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Abstract

This paper is concerned with the problem of designing linear time-invariant control
systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain
a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary
similarity operations we find a state feedback which assigns the eigenvalues in the
interval shown in figure 1.

This new algorithm can also be used for the placement of closed-loop eigenvalues in a
specified interval in z-plane and can be employed for large-scale linear time-invariant
control systems. Some illustrative examples are presented to show the advantages of this
new technique.

Keywords: linear time-invariant systems; State feedback matrix; Localization of
eigenvalues; interval; Large-scale systems

1. Introduction

In many applications, mere stability of the controlled object is not enough, and it is
required that the poles of the closed-loop system should lie in a certain restricted region
of stability. Several design methods have been reported which utilize the LQ technique to
achieve the desired pole allocation Amin [1] derived an improved result in which the
optimality of the closed-loop system is assured. Furuta and Kim [7] obtained a method
for assigning the closed loop poles in a specified disk based on gain and phase margins
which is named -stability margin. They considered the case, when the perturbations are
unknown gains as a diagonal form. Yuan and Achenie and Jiang [14] addressed the
problem of linear quadratic regulator (LQR) synthesis with regional closed-loop pole
constraints. Determining the objective value range for a class of interval convex
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optimization problems is introduced in [9]. Figueroa and Romagnoli [6] presented a
method for designing controllers which attempt to place the roots of a characteristic
polynomial of an uncertain system inside some prescribed regions. The analysis is based
on the transfer function of a characteristic polynomial. Chou [4] described another pole
assignment method with a spectral radius and proposed a pulse transfer function. The
procedure is simple, but it is used only for checking the positions of closed loop poles,
not for designing the controller. Benner and Castillo and Quintana-Orti [3] presented the
method for partial stabilization of large-scale discrete-time linear control systems.
Grammont and Largillier [8] employed an approach to localize matrix eigenvalues in the
sense that they build a sufficiently small neighborhood for each eigenvalue (or for a
cluster). Arjmandzadeh and Effati and Zamirian [2] proposed an interval support vector
regression (ISVR) problem which the training samples are interval values.

A well-known desired region for continuous systems is left side of complex plan. In the
simplest case, the real parts of all closed-loop eigenvalues are required to be into interval
(a,b) where a and b are real numbers and b <a <0. Generally, the more practically

important region the closed-loop poles is the interval shown in figure 1. In this paper, the
aim is to present a method for localization of eigenvalues in specified region of complex
plane by state feedback control for large-scale continuous-time linear dynamic systems.

v

Figure 1. Specified interval
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2. Problem Statement

The problem of localization of eigenvalues in a small specified region has been the
subject of many investigators in the last decade [3, 8].
Consider a controllable linear time-invariant dynamic system defined by the state
equation
x(t)= Ax(t)+ Bu(t) (1)
where x(t)e R", u(t)eR™and the matrices Aand Bare real constant matrices of

dimensions nxn and nxmrespectively, with rank(B) =m. The aim of eigenvalue

assignment in a specified region is to design a state feedback controller, K producing a
closed-loop system with a satisfactory response by shifting controllable poles from
undesirable to desirable locations. Karbassi and Bell [10, 11], have introduced an
algorithm for obtaining an explicit parametric controller matrixK by performing
similarity operations on the controllable pair(B,A). In fact, K is chosen such that the

closed-loop system eigenvalues
= A+BK (2)
lie in the self-conjugate eigenvalue spectrum A = {/11,/12,...,1,1}. Recently, Karbassi and

Tehrani [12] extended the previous results as to obtain an explicit formula involving
nonlinear parameters in the control law. The stabilization problem consists in finding a

feedback matrix K e R™" such that the input u(t) = K x(t) , yields a stable closed loop

system
x(t) = x(0)exp(I't) 3)

In case the spectrum (or set of eigenvalues) of the closed-loop matrix, denoted by A(T"),
is contained in the left side of complex plan we say that I'" is (Schur) stable or
convergent. The stabilization problem arises in control problem such as, the computation
of an initial approximate solution in Newton’s method for solving discrete-time algebraic
Riccati equations, simple synthesis methods to design controllers. Large-scale problems
occur whenever the linear system results from some sort of a partial differential equation
or from delay systems. There, the number of states is often a couple of thousands.

The stabilization problem can in principal be solved as a eigenvalue assignment problem.
eigenvalue assignment methods compute a feedback matrix such that the closed-loop
matrix of system (2) has a prespecified spectrum. In this paper, we present an efficient
approach for localization of eigenvalues in specified region for large-scale linear
continuous-time systems. Our assignment procedure is composed of two stages. We first
obtain a primary state feedback matrix F, which assigns all the eigenvalues of closed-

loop system to zero, then produce a state feedback matrix K which assigns all the closed-
loop eigenvalues in specified interval.
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3. Synthesis

Consider the state transformation
x(t)=T %(t) @)
where T can be obtained by elementary similarity operations as described in [10]. In this

way, A=T *ATand B=T'B are in a compact canonical form known as vector
companion form:

G, By

P2
I
o
I

()

I : 0

n-m

0

Here G,is an mxn matrix and B,is an mxm upper triangular matrix. Note that if the

n—mxm n—mxm

Kronecker invariants of the pair (B, A) are regular, then A and B are always in the above

form [10]. In the case of irregular Kronecker invariants, some rows of | . in A are

displaced [11]. It may also be concluded that if the vector companion form of A obtained
from similarity operations has the above structure, then the Kronecker invariants
associated with the pair (B, A) are regular [10].

The state feedback matrix which assigns all the eigenvalues to zero, for the transformed

pair(§, Z\), is then chosen as

U=-B,'G,X = FX (6)
Which results in the primary state feedback matrix for the pair (B, A) defined as
F,=FT" (7)

The transformed closed-loop matrix fo = A+ BF assumes a compact Jordan form
with zero eigenvalues

0= (8)

n—mxm

D, 0 - 0
0 D, - O

D= . . . . ©)
0 0 - D

where each D, , (j =12,...,k)is either of the form
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o ’
D, { ’ ﬂ'} (10)
-p; «a;
(To designate the complex conjugate eigenvalues o; +i5; )
or in case of real eigenvalues

D, =[d,] (11)

If such block diagonal matrix D with self-conjugate eigenvalue spectrum is added to the
transformed closed-loop matrix,lﬁ:0 then the eigenvalues of the resulting matrix is the
eigenvalues in the spectrum.

Proof: The primary compact Jordan form in the case of regular Kronecker invariants is
in the form

Omxn
T, = (12)
I n-m . On—mxm
The sum of 1:O with D has the form:
H=T,+D (13)
0,n D, 0
= o DR (14)
I n-m : On—mxm 0 Dk
D, 0 0 0 ]
0 D, 0 0
=0 O Db 0 - 0 (15)
I, O 0 D, 0
: 0 0
0 I, 0 O D, |

where I, s=12,.,r is the unit matrix of size 2 in case n—m is even. In case n—m is

odd only one I, takes the form of a unit matrix of size one.
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By expanding det(H — A1) along the first row it is obvious that the eigenvalues of H are
the same as the eigenvalues of D . For the case of irregular Kronecker invariants [11] only
some of the unit columns of | are displaced, since the unit elements are always below

the main diagonal, the proof applies in the same manner.

Corollary
Then H~l can be obtained from H by performing elementary similarity operations
Column(j) —4; Column(i) (16)
followed by
Row (i) +4; Row (j) @an

forj=n,n-1, ..., m, i=j-m.
Hence, the matrix H~l thus obtained will be in primary vector companion form such that:

HO
H, = (18)

n—-m n—mxm

where H, isan mxn matrix .
Because of similarity operation, the eigenvalues of the matrix H , are the same as the
eigenvalues of H and that of D. Now the feedback matrix of the pair (K, B) is defined
by:

K =F +B;*H, = B;* (-G, + H,) (19)

Theorem 2: The state feedback matrix K assigns the eigenvalues of closed-loop matrix

~

['=A+BK inthe interval shown in figure 1 if we suppose «;, f;,d; be in the form:
a; =-b—a*random(0,)) +a (20)
B =k*random(0,}) keZ (21)

and for assigning real valued eigenvalues in the interval shown in Figure 1, we choose

d, =—-|b—a|*random(0,1) + a (22)
Proof: The eigenvalues of matrix D defined above fall in the specified interval.

Let
F_A+BR G &
- + - In—m On—m,m + On

}[Bo‘l(—eo +H) @)

—-m,m
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~ G, - B,B,'G, + B,B,"H H
F:I 0~ Bobo o 000O }:{I 00 }(24)

ClearlyT' = H, since H, is similar to the matrix H and the eigenvalues of matrix H are
the same as that of matrix Dand elementary similarity operations do not change the

eigenvalues, then the eigenvalues of closed-loop matrix I'=A+BK fallinthe specified
interval.

Remark: Since K assigns the eigenvalues of the closed-loop matrix I'=A+BK inthe
specified interval it is obvious that the state feedback controller matrix,

K=KT*=B,"(-G, +H,)T™" also assigns the eigenvalues of the closed-loop matrix

I' = A+ BK in the specified interval too.
Note for assign the eigenvalues of the closed-loop matrix in spectrum A = {ﬂl,ﬂz,...,ﬂn}

we suppose D, =4, j=12..,n (25)

4. An algorithm for assignment of eigenvalues in the interval shown in figure 1

In this section we first give an algorithm for finding a state feedback matrix which
assigns zero eigenvalues to the closed-loop system. Then we determine a gain matrix
which assigns the closed-loop eigenvalues in specified interval.

Input: The controllable pair (A, B), the primary state feedback F,, B,"and T "*which are

calculated by the algorithm proposed by Karbassi and Bell [10,11], the & angle and
distance angle apex of the origin of the complex plane (a).

Step 1. Construct the block diagonal matrix D in the form (9), in which for assigning
complex valued eigenvalues in the interval shown in Figure 1 we choose

a; =—|pb—a*random(01) +a
B; =k*random(0,1) keZ

and for assigning real valued eigenvalues in the interval shown in Figure 1, we choose
d, =—-b—a|*random(0,1) + a

Step 2. Set H = l:0 +D

Step 3. Transform H to primary vector companion form H~A as in (18) using elementary
similarity operations as specified in corollary of theorem 1 .
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step 4. Now compute K=F, + B,"H,T ™ the required state feedback matrix.

5. lllustrative Examples
Consider a large discrete-time system given by

x(t)= Ax(t)+ Bu(t)
Where A and B are randomly generated with n=10 and m=6.

256087 410 8 312671
7601969589 2038 31
6 6 0318240 3 8 2005 44
260282865 4 6 189 44

A_|6 827946614 5 [208760
6 053128971 982119
6 346104121 6 1580 1
177970091295 20117 3
6 3557836517 6 756 5 3
1 95963595 3 6 536 2 1

The open loop eigenvalues are

{2.0345+1.8326i1, —3.3771+£5.3252i,—6.4060+5.69071,0.6634,6.8249,—8.2872,46.2962 }
which are widely spread in the complex plane. In order to locate them in small discs
inside the unit circle, we employ the above algorithm step by step. First, the primary state
feedback matrix which locates all the eigenvalues of the closed-loop system to the origin
of the complex plane is found to be:

[-50.9331 -19.5738 185282 -14.5585 0.2820 -26.0893 -10.8780 -38.9380 17136  2.8572 |
247556  10.4052 -9.1386 7.6143 03770 116431 6.9068 19.2376  0.9310 -1.4368
—-455535 -17.7300 16.3422 -13.8318 -1.3198 -22.1965 -11.6130 -35.6428 -0.6945 2.0236
P| 541703 205013 -19.2125 16.1558 0.3089  26.7532 126628 414999 -0.2578 -2.8454
31621 11667 -25934 -11326 -04128 1.9142 05168  4.5242 -0.9917 -1.1463
| 29122 02399  -1.2857 28436 -1.3767 15498 -21781 -1.0741 -17146 -0.2804 ]

It is desired to locate the closed-loop eigenvalues in the interval with a=-2 and b =-5.
By using the algorithm, the state feedback matrix obtained is:
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[-62.0827 -35.4657 17.4115 4.2389 -30.5613 -53.0298 15823 -28.9658 34.7812 -2.9389]
245794  14.3848 -6.7470 3.6703 95365 174210 3.1291 10.7556 -8.2087 1.2975
—-54.7405 -33.0166 17.3771 23426 -28.8387 -46.8042 0.3634 -27.9290 28.0402 -3.0393

| 625201 344475 -16.8606 -0.4233 29.4655 51.0074 -0.0145 260795 -30.0149 3.2485
45182 17631 -2.9103 -1.3963 0.9873 37016 -05476 29036 -3.5035 -0.3685
| 1.9439 1.0187 0.1789  1.0840  0.8108 1.8077 -2.4683 -2.0352 -1.8540 -0.3903]

It can be verified that the closed-loop eigenvalues are
{-2.5079+4.1980i,—4.2020 +1.64361i,— 3.1994 +3.0331i,— 4.6899 +0.64541,— 2.0486, — 3.9236 },

clearly all are in the specified interval.

6. Conclusion

A simple algorithm was given for localization of eigenvalues in specified regions of
complex plane by state feedback control. This method was achieved by implementing
properties of vector companion forms. The merit of this approach is that it can be
achieved by elementary similarity operations which are significantly simpler to realize
computationally than the existing methods. This method can be used for large-scale
continuous-time linear control systems as well. It is claimed that the transformations
obtained by similarity operations reduce accuracy of the computations [3], however,
other methods such as LQR methods [14] and gerschgorin [13] are more complicated.
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