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Abstract 

 
Fixed point theorems in a fuzzy metric space are proved by considering a contractive condition  

for a triplet of mappings and this is the totally a new approach for obtaining the fixed point . 
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1. Introduction 
 
The notion of fuzzy set was introduced by Zadeh [9]. It was developed extensively by many authors 
and used in various fields. In this paper we deal with the fuzzy metric space defined by Kramosil and 
Michalek [6] and modified by George and Veeramani [3].The most interesting references in this 
direction are Chang [1], Cho [2], Grabiec [4], and Kaleva [5]. In the present paper, first we prove a 
common fixed point theorem. Then we study the relationship between the convergence of three 
sequences of mappings and the convergence of their common fixed points. 
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2. Preliminaries  
 

Definition 2.1[8]. A binary operation ∗  : [0,1]  × [0,1] → [0,1]  is called a continuous t-norm if 
([0,1], ∗) is an abelian topological monoid with the unit 1 such that a∗b ≤ c∗d and whenever a ≤ c 
and b ≤ d for all a,b,c,d ∈ [0, 1].   
 
Definition 2.2[6]. The 3-tuple ( X, M, ∗ )  is called a fuzzy metric space (shortly, FM-space) if X is 
an arbitrary set, ∗ a continuous t-norm and M is a fuzzy set in X × X × [0,∞) satisfying the following 
conditions: 

for all x, y, z  ∈ X and s, t > 0. 
(FM-1)   M( x, y, 0) = 0, 
(FM-2)   M( x, y, t ) = 1 for all t > 0 if and only if x = y, 
(FM-3)   M( x, y, t ) = M( y, x, t ) 
(FM-4)  M( x, y, t ) ∗ M( y, z, s ) ≤  M( x, z, t + s ), 
(FM-5)        M( x, y, . ) : [0, ∞] → [0,1] is left continuous, 

Note that M( x, y, t ) can be considered as the degree of nearness between x and y with respect to t. 
We identify x = y with M( x, y, t ) = 1 for all t > 0. The following example shows that every metric 
space induces a fuzzy metric space. 
 
Example 2.3.[3]. Let (X, d) be a metric space. Define a  ∗ b = min{a,b} and M(x,y,t) = 𝑡𝑡

𝑡𝑡  +𝑑𝑑(𝑥𝑥 ,𝑦𝑦)
  for 

all x, y ∈ X and all t > 0. Then ( X, M, ∗ ) is a  Fuzzy metric space. It is called the Fuzzy metric space 
induced by d. 
 
Lemma 2.4.[4]. For all x, y ∈ X, M( x, y, . ) is a non decreasing function. 
 
Definition 2.5[4]. A sequence {xn} in a fuzzy metric space ( X, M, ∗ )  is said to be a Cauchy 
sequence if and only if for each ε > 0, t > 0 , there exists n0 ∈ N, such that M(xn, xm, t) > 1 − ε , for all 
n, m ≥ n0. The sequence {xn} is said to converge to a point x in X if and only if for each,  ε > 0, t > 0,  
n0 ≥ N such that M(xn, x, t) > 1− ε for all  n ≥ n0. 
 

A fuzzy metric space ( X, M, ∗ )  is said to be complete if every Cauchy sequence in it converges 
to a point in it. 
 
Remark 2.6. Since ∗ is continuous, it follows from (FM-4) that the limit of the sequence in FM-
space is uniquely determined. Let ( X, M, ∗ )  be a fuzzy metric space with the following conditions 
(FM-6)     lim

𝑡𝑡→∞
M(x, y, t) = 1 for all x, y ∈ X. 

 
Lemma 2.7[2]. Let {xn} be a sequence in a fuzzy metric space ( X, M, ∗ ) with t t∗  ˃ t for all 
 t ∈ [0,1] and condition (FM-6). If there exists a number k ∈ (0,1) such that  

M(xn+2, xn+1, qt) ≥ M(xn+1 ,xn, t) 
 

 for all t ˃ 0 and n = 1, 2, . . . then{xn} is a Cauchy sequence in X   
 
Lemma 2.8[7]. If for all x, y ∈ X, t > 0 with positive number k ∈ (0,1) and                                    

M(x, y, kt) ≥ M(x, y, t),  
then x = y. 
 

 
3. Main results       
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Theorem 3.1. Let (X, M, ∗) be a complete fuzzy metric space. Suppose that P, Q and T are mappings 
from X to itself such that 
(a) PT = TP, QT = TQ, 
(b) P(X) ∪Q(X) ⊆ T(X), 
(c) T is continuous, and  
(d) The triplet (P, Q, T) is a quasi-contraction, i.e., 
            M(Px, Qy, kt) ≥ min{M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t),  
                                                M(Tx, Qy, t)}.                                                                           (1) 
with k ∈ (0,1), then P, Q and T have a unique common fixed point. 
 
Proof. Let x0 ∈ X be any arbitrary point in X. we define sequence {yn} and {xn} 
such that  
             y2n = Tx2n = Qx2n-1 and y2n+1= Tx2n+1 = Px2n,    n = 1, 2, . . . This is always possible because of 
the condition (b).  
Now taking x = x2n  and y = x2n+1 in (1) we have 
 
M(y2n+1, y2n+2, kt) = M(Px2n,Qx2n+1, kt) 
                              ≥ min{M(Tx2n, Tx2n+1, t), M(Px2n, Tx2n, t), (Tx2n+1,Qx2n+1, t),                 
                                        M(Tx2n+1, Px2n, t), M(Tx2n,Qx2n+1, t)}. 
                              = min{M(y2n, y2n+1, t), M(y2n+1, y2n, t), M(y2n+1, y2n+2, t), M(y2n+1, y2n+1, t),                         
                                          M(y2n, y2n+2, t)}. 
 which implies 

M(y2n+1, y2n+2, kt) ≥ M(y2n, y2n+1, t) 
In general  

                                        M(yn, yn+1, kt) ≥ M(yn-1, yn, t).                                 (2)                       
To prove that {yn} is a Cauchy sequence we prove by the method of induction that for all n ≥ n0, and 
for every m ∈ N, 
                                                     M(yn, yn+m, t) ˃ 1 – λ.                                                         (3)         
From (2) we have                                                                                                      
M(yn, yn+1, t) ≥ M(yn-1, yn, 

𝑡𝑡
𝑘𝑘

 ) ≥ M(yn-2, yn-1, 
𝑡𝑡
𝑘𝑘2 ) ≥ - - -  ≥ M(y0, y1, 

𝑡𝑡
𝑘𝑘𝑛𝑛

 ) → 1 as n → ∞. 

For t ˃ 0, λ ∈ (0,1), there exists n0 ∈ N, such that 
 M(yn, yn+1, t) ˃ 1 – λ.   (4) 
Thus (3) is true for m = 1. Suppose (3) is true for all m then we will show that it is also true for m+1. 
 Using the definition of fuzzy metric space, (2) and (3), we have  

M(yn, yn+m+1, t) ≥ min{ M(yn, yn+ m, 𝑡𝑡
2
 ), M(yn+ m, yn+ m+1, 

𝑡𝑡
2
 ) } ˃ 1 – λ. 

Hence (3) is true for m+1. 
Thus {yn} is a Cauchy sequence. By completeness of (X, M, ∗), {yn} convergence to some point z in 
X.  
Therefore {Tx2n},{Px2n}and { Qx2n-1 }also converge to z. 
By continuity of  T and the fact that PT = TP, it follows that  

TTx2n → Tz and PTx2n = TPx2n → Tz. 
Taking x = Tx2n  and y = z in (1) we have  

M(PTx2n, Qz, kt) ≥ min{M(TTx2n,Tz, t), M(PTx2n,TTx2n, t), M(Tz, Qz, t), M(Tz, PTx2n, t), 
                                       M(TTx2n,Qz,t)}. 
Taking limit n → ∞ we have 

M(Tz, Qz, kt)  = min{1, 1, M(Tz, Qz, t), 1, M(Tz, Qz, t)} 
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                                                           = M(Tz, Qz, t) 
Therefore,  

M(Tz, Qz, kt)  ≥ M(Tz, Qz, t), 
which give Tz = Qz. Similarly Tz = Pz. 
Again taking x = x2n  and y = z in (1) we can show that 

z = Qz = Tz = Pz. 
 

Uniqueness:  
Let w be another common fixed point of  P, Q and T. Then we have  
M(Pz, Qw, kt) ≥ min{M(Tz, Tw, t), M(Pz,Tz, t), M(Tw, Qw, t), M(Tw, Pz, t), M(Tz, Qw, t)}. 

or                                                     M(z, w, kt) ≥ M(z, w, t). 
Thus  z = w and hence z is a unique common fixed point of  P, Q and T. 
Next, we have the convergence theorem. 
 
Theorem 3.2. Let (X, M, ∗) be a complete fuzzy metric space. Let {Pn}, {Qn} and {Tn} be sequences 
of  mappings from X to itself such that the triplet { Pn, Qn, Tn} is a quasi- contraction. If P, Q and T: 
X→X are point wise limit of  Pn, Qn, and Tn respectively, and if  kn→k then (P, Q, T) is a quasi-
contraction. Furthermore, the sequence of the unique common fixed point un  of  Pn, Qn, and Tn, 
converges to the unique common fixed point u of  P, Q and T.   
 
Proof : For any x, y ∈ X, we have , for x ≠ y,  
M(Px, Qy, kt) ≥ M(Px, Pnx, t) ∗ M(Pnx, Qny, t) ∗ M(Qny, Qy, t) 
                   ≥ min {M(Tnx, Tny, t), M(Pnx, Tnx, t), M(Tny, Qny, t), M(Tny, Pnx, t),  
                                                M(Tnx, Qny, t)} ∗ M(Pnx, Px, t) ∗ M(Qny, Qy, t)}  
Since Pnx → Px,  Qny → Qy,  Tnx → Tx  
and  Tny → Ty for  x ≠ y, as n → ∞, and also kn→ k < 1,  
we have,  
M(Px, Qy, kt) ≥ min {M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t),  
                                                M(Tx, Qy, t)} ∗ M(Px, Px, t) ∗ M(Qy, Qy, t)}  
                       = min {M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t),  
                                  M(Tx, Qy, t)} ∗  1∗ 1.   
                       = min {M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t),  
                                  M(Tx, Qy, t)} 
Hence we get (P, Q, T) is a quasi-contraction, and P, Q and T have the unique common fixed point u 
since X is complete. 
        Now suppose that un be the common fixed point of  Pn, Qn, and Tn  for each n. Then we have 
     M(un, u, kt) ≥  M(un, Qnu, t) ∗ M(Qnu, u, t)  
                       =  M(Pnun, Qnu, t) ∗ M(Qnu, u, t) 
                       ≥  min {M(Tnun, Tnu, t), M(Pnun, Tnun, t), M(Tnu, Qnu, t), M(Tnu, Pnun, t),  
                                   M(Tnun, Qnu, t)} ∗ M(Qnu, u, t) 
                       ≥  min {M(un, Tnu, t), 1, M(Tnu, Qnu, t), M(Tnu, un, t), M(un, Qnu, t)}                                     
                                 ∗ M(Qnu, u, t)  
                  =  min {M(un, Tnu, t), M(Tnu, Qnu, t), M(Tnu, un, t), M(un, Qnu, t)}                                     
                                 ∗ M(Qnu, u, t) 
Now if  M(Tnu, Qnu, t) is minimum then 

M(un, u, kt) ≥  M(Tnu, Qnu, t)  ∗ M(Qnu, u, t) 
           = M(Tnu, u, t)  ∗ M(u, u, t) 

Since Tn → T and  Qn → Q, point wise it follows that, as  n → ∞, 
M(un, u, t)  → 1, and therefore un → u. 
Now if  M(un, Tnu, t) is minimum, then 



V. Singh Chouhan,   A. Ganguly/ J. Math. Computer Sci.   8 (2014), 93-97  

97 
 

M(un, u, kt) ≥  M(un, Tnu, t)  ∗ M(Qnu, u, t) 
so that, as  n → ∞, again we can get un → u. 
Similarly, for the last term in the bracket, we can prove that un → u. 
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