

Convergence of Common Fixed Point Theorems in Fuzzy Metric Spaces

Virendra Singh Chouhan Department of Mathematics Lovely Professional University, Jalandhar (Punjab), India Email-darbarvsingh@yahoo.com

Article history: Received May 2013 Accepted June 2013 Available online June 2013 A. Ganguly Dept. of applied Mathematics & Computational Science, S. G. S. I.T.S, Indore (M.P.), India

Abstract

Fixed point theorems in a fuzzy metric space are proved by considering a contractive condition for a triplet of mappings and this is the totally a new approach for obtaining the fixed point .

Key words:- Fixed point, quasi-contraction, fuzzy metric space, Cauchy sequence.

AMS Subject Classification: 47H10, 54H25.

1. Introduction

The notion of fuzzy set was introduced by Zadeh [9]. It was developed extensively by many authors and used in various fields. In this paper we deal with the fuzzy metric space defined by Kramosil and Michalek [6] and modified by George and Veeramani [3]. The most interesting references in this direction are Chang [1], Cho [2], Grabiec [4], and Kaleva [5]. In the present paper, first we prove a common fixed point theorem. Then we study the relationship between the convergence of three sequences of mappings and the convergence of their common fixed points.

2. Preliminaries

Definition 2.1[8]. A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if ([0,1], *) is an abelian topological monoid with the unit 1 such that $a*b \leq c*d$ and whenever $a \leq c$ and $b \leq d$ for all $a,b,c,d \in [0, 1]$.

Definition 2.2[6]. The 3-tuple (X, M, *) is called a fuzzy metric space (shortly, FM-space) if X is an arbitrary set, * a continuous t-norm and M is a fuzzy set in $X \times X \times [0,\infty)$ satisfying the following conditions:

for all x, y, $z \in X$ and s, t > 0.

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t)

(FM-4) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s),$

(FM-5) $M(x, y, .): [0, \infty] \rightarrow [0, 1]$ is left continuous,

Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0. The following example shows that every metric space induces a fuzzy metric space.

Example 2.3.[3]. Let (X, d) be a metric space. Define a $*b = \min\{a,b\}$ and $M(x,y,t) = \frac{t}{t+d(x,y)}$ for all x, y \in X and all t > 0. Then (X, M, *) is a Fuzzy metric space. It is called the Fuzzy metric space induced by d.

Lemma 2.4.[4]. For all $x, y \in X$, M(x, y, .) is a non decreasing function.

Definition 2.5[4]. A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be a Cauchy sequence if and only if for each $\epsilon > 0$, t > 0, there exists $n_0 \in N$, such that $M(x_n, x_m, t) > 1 - \epsilon$, for all $n, m \ge n_0$. The sequence $\{x_n\}$ is said to converge to a point x in X if and only if for each, $\epsilon > 0$, t > 0, $n_0 \ge N$ such that $M(x_n, x, t) > 1 - \epsilon$ for all $n \ge n_0$.

A fuzzy metric space (X, M, *) is said to be complete if every Cauchy sequence in it converges to a point in it.

Remark 2.6. Since * is continuous, it follows from (FM-4) that the limit of the sequence in FM-space is uniquely determined. Let (X, M, *) be a fuzzy metric space with the following conditions (FM-6) $\lim_{t \to \infty} M(x, y, t) = 1$ for all $x, y \in X$.

Lemma 2.7[2]. Let $\{x_n\}$ be a sequence in a fuzzy metric space (X, M, *) with t * t > t for all $t \in [0,1]$ and condition (FM-6). If there exists a number $k \in (0,1)$ such that

 $M(x_{n+2,}x_{n+1,}qt) \ge M(x_{n+1,}x_{n}, t)$

for all t > 0 and n = 1, 2, ... then $\{x_n\}$ is a Cauchy sequence in X

Lemma 2.8[7]. If for all x, $y \in X$, t > 0 with positive number $k \in (0,1)$ and $M(x, y, kt) \ge M(x, y, t)$,

then x = y.

3. Main results

Theorem 3.1. Let (X, M, *) be a complete fuzzy metric space. Suppose that P, Q and T are mappings from X to itself such that (a) PT = TP, QT = TQ, (b) $P(X) \cup Q(X) \subseteq T(X)$, (c) T is continuous, and (d) The triplet (P, Q, T) is a quasi-contraction, i.e., $M(Px, Qy, kt) \ge min\{M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t), M(Tx, Qy, t)\}.$ (1)

with $k \in (0,1)$, then P, Q and T have a unique common fixed point.

Proof. Let $x_0 \in X$ be any arbitrary point in X. we define sequence $\{y_n\}$ and $\{x_n\}$ such that

 $y_{2n} = Tx_{2n} = Qx_{2n-1}$ and $y_{2n+1} = Tx_{2n+1} = Px_{2n}$, n = 1, 2, ... This is always possible because of the condition (b).

Now taking $x = x_{2n}$ and $y = x_{2n+1}$ in (1) we have

$$\begin{split} M(y_{2n+1},\,y_{2n+2},\,kt) &= M(Px_{2n},Qx_{2n+1},\,kt) \\ &\geq \min\{M(Tx_{2n},\,Tx_{2n+1},\,t),\,M(Px_{2n},\,Tx_{2n},\,t),\,(Tx_{2n+1},Qx_{2n+1},\,t), \\ &\quad M(Tx_{2n+1},\,Px_{2n},\,t),\,M(Tx_{2n},Qx_{2n+1},\,t)\}. \\ &= \min\{M(y_{2n},\,y_{2n+1},\,t),\,M(y_{2n+1},\,y_{2n},\,t),\,M(y_{2n+1},\,y_{2n+2},\,t),\,M(y_{2n+1},\,y_{2n+1},\,t), \\ &\quad M(y_{2n},\,y_{2n+2},\,t)\}. \end{split}$$

which implies

In general

$$M(y_n, y_{n+1}, kt) \ge M(y_{n-1}, y_n, t).$$
(2)
To prove that $\{y_n\}$ is a Cauchy sequence we prove by the method of induction that for all $n \ge n_0$, and
for every $m \in N$,

 $M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n}, y_{2n+1}, t)$

$$M(y_n, y_{n+m}, t) > 1 - \lambda.$$
 (3)

From (2) we have

 $M(y_{n}, y_{n+1}, t) \ge M(y_{n-1}, y_{n}, \frac{t}{k}) \ge M(y_{n-2}, y_{n-1}, \frac{t}{k^{2}}) \ge --- \ge M(y_{0}, y_{1}, \frac{t}{k^{n}}) \to 1 \text{ as } n \to \infty.$

For $t > 0, \lambda \in (0,1),$ there exists $n_0 \in N,$ such that

$$M(y_n, y_{n+1}, t) \ge 1 - \lambda.$$
 (4)

Thus (3) is true for m = 1. Suppose (3) is true for all m then we will show that it is also true for m+1. Using the definition of fuzzy metric space, (2) and (3), we have

$$M(y_{n}, y_{n+m+1}, t) \ge \min\{ M(y_{n}, y_{n+m}, \frac{t}{2}), M(y_{n+m}, y_{n+m+1}, \frac{t}{2}) \} > 1 - \lambda.$$

Hence (3) is true for m+1.

Thus $\{y_n\}$ is a Cauchy sequence. By completeness of (X, M, *), $\{y_n\}$ convergence to some point z in X.

Therefore $\{Tx_{2n}\}, \{Px_{2n}\}$ and $\{Qx_{2n-1}\}$ also converge to z.

By continuity of T and the fact that PT = TP, it follows that

 $TTx_{2n} \rightarrow Tz$ and $PTx_{2n} = TPx_{2n} \rightarrow Tz$.

Taking $x = Tx_{2n}$ and y = z in (1) we have $M(PTx_{2n}, Qz, kt) \ge min\{M(TTx_{2n}, Tz, t), M(PTx_{2n}, TTx_{2n}, t), M(Tz, Qz, t), M(Tz, PTx_{2n}, t), M(TTx_{2n}, Qz, t)\}.$

Taking limit $n \rightarrow \infty$ we have

 $M(Tz, Qz, kt) = min\{1, 1, M(Tz, Qz, t), 1, M(Tz, Qz, t)\}$

Therefore,

= M(Tz, Qz, t)

 $M(Tz, Qz, kt) \ge M(Tz, Qz, t),$

which give Tz = Qz. Similarly Tz = Pz. Again taking $x = x_{2n}$ and y = z in (1) we can show that

z = Qz = Tz = Pz.

Uniqueness:

Let w be another common fixed point of P, Q and T. Then we have $M(Pz, Qw, kt) \ge \min\{M(Tz, Tw, t), M(Pz,Tz, t), M(Tw, Qw, t), M(Tw, Pz, t), M(Tz, Qw, t)\}.$ or $M(z, w, kt) \ge M(z, w, t).$ Thus z = w and hence z is a unique common fixed point of P, Q and T. Next, we have the convergence theorem.

Theorem 3.2. Let (X, M, *) be a complete fuzzy metric space. Let $\{P_n\}$, $\{Q_n\}$ and $\{T_n\}$ be sequences of mappings from X to itself such that the triplet $\{P_n, Q_n, T_n\}$ is a quasi- contraction. If P, Q and T: $X \rightarrow X$ are point wise limit of P_n , Q_n , and T_n respectively, and if $k_n \rightarrow k$ then (P, Q, T) is a quasicontraction. Furthermore, the sequence of the unique common fixed point u_n of P_n , Q_n , and T_n , converges to the unique common fixed point u of P, Q and T.

Proof : For any $x, y \in X$, we have , for $x \neq y$, $M(Px, Qy, kt) \ge M(Px, P_nx, t) * M(P_nx, Q_ny, t) * M(Q_ny, Qy, t)$ $\geq \min \{M(T_nx, T_ny, t), M(P_nx, T_nx, t), M(T_ny, Q_ny, t), M(T_ny, P_nx, t), \}$ $M(T_nx, Q_ny, t)$ * $M(P_nx, Px, t)$ * $M(Q_ny, Qy, t)$ } Since $P_n x \to P x$, $Q_n y \to Q y$, $T_n x \to T x$ and $T_n y \rightarrow Ty$ for $x \neq y$, as $n \rightarrow \infty$, and also $k_n \rightarrow k < 1$, we have, $M(Px, Qy, kt) \ge \min \{M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t), M(Ty, Px,$ $M(Tx, Qy, t) \} * M(Px, Px, t) * M(Qy, Qy, t) \}$ $= \min \{M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t), \}$ M(Tx, Qy, t) * 1 * 1. $= \min \{M(Tx, Ty, t), M(Px, Tx, t), M(Ty, Qy, t), M(Ty, Px, t), \}$ M(Tx, Qy, t)Hence we get (P, Q, T) is a quasi-contraction, and P, Q and T have the unique common fixed point u since X is complete. Now suppose that u_n be the common fixed point of P_n , Q_n , and T_n for each n. Then we have $M(u_n, u, kt) \ge M(u_n, Q_n u, t) * M(Q_n u, u, t)$ = M(P_nu_n, Q_nu, t) * M(Q_nu, u, t) $\geq \min \{M(T_nu_n, T_nu, t), M(P_nu_n, T_nu_n, t), M(T_nu, Q_nu, t), M(T_nu, P_nu_n, t), \}$ $M(T_nu_n, Q_nu, t)$ * $M(Q_nu, u, t)$ $\geq \min \{M(u_n, T_n u, t), 1, M(T_n u, Q_n u, t), M(T_n u, u_n, t), M(u_n, Q_n u, t)\}$ $* M(Q_n u, u, t)$ $= \min \{M(u_n, T_n u, t), M(T_n u, Q_n u, t), M(T_n u, u_n, t), M(u_n, Q_n u, t)\}$ $* M(Q_n u, u, t)$ Now if $M(T_nu, Q_nu, t)$ is minimum then $M(u_n, u, kt) \ge M(T_n u, Q_n u, t) * M(Q_n u, u, t)$ $= M(T_n u, u, t) * M(u, u, t)$

Since $T_n \to T$ and $Q_n \to Q$, point wise it follows that, as $n \to \infty$, M(u_n, u, t) $\to 1$, and therefore u_n $\to u$. Now if M(u_n, T_nu, t) is minimum, then $M(u_n,\,u,\,kt)\geq \ M(u_n,\,T_nu,\,t)\ *\ M(Q_nu,\,u,\,t)$ so that, as $n\to\infty,$ again we can get $u_n\to u.$

Similarly, for the last term in the bracket, we can prove that $u_n \rightarrow u$.

References

- [1] S. S. Chang, Fixed point theorems for fuzzy mappings. *Fuzzy Sets and Systems* 17(2) 181-187, (1985).
- [2] Y. J. Cho, Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5(4), 949-962 (1997).
- [3] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 395-399 (1994).
- [4] M. Grabiec, Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27(3), 385-389 (1988).
- [5] O. Kaleva, The completion of fuzzy metric spaces. J. Math. Anal. Appl. 109(1), 194-198 (1985).
- [6] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11, 326-334, (1975).
- [7] S. N. Mishra, N. Sharma & S. L. Singh, Common fixed points of maps on fuzzy metric spaces. *Internat. J. Math. Math. Sci.* 17(2), 253-258 (1994).
- [8] B. Schweizer & A. Sklar, Statistical metric spaces. Pacific J. Math. 10, 313-334 (1960).
- [9] L.A. Zadeh, Fuzzy sets, Inform and Control 8, 338-353 (1965).