + x \subseteq -y + \beta + \alpha + y$, and so for every $a \in -z + x$, there exists $b \in \beta + \alpha$ such that $a \in -y + b + y$. Since μ is normal, $\mu(b) \le \mu(a)$ and $\mu(0) = \min\{\mu(\alpha), \mu(\beta)\} \le \mu(b)$. These imply that $\mu(b) = \mu(0)$. Consequently, we have $a \in -z + x$ and $\mu(a) = \mu(0)$, and so $(-z)\mu^*(-x)$, that is, $x\mu^*z$. This completes the proof.

Lemma 3.3 *If* $x\mu^* y$, then $\mu(x) = \mu(y)$.

Proof. if $x\mu^* y$ then there exist $\alpha \in x - y$ such that $\mu(\alpha) = \mu(0)$. Since $\alpha \in x - y$ implies $x \in \alpha + y$ and so $\min\{\mu(\alpha), \mu(y)\} \le \mu(x)$, that is, $\mu(y) \le \mu(x)$. Similarly, we have $\mu(x) \le \mu(y)$. Hence $\mu(x) = \mu(y)$.

Let v be an equivalence relation on M. If A, B are non-empty subsets of M, then we write $A \overline{vB}$ to denote that

 $\forall a \in A, \exists b \in B \text{ such that } a vb \text{ and}$ $\forall b \in B, \exists a \in A \text{ such that } a vb.$ An equivalence relation v on M is called regular if for every $x, y \in M$, $xvy \Rightarrow x + z\overline{v}y + z$, for all $z \in M$.

Lemma 3.4 μ^* is a regular relation.

Proof. Suppose that $x\mu^*y$. Then there exists $\alpha \in x-y$ such that $\mu(\alpha') = \mu(0)$. Now, for every $z \in M$ and $a \in x+z$, we have $x \in a-z$ which implies that $x-y \subseteq a-z-y$ or $x-y \subseteq a-(y+z)$. Hence $\alpha \in a-(y+z)$ and so there exists $b \in y+z$ such that $\alpha' \in a-b$. Thus, $a\mu^*b$ and so $(x+z)\overline{\mu}^*(y+z)$.

Let $\mu^*[x]$ be the equivalence class containing the element x. Then we denote M/μ the set of all equivalence classes, i.e., $M/\mu = \{\mu^*[x] | x \in M\}$. Define the following two operations on M/μ :

$$\mu^{*}[x](\mu^{*}[y] = \{\mu^{*}[z] | z \in \mu^{*}[x] + \mu^{*}[y]\};$$

$$\mu^{*}[x]^{*}r = \mu^{*}[x.r].$$

Since μ^* is regular, we can easily deduce the following theorem: **Theorem 3.5** $(M/\mu, (,^*)$ *is a hypernear-module.*

Let $f: M \to M$ be a map and μ, λ be the fuzzy subsets of M, M respectively. Then the image $f(\mu)$ of μ is the fuzzy subset of M defined by

 $f(\mu)(y) = \{ll \sup_x f^{-1}(y) \{(x)\} \ if \ f^{-1}(y) \ 0 \ otherwise..$

for all $y \in M^{'}$. The inverse image $f^{-1}(\lambda)$ of λ is the fuzzy subset of M defined by

 $f^{-1}(\lambda)(x) = \lambda(f(x))$ for all $x \in M$. The following two lemmas can be easily proved and hence, we omit the details.

Lemma 3.6 Let $f: M \to M'$ be a homomorphism of hypernear-modules and μ a (normal) fuzzy subhypernear-module of M. Then $f(\mu)$ is a (normal) fuzzy subhypernear-module of M'

Lemma 3.7 Let $f: M \to M'$ be a homomorphism of hypernear-modules and μ, λ a normal fuzzy subhypernear-module of M, M', respectively. Then, the following statements hold:

(*i*) If f is an epimorphism, then $f(f^{-1}(\lambda)) = \lambda$;

(*ii*) If μ is a constant on Ker f, then $f^{-1}(f(\mu)) = \mu$.

Let μ be a normal subhypernear-module of M. We now denote $M_{\mu} = \{x \in M \mid \mu(x) = \mu(0)\}$. Clearly, M_{μ} is a normal subhypernear-module of M. We now use the normal subhypernear-module of M to establish the isomorphism theorems.

Theorem 3.8 (First fuzzy isomorphism theorem) Let $f: M \to M'$ be an epimorphism of hypernear-modules and μ a normal fuzzy subhypernear-module of M with $M_{\mu} \supseteq Kerf$. Then $M/\mu \cong M'/f(\mu)$.

Proof. First note that M/μ and $M'/f(\mu)$ are hypernear-modules. Now, Define $\varphi: M/\mu \to M'/f(\mu)$ by $\varphi(\mu^*[x] = f(\mu)^{a}[f(x)])$, for all $x \in M$. Then φ is clearly well-defined. In fact, if $\mu^*[x] = \mu^*[y]$, then $\mu(x) = \mu(y)$ by Lemma 3.3. Since $M_\mu \supseteq Kerf$, μ is a constant on *Kerf*. By Lemma 3.7(*ii*), we have $f^{-1}(f(\mu)) = \mu$. Thus, $f^{-1}(f(\mu))(x) = f^{-1}(f(\mu))(y)$. It follows from above the definition that $f(\mu)(f(x)) = f(\mu)(f(y))$. Hence we $f(\mu)^{a}[f(x)] = f(\mu)^{a}[f(y)]$. Moreover, we have

(i) $\begin{aligned} \varphi(\mu^*[x](\mu^*[y]) &= \varphi(\{\mu^*[z] \mid z \in \mu^*[x] + \mu^*[y]\}) = \{f(\mu)^*[f(z)] \mid z \in \mu^*[x] + \mu^*[y]\} \\ &= f(\mu)^*(f(\mu^*[f(x)])) + f(\mu)^*(f(\mu^*[f(y)])) = \varphi(\mu^*[x])(\varphi(\mu^*[y]); \end{aligned}$

(*ii*) $\varphi(\mu^*[x]^*r) = \varphi(\mu^*[x.r]) = f(\mu)^*(f(x.r)) = f(\mu)^*(f(x).r) = f(\mu)^*([f(x)])^*r = \varphi(\mu^*[x]^*r.$ (*iii*) $\varphi(\mu^*[0]) = f(\mu)^{a}[f(0)] = f(\mu)^{a}[0] = 0.$

Hence, we have shown that φ is a homomorphism. Clearly φ is an epimorphism. To show that φ is a monomorphism, Let $f(\mu)^{a}[f(x)] = f(\mu)^{a}[f(y)]$. Then $f(\mu)(f(x)) = f(\mu)(f(y))$, that is $f^{-1}(f(\mu))(x) = f^{-1}(f(\mu))(y)$, Hence $\mu(x) = \mu(y)$, and so $\mu^{*}[x] = \mu^{*}[y]$, therefore, $M/\mu \cong M'/f(\mu)$.

Lemma 3.9 Let $f: M \to M'$ be an epimorphism of hypernear-modules. If λ be a (normal) fuzzy subhypernear-module of M', then $f^{-1}(\lambda)$ is a (normal) fuzzy subhypernear-module of M.

Corollary 3.10 Let $f: M \to M'$ be an epimorphism of hypernear-modules. If λ be a normal fuzzy subhypernear-module of M', then $M/f^{-1}(\lambda) \cong M'/\lambda$

Proof. First we observe that $M/f^{-1}(\lambda)$ and M'/λ are hypernear-modules by Lemma 3.9. In order to prove that $M_{f^{-1}(\lambda)} \supseteq kerf$, we consider $x \in Kerf$. Then we have f(x) = f(0), and hence $\lambda(f(x)) = \lambda(f(0))$, i.e., $f^{-1}(\lambda)(x) = f^{-1}(\lambda)(0)$, This leads to $x \in M_{f^{-1}(\lambda)}$, and so $M_{f^{-1}(\lambda)} \supseteq kerf$. By Theorem 3.8, we have $M/f^{-1}(\lambda) \cong M'/\lambda$.

Now, we proceed to establish the Second and Third Fuzzy Isomorphism Theorems. The following two lemmas are obvious.

Lemma 3.11 Let A be a normal subhypernear-module of M and μ a normal fuzzy subhypernear-module of M. Then the following statements hold:

(i) If μ is restricted to A, then μ is a normal fuzzy subhypernear-module of A;

(*ii*) A/μ is a normal subhypernear-module of M/μ .

Lemma 3.12 If μ and λ are any two normal fuzzy subhypernear-modules of *M*, then so is $\mu \cap \lambda$.

We now prove our second fuzzy isomorphism theorem:

Theorem 3.13 (Second fuzzy isomorphism theorem) If μ and λ are any two normal fuzzy subhypernear-modules of M with $\mu(0) = \lambda(0)$, then,

$$M_{\mu}/(\mu \cap \lambda) \cong (M_{\mu} + M_{\lambda})/\lambda.$$

Proof. By Lemmas 3.11 and 3.12, λ and $\mu \cap \lambda$ are two normal fuzzy subhypernear-modules of $M_{\mu} + M_{\lambda}$ and M_{μ} , respectively. Now, it is clear that $(M_{\mu} + M_{\lambda})/\lambda$ and $M_{\mu}/(\mu \cap \lambda)$ are both hypernear-modules. Define $\psi: M_{\mu} \to (M_{\mu} + M_{\lambda})/\lambda$ by $\psi(x) = \lambda^{a}[x]$, for all $x \in M_{\mu}$. Then, it is easy to check that ψ is an epimorphism. To show that $Ker \psi = M_{\mu \cap \lambda}$. we consider the following equalities:

$$\begin{split} & Ker \, \psi = \{ x \in M_{\mu} \mid \psi(x) = \lambda^{\hat{a}}[0] \} = \{ x \in M_{\mu} \mid \lambda^{\hat{a}}[x] = \lambda^{\hat{a}}[0] \} = \\ & \{ x \in M_{\mu} \mid \lambda(x) = \lambda(0) \} = \{ x \in M_{\mu} \mid \mu(x) = \mu(0) = \lambda(0) = \lambda(x) \} \\ & = \{ x \in M_{\mu} \mid x \in M_{\lambda} \} = M_{\mu \cap \lambda} \\ & \text{Therefore, } M_{\mu} / (\mu \cap \lambda) \cong (M_{\mu} + M_{\lambda}) / \lambda \,. \end{split}$$

Theorem 3.14 (Third fuzzy isomorphism theorem) Let μ and λ are any two normal fuzzy subhypernear-modules of M with $\mu \ge \lambda$ and $\mu(0) = \lambda(0)$. then,

$(M/\lambda)/(M_{\mu}/\lambda) \cong M/\mu.$

Proof. By Lemma 3.11(*ii*), it is known that M_{μ}/λ is a normal subhypernear-module of M/λ . Define $f: M/\lambda \to M/\mu$ by $f(\lambda^{\hat{a}}[x]) = \mu^{\hat{a}}[x]$, for all $x \in M$. If $\lambda^{\hat{a}}[x] = \lambda^{\hat{a}}[y]$, for all $x, y \in M$, then there exists $\alpha \in x - y$ such that $\lambda(\alpha) = \lambda(0)$. Since $\mu \ge \lambda$ and $\mu(0) = \lambda(0)$, we have $\mu(\alpha) \ge \lambda(\alpha) = \lambda(0) = \mu(0)$. This implies that $\mu(\alpha) = \mu(0)$, and so $\mu^{a}[x] = \mu^{a}[y]$. Hence, f is well-defined. Moreover, we have

(i)
$$f(\lambda^{\hat{a}}[x](\lambda^{\hat{a}}[y])$$

= $f(\{\lambda^{\hat{a}}[z] | z \in \lambda^{\hat{a}}[x] + \lambda^{\hat{a}}[y]\})$
= $\{\mu^{\hat{a}}[z] | z \in \lambda^{\hat{a}}[x] + \lambda^{\hat{a}}[y]\}$
= $\mu^{\hat{a}}[\lambda^{\hat{a}}[x]](\mu^{\hat{a}}[\lambda^{\hat{a}}[y]])$
= $\mu^{\hat{a}}[x](\mu^{\hat{a}}[y])$
= $f(\lambda^{\hat{a}}[x])(f(\lambda^{\hat{a}}[y]))$
(ii) $f(\lambda^{\hat{a}}[x]^*r) = f(\lambda^{\hat{a}}[x.r]) = \mu^{\hat{a}}[x.r] = \mu^{\hat{a}}[x]^*r = f(\lambda^{\hat{a}}[x])^*r,$
(iii) $f(\lambda^{\hat{a}}[0]) = \mu^{\hat{a}}[0] = 0.$

Hence, f is a homomorphism. Clearly, f is an epimorphism. Now we show that $Kerf = M_{\mu}/\lambda$. In fact

$$\begin{aligned} &kerf = \{\lambda^{\hat{a}}[x] \in M/\lambda \mid f(\lambda^{\hat{a}}[x]) = \mu^{\hat{a}}[0]\} \\ &= \{\lambda^{\hat{a}}[x] \in M/\lambda \mid \mu^{\hat{a}}[x] = \mu^{\hat{a}}[0]\} \\ &= \{\lambda^{\hat{a}}[x] \in M/\lambda \mid \mu[x] = \mu[0]\} \\ &= \{\lambda^{\hat{a}}[x] \in M/\lambda \mid x \in M_{\mu}\} \\ &= M_{\mu}/\lambda. \end{aligned}$$

Therefore, $(M/\lambda)/(M_{\mu}/\lambda) \cong M/\mu$.

References

- [1] R. Ameri, On categories of hypergroups and hypermodules. J Discrete Math Sci Cryptogr 6(2-3): 121-132 (2003).
- [2] R. Ameri, E. Hendoukolaii, Fuzzy Hypernear-rings, to appear.
- [3] R. Ameri, E. Hendoukolaii, Fuzzy Hypernear-modules, to appear.
- [4] P. Corsini, Fuzzy sets, join spaces and factor spaces, PU.M.A. 11 (3) 439 446 (2000).
- [5] P. Corsini, V. Leoreanu, Fuzzy sets and join spaces associated with rough sets, Circ. Mat. Palermo 51 527 536 (2002).

[6] P. Corsini, V. Leoreanu, Join spaces associated with fuzzy sets, J. Combin. Inform. System Sci. 20 (1 4) 293 303 (**1995**).

[7] P. Corsini, Prolegomena of Hypergroup Theory, second ed., Aviani Editor, (1993).

[8] P. Corsini, V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathematics, Kluwer Academic Publishers, (2003).

[9] P. Corcini, I. Tofan, On fuzzy hypergroups, P.U.M.A. (8), 29-37 (1997).

[10] V. Dasic, Hypernear-rings, in: Proc. Fourth Int. Congress on AHA, World Scientific, 1991, pp. 75—85 (**1990**).

- [11] B. Davvaz, Fuzzy Hv-groups, Fuzzy Sets Syst. 101, 191 195 (1999).
- [12] B. Davvaz, Fuzzy Hv submodules, Fuzzy Sets Syst. 117, 477 484 (2001).
- [13] V.M. Gontineac, On hypernear-rings and H-hypergroups, in: Proc. Fifth Int. Congress on

AHA, Hadronic Press Inc., USA, (1994), 171-179 (1993).

[14] E. Hendukolaie, On fuzzy homomorphisms between Hypernear-rings, The journal of mathematics and computer science, vol.2, num.4, 702-716 (**2011**).

[15] E. Hendukolaie, A.A. Ghasemi, G. Ghasemi, On fuzzy isomorphisms theorems of Γ -Hypernear-rings, to appear.

[20] V. Leoreanu-Fotea, B. Davvaz, n-Hypergroups and binary relations, European J. Combin. 29, 1207 1218 (**2008**).

[17] V. Leoreanu-Fotea, B. Davvaz, Fuzzy hyperrings, Fuzzy Sets and Systems, doi: 10.1016/j.fss.2008.11.007 (2009).

[18] V. Leoreanu-Fotea, B. Davvaz, Fuzzy hypermodules, Computers and Mathematics with Applications 57, 466 475 (2009).

[19] V. Leoreanu-Fotea, B. Davvaz, Join n-spaces and lattices, Multiple Valued Logic Soft Comput. 15, accepted for publication (2008).

[20] F. Marty, Sur une généralisation de la notion de group, in: 4th Congress Math. Scandinaves, Stockholm, pp. 45 49 (**1934**).

[21] J.N. Mordeson, M.S. Malik, Fuzzy Commutative Algebra, Word Publ., (1998).

[22] W. Prenowitz, J. Jantosciak, Join Geometries, Springer UTM, (1979).

[23] A. Rosenfeld, Fuzzygroups, J. Math. Anal. Appl. 35, 512-517 (1971).

[24] M.K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft Comput., doi: http://10.1007/s00500-007-0257-9 (2007).

[25] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Inc., Palm Harber, p. 115 (**1994**).

[26] T. Vougiouklis, Fundamental relations in hyperstructures, Bull. Greek Math. Soc. 42, 113 118 (**1999**).

[27] Zhan J, Davvaz B, Shum KP A new view of fuzzy hyper-modules. Acta Math Sin Engl Ser 23(4) (2007b).

[28] Jianming Zhan · Bijan Davvaz · K. P. Shum, On fuzzy isomorphism theorems of hypermodules, Soft Comput, 11:1053-1057 DOI 10.1007/s00500-007-0152-4 (**2007**).

[29] M.M. Zahedi, R. Ameri, On the prime, primary and maximal subhypermodules, Ital. J. Pure Appl. Math. 5, 61-80 (**1999**).