
 

Journal of mathematics and computer Science        7 (2013) 144 - 153 

 

Stabilization of Dynamic Systems by Localization of Eigenvalues in a 

Specified Interval 

H. Ahsani Tehrani 
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran. 

hahsani@shahroodut.ac.ir 

 
Article history: 

Received    March 2013  

Accepted    Apri 2013  

Available online April 2013 
Abstract 

This paper is concerned with the problem of designing linear time-invariant control 

systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain 

a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary 

similarity operations we find a state feedback which assigns the eigenvalues in the 

interval shown in figure 1. 

This new algorithm can also be used for the placement of closed-loop eigenvalues in a 

specified interval in z-plane and can be employed for large-scale linear time-invariant 

control systems. Some illustrative examples are presented to show the advantages of this 

new technique. 

Keywords: linear time-invariant systems; State feedback matrix; Localization of 

eigenvalues; interval; Large-scale systems 

 

1. Introduction 

In many applications, mere stability of the controlled object is not enough, and it is 

required that the poles of the closed-loop system should lie in a certain restricted region 

of stability. Several design methods have been reported which utilize the LQ technique to 

achieve the desired pole allocation Amin [1] derived an improved result in which the 

optimality of the closed-loop system is assured. Furuta and Kim [7] obtained a method 

for assigning the closed loop poles in a specified disk based on gain and phase margins 

which is named -stability margin. They considered the case, when the perturbations are 

unknown gains as a diagonal form. Yuan and Achenie and Jiang [14] addressed the 

problem of linear quadratic regulator (LQR) synthesis with regional closed-loop pole 

constraints. Determining the objective value range for a class of interval convex 
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b a 

optimization problems is introduced in [9]. Figueroa and Romagnoli [6] presented a 

method for designing controllers which attempt to place the roots of a characteristic 

polynomial of an uncertain system inside some prescribed regions. The analysis is based 

on the transfer function of a characteristic polynomial. Chou [4] described another pole 

assignment method with a spectral radius and proposed a pulse transfer function. The 

procedure is simple, but it is used only for checking the positions of closed loop poles, 

not for designing the controller. Benner and Castillo and Quintana-Orti [3] presented the 

method for partial stabilization of large-scale discrete-time linear control systems. 

Grammont and Largillier [8] employed an approach to localize matrix eigenvalues in the 

sense that they build a sufficiently small neighborhood for each eigenvalue (or for a 

cluster). Arjmandzadeh and Effati and Zamirian [2] proposed an interval support vector 

regression (ISVR) problem which the training samples are interval values. 

 A well-known desired region for continuous systems is left side of complex plan. In the 

simplest case, the real parts of all closed-loop eigenvalues are required to be into interval 

),( ba  where a  and b  are real numbers and 0 ab . Generally, the more practically 

important region the closed-loop poles is the interval shown in figure 1. In this paper, the 

aim is to present a method for localization of eigenvalues in specified region of complex 

plane by state feedback control for large-scale continuous-time linear dynamic systems.  

                                                                                                         

 

 

 

 

 

 

                                                         

                                                                

  

  

 

 

  

 

                                                                                            

 

 

 

 

                                                                

 

Figure 1.  Specified interval 
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2. Problem Statement 

The problem of localization of eigenvalues in a small specified region has been the 

subject of many investigators in the last decade [3, 8]. 

Consider a controllable linear time-invariant dynamic system defined by the state 

equation    

                                                       tButAxtx                                         (1) 

where   ntx  ,   mtu  and the matrices A and B are real constant matrices of 

dimensions nn  and mn respectively, with mBrank )( . The aim of eigenvalue 

assignment in a specified region is to design a state feedback controller, K  producing a 

closed-loop system with a satisfactory response by shifting controllable poles from 

undesirable to desirable locations. Karbassi and Bell [10, 11], have introduced an 

algorithm for obtaining an explicit parametric controller matrix K   by performing 

similarity operations on the controllable pair  AB, . In fact, K  is chosen such that the 

closed-loop system eigenvalues 

                                                      BKA                                               (2) 

lie in the self-conjugate eigenvalue spectrum  n ,,, 21  . Recently, Karbassi and  

Tehrani [12] extended the previous results as to obtain an explicit formula involving 

nonlinear parameters in the control law. The stabilization problem consists in finding a 

feedback matrix nmK   such that the input )()( txKtu   , yields a stable closed loop 

system  

                                                 )exp()0()( txtx                                                   (3) 

In case the spectrum (or set of eigenvalues) of the closed-loop matrix, denoted by )( , 

is contained in the left side of complex plan we say that   is (Schur) stable or 

convergent. The stabilization problem arises in control problem such as, the computation 

of an initial approximate solution in Newton’s method for solving discrete-time algebraic 

Riccati equations, simple synthesis methods to design controllers. Large-scale problems 

occur whenever the linear system results from some sort of a partial differential equation 

or from delay systems. There, the number of states is often a couple of thousands. 

The stabilization problem can in principal be solved as a eigenvalue assignment problem. 

eigenvalue assignment methods compute a feedback matrix such that the closed-loop 

matrix of system (2) has a prespecified spectrum. In this paper, we present an efficient 

approach for localization of eigenvalues in specified region for large-scale linear 

continuous-time systems. Our assignment procedure is composed of two stages. We first 

obtain a primary state feedback matrix pF  which assigns all the eigenvalues of closed-

loop system to zero, then produce a state feedback matrix K  which assigns all the closed-

loop eigenvalues in specified interval.   
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3. Synthesis 

Consider the state transformation 

                                                   txTtx ~                                                      (4) 

where T can be obtained by elementary similarity operations as described in [10]. In this 

way, ATTA 1~  and  BTB 1~   are in a compact canonical form known as vector 

companion form: 

                       



















 mmnmnI

G

A

0

_____________
~

0



              



















 mmn

B

B

0

_______
~

0

                        (5) 

Here 0G is an nm  matrix and 0B is an mm  upper triangular matrix. Note that if the 

Kronecker invariants of the pair  AB,  are regular, then A
~

 and B
~

are always in the above 

form [10]. In the case of irregular Kronecker invariants, some rows of mnI   in A
~

 are 

displaced [11]. It may also be concluded that if the vector companion form of A
~

 obtained 

from similarity operations has the above structure, then the Kronecker invariants 

associated with the pair  AB,  are regular [10].  

The state feedback matrix which assigns all the eigenvalues to zero, for the transformed 

pair  AB
~

,
~

, is then chosen as  

                                           xFxGBu ~~~
0

1

0 


                                        (6) 

Which results in the primary state feedback matrix for the pair  AB,  defined as  

                                                        1~  TFFp                                                   (7)                                                    

The transformed closed-loop matrix FBA
~~~~

0  assumes a compact Jordan form 

with zero eigenvalues  

                                                   























mmnmn

nm

I 0

_____________

0
~

0



                                           (8)                                          

 

 

Theorem 1: Let D  be a block diagonal matrix in the form  

                                                 





















kD

D

D

D









00

00

00

2

1

                                         (9) 

where each jD , ),...,2,1( kj  is either of the form  
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                                                











jj

jj

jD



                                               (10) 

(To designate the complex conjugate eigenvalues jj i   ) 

or in case of real eigenvalues 

 

                                                               ][ jj dD                                                     (11) 

 

If such block diagonal matrix D  with self-conjugate eigenvalue spectrum is added to the 

transformed closed-loop matrix, 0

~
  then the eigenvalues of the resulting matrix is the 

eigenvalues in the spectrum. 

  

Proof: The primary compact Jordan form in the case of regular Kronecker invariants is 

in the form  

                                                   




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


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0
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                                        (12) 

 

The sum of 0

~
  with D  has the form: 

 

                                                             DH  0

~~
                                                 (13) 
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                            (15)  

                          

where rsI s ,...,2,1,   is the unit matrix of size 2 in case mn   is even. In case mn   is 

odd only one sI  takes the form of a unit matrix of size one.  
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By expanding )
~

det( IH  along the first row it is obvious that the eigenvalues of H
~

 are 

the same as the eigenvalues of D . For the case of irregular Kronecker invariants [11] only 

some of the unit columns of mnI   are displaced, since the unit elements are always below 

the main diagonal, the proof applies in the same manner. 

 

Corollary 

Then H
~

 can be obtained from H
~

 by performing elementary similarity operations  

                                            )()( iColumnjColumn j                                     (16) 

followed by  

                                                 )()( jRowiRow j                                           (17) 

for j= n, n-1, …, m , i=j-m.  

Hence, the matrix H
~

thus obtained will be in primary vector companion form such that:  

 

                                         



















 mmnmnI

H

H

0

_____________
~

0


                                           (18) 

where 0H  is an nm  matrix . 

Because of similarity operation, the eigenvalues of the matrix H
~

 are the same as the 

eigenvalues of H
~

and that of D . Now the feedback matrix of the pair )
~

,
~

( BA  is defined 

by: 

                                )(
~~

00

1

00

1

0 HGBHBFK                      (19) 

Theorem 2: The state feedback matrix K
~

 assigns the eigenvalues of closed-loop matrix 

KBA
~~~~

   in the interval shown in figure 1 if we suppose jjj d,,  be in the form: 

                                          arandomabj  )1,0(*                                (20) 

                                          krandomkj )1,0(*                           (21)                                       

and for assigning real valued eigenvalues in the interval shown in Figure 1, we choose 

 

                                        arandomabd j  )1,0(*                                 (22) 

 

Proof: The eigenvalues of matrix D  defined above fall in the specified interval.  

Let 

            )(
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~~~~
00

1

0

,

0

,

0
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Clearly H
~~

 , since H
~

is similar to the matrix H
~

and the eigenvalues of matrix H
~

are 

the same as that of matrix D and elementary similarity operations do not change the 

eigenvalues,  then the eigenvalues of closed-loop matrix KBA
~~~~

   fall in the specified 

interval. 

Remark: Since K
~

 assigns the eigenvalues of the closed-loop matrix KBA
~~~~

   in the 

specified interval it is obvious that the state feedback controller matrix, 

1

00

1

0

1 )(
~   THGBTKK  also assigns the eigenvalues of the closed-loop matrix 

BKA   in the specified interval too.  

Note for assign the eigenvalues of the closed-loop matrix in spectrum  n ,,, 21   

we suppose                                  njD jj ,,2,1                                              (25) 

 

4. An algorithm for assignment of eigenvalues in the interval shown in figure 1 

In this section we first give an algorithm for finding a state feedback matrix which 

assigns zero eigenvalues to the closed-loop system. Then we determine a gain matrix 

which assigns the closed-loop eigenvalues in specified interval. 

Input: The controllable pair ),( BA , the primary state feedback pF , 1

0

B and 1T which are 

calculated by the algorithm proposed by Karbassi and Bell [10,11], the   angle and 

distance angle apex of  the origin of the complex plane )(a . 

Step 1. Construct the block diagonal matrix D  in the form (9), in which for assigning          

complex valued eigenvalues in the interval shown in Figure 1 we choose                                            

arandomabj  )1,0(*  

      krandomkj )1,0(*                

 

and for assigning real valued eigenvalues in the interval shown in Figure 1, we choose 

 

arandomabd j  )1,0(*  

 

Step 2.  Set                 DH  0

~~
                            

 

Step 3. Transform H
~

to primary vector companion form H
~

as in (18) using elementary  

             similarity operations as specified in corollary of theorem 1 . 
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step 4. Now compute  
1

0

1

0

 THBFK p  the required state feedback matrix. 

                                                                          

5. Illustrative Examples 

     Consider a large discrete-time system given by  

     tButAxtx   

Where A  and B  are randomly generated with 10n  and 6m .  
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356576

371102

108516

911289

067802

449816
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B  

 

The open loop eigenvalues are 

}2962.46,2872.8,8249.6,6634.0,6907.54060.6,3252.53771.3,8326.10345.2{  iii

 which are widely spread in the complex plane. In order to locate them in small discs 

inside the unit circle, we employ the above algorithm step by step. First, the primary state 

feedback matrix which locates all the eigenvalues of the closed-loop system to the origin 

of the complex plane is found to be: 

 









































2804.07146.10741.11781.25498.13767.18436.22857.12399.09122.2

1463.19917.05242.45168.09142.14128.01326.15934.21667.11621.3

8454.22578.04999.416628.127532.263089.01558.162125.195013.201703.54

0236.26945.06428.356130.111965.223198.18318.133422.167300.175535.45

4368.19310.02376.199068.66431.113770.06143.71386.94052.107556.24

8572.27136.19380.388780.100893.262820.05585.145282.185738.199331.50

pF
 

 

It is desired to locate the closed-loop eigenvalues in the interval with 2a  and 5b . 

By using the algorithm, the state feedback matrix obtained is: 

 

151



153 -144  )3(2017 J. Math. Computer Sci.   /H. Ahsani Tehrani 

 

 


















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








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







3903.08540.10352.24683.28077.18108.00840.11789.00187.19439.1

3685.05035.39036.25476.07016.39873.03963.19103.27631.15182.4

2485.30149.300795.260145.00074.514655.294233.08606.164475.345201.62

0393.30402.289290.273634.08042.468387.283426.23771.170166.337405.54

2975.12087.87556.101291.34210.175365.96703.37470.63848.145794.24

9389.27812.349658.285823.10298.535613.302389.44115.174657.350827.62

K

 

It can be verified that the closed-loop eigenvalues are 

,}9236.3,0486.2,6454.06899.4,0331.31994.3,6436.12020.4,1980.45079.2{  iiii   

clearly all  are in the specified interval. 

 

6. Conclusion 

A simple algorithm was given for localization of eigenvalues in specified regions of 

complex plane by state feedback control. This method was achieved by implementing 

properties of vector companion forms. The merit of this approach is that it can be 

achieved by elementary similarity operations which are significantly simpler to realize 

computationally than the existing methods. This method can be used for large-scale 

continuous-time linear control systems as well.  It is claimed that the transformations 

obtained by similarity operations reduce accuracy of the computations [3], however, 

other methods such as LQR methods [14] and gerschgorin [13] are more complicated.  
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