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   Abstract 
 This paper studies the existence of infinitely many solutions for a fourth-order Kirchhoff type elliptic 

problem            

       ( )
1

2 2 ( , )

0 .

p
p p p

pu u M u dx u u u f x u in

u u on

ρ λ
−

− −

Ω

   ∆ ∆ ∆ − ∇ ∆ + = Ω   
    


= ∆ = ∂Ω

∫  

Our technical approach is based on Ricceri's principle variational. 
 

Keywords: Navier boundary, nonlocal, Ricceri's variational principle. 

1. Introduction 

    In this article, we are concerned with the existence of infinitely many solutions for a fourth-order p-

Kirchhoff elliptic problem      

( )
1

2 2 ( , )

0 ,

p
p p p

pu u M u dx u u u f x u in

u u on

ρ λ
−

− −

Ω

   ∆ ∆ ∆ − ∇ ∆ + = Ω   
    

= ∆ = ∂Ω

∫  (1.1) 
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where max 1, ,
2
Np  > Ω ⊂ 

 
ℝ𝑁𝑁(𝑁𝑁 ≥ 1) is a bounded smooth domain, , 0λ ρ > . The perturbation   

:f Ω×ℝ⟶ ℝ is a continuous function and 𝑀𝑀: ℝ+ ⟶ℝ is a continuous function with the following 

bounded condition: 

(M) There are two positive constants 0 1,m m  such that  

                                                              0 1( ) ,m M t m≤ ≤  for all 0t ≥ .                                                    (1.2) 

    The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff [15]. More 
precisely, Kirchhoff introduced a model given by the following equation              

                                                           
22 2

0
2 20

0,
2

Lu E u udx
h L xt x
ρ

ρ
 ∂ ∂ ∂

− + =  ∂∂ ∂ 
∫                                             (1.3) 

which extends the classical D'Alembert's wave equation by considering the effects of the changes in the 
length of the strings during the vibrations. Latter (1.3) was developed to form  

                                                       2 ( , ) .ttu M u dx u f x u in
Ω

 
− ∇ ∆ = Ω  

 
∫                                              (1.4) 

After that, many authors studied the following nonlocal elliptic boundary value problem 

                                              2 ( , ) , 0 .M u dx u f x u in u on
Ω

 
− ∇ ∆ = Ω = ∂Ω  

 
∫                                    (1.5) 

Problems like (1.5) can be used for modeling several physical and biological systems where u  describes 
a process which depends on the average of it self, such as the population density, see [3]. Many 
interesting results for problems of Kirchhoff type were obtained see for example [3, 10, 11, 12, 13, 16, 
21]. The investigation of fourth order boundary value problems has drawn the attention of many 
authors, because the static form change of beam or the sport of rigid body can be described by a fourth 
order equation, and specially a model to study travelling waves in suspension bridges can be furnished 
by the fourth order equation of nonlinearity. Several results are known concerning the existence and 
multiplicity of solutions for fourth order boundary value problems, see [1, 4, 5, 6, 8, 9, 17] and the 
references therein. In [21], wang and An studied the following fourth-order nonlocal elliptic problem 

                                                    
22 ( , )

0 .

u M u dx u f x u in

u u on

λ
Ω

  
∆ − ∇ ∆ = Ω    


= ∆ = ∂Ω

∫                                         (1.6) 

By using the mountain pass theorem, the authors established the existence and multiplicity of solutions.        

    Motivated by the paper [9], we look for the existence of infinitely many solutions of problem (1.1) 
More precisely, we will prove the existence of well precise intervals of parameters such that problem 
(1.1) admits either an unbounded sequence of solutions provided that the functions ( , )f x u  and M has 
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a suitable behaviour at infinity or a sequence of nontrivial solutions converging to zero if a similar 
behaviour occurs at zero. Our main tool is a general critical points theorem due to Bonanno and Molica 
Bisci [7] that is a generalization of a previous result of Ricceri [19].  

    In the sequel, X  denotes the space ( ) ( )2, 2,
0 ,p pW WΩ ∩ Ω  which is a reflexive Banach space 

endowed with the norm 

1

.
pp ppu u dx u dx u dx

Ω Ω Ω

 
= ∆ + ∇ +  
 
∫ ∫ ∫  

Let  

                                                                  
{ }\ 0

max ( )
: sup .

p

x
p

u X

u x
K

u
∈Ω

∈
=                                                             (1.7) 

Since max 1, ,
2
Np  >  

 
the Rellich Kondrachov theorem assures that ( ) ( )2, 2,

0
p pW WΩ ∩ Ω ↪ ( )C Ω  is 

compact, and hence .K < ∞   

    We say that u X∈  is a weak solution of problem (1.1) if 

1
2 2 2 ( , ) 0,

p
p pp pu u vdx M u dx u u vdx u uvdx f x u vdxρ λ

−
− − −

Ω Ω Ω Ω Ω

  
 ∆ ∆ ∆ + ∇ ∇ ∇ ∇ + − =     

∫ ∫ ∫ ∫ ∫  

for all  v X∈ . The existence of solutions understood as critical points of the energy functional 
𝐼𝐼𝜆𝜆 :𝑋𝑋 ⟶ ℝ given by  

1 1( )
p

I u u dx
p pλ

Ω

= ∆ +∫ 𝑀𝑀� ( , ) ,p pu dx u dx F x u dx
p
ρ λ

Ω Ω Ω

 
∇ + −  

 
∫ ∫ ∫  

for all  ,u X∈  where  

𝑀𝑀� [ ] 1

0
( ) ( )

t pt M s ds−= ∫    and    
0

( , ) ( , ) .
t

F x t f x s ds= ∫  

Put 

{ }1
0: min 1, , .pM m ρ−− =  

Fix 0x ∈Ω  and pick 1 0s >  such that ( )0
1, ,B x s ⊂Ω  where ( )0

1,B x s  denotes the ball with center at 0x  

and radius of 1s . Set 



   M. Massar, E. M. Hssini, N. Tsouli , M. Talbi / J. Math. Computer Sci.    8 (2014), 33-51 

 

36 
 

( ) ( ) ( )1

1

2
1

1 1 1 3 2
11 12

12 1 9 12 24 1, , ,

2

N
s N
s

N NNN p s r r dr
N s rs s
πθ θ −+ −

= = − +
 Γ 
 

∫  

( ) ( ) ( ) ( )
( )0 0 1

1

2 20 0 0
2

0
2 2 1 3 2

11 1 1
, \ ,

2

12 24 92, , , ,

2

p
N

N I i I i I i

is
B x s B x

x x x x x x
N p x s dx

N s ls s
πθ θ

= 
 
 

  − − −  = = − +     Γ      

∑∫  

( ) 1

1

1
2

3 2 1
3 3 1 3 2

11 12

22 4 12 9, , 1 ,

2

N
N p

s N
s

s

N p s r r r r dr
N N ss s
πθ θ −

    
  = = + − + −    Γ       

∫  

with  ( ) ( )20 0

1

,
N

i i
i

l dist x x x x
=

= = −∑ and Γ  denotes the Gamma function, and let  

                                                                 
( )1

1 1 2 3

: .
p

ML
K mθ θ ρθ

−

−
=

+ +
                                                               (1.8) 

Now we are ready to state our main results. 

Theorem 1.1.  Assume that (M) holds and 

1( )i  ( , ) 0F x t ≥  for every [ )( , ) 0,x t ∈Ω× +∞ ; 

2( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that, if we put  

0 1,
2

( , )
sup ( , )

: lim inf , : lim sup ,
st B x

p p
t

F x t dx
F x t dx

t

σ

σ
α β

σ

 ≤
 
 Ω

→+∞ →+∞
= =

∫
∫

 

       one has  

                                                                                           .Lα β<                                                                (1.9) 

Then, for every   

1 1: , ,M
Kp L

λ
β α

−  
∈Λ =  

 
 

problem (1.1) admits an unbounded sequence of weak solutions. 
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 Theorem 1.2.  Assume that (M), 1( )i  hold and  

3( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that, if we put  

0 1,
20 0

0 0

( , )
sup ( , )

: lim inf , : lim sup ,
st B x

p p
t

F x t dx
F x t dx

t

σ

σ
α β

σ+ +

 ≤
 
 Ω

→ →
= =

∫
∫

 

       one has  

                                                                                           0 0 .Lα β<                                                                (1.10) 

Then, for every  

0
0 0

1 1: , ,M
Kp L

λ
β α

−  
∈Λ =  

 
 

problem (1.1) admits a sequence ( )nu  of weak solutions such that 0nu →  strongly. 

2. Proof of main results 

For the reader's convenience, we recall one smooth version of Ricceri's variational principle [19], which 
is our main tool. 

Theorem 2.1. Let X  be a reflexive real Banach space, let , :Φ Ψ 𝑋𝑋 ⟶ ℝ be two Gâteaux differentiable 
functionals such that Φ  is sequentially weakly lower semicontinuous, strongly continuous and coercive 
and Ψ  is sequentially weakly upper semicontinuous. For every infXr > Φ , let us put 

] [( )

] [( )( )1

1

,

,

sup ( ) ( )
( ) : inf

( )
v r

u r

v u
r

r u
ϕ

−

−

∈Φ −∞

∈Φ −∞

Ψ − Ψ
=

− Φ
 

and 

( )inf
: lim inf ( ), : lim inf ( ).

X
r r

r rγ ϕ δ ϕ
+→+∞ → Φ

= =  

Then, one has  

(a) for every infXr > Φ  and every  
10,
( )r

λ
ϕ

 
∈ 
 

, the restriction of the functional Iλ λ= Φ − Ψ to 

] [( )1 , r−Φ −∞  admits a global minimum, which is a critical point (local minimum) of Iλ in X ; 

(b) if  γ < +∞ then, for each 
10,λ
γ

 
∈ 
 

, the following alternative holds:  

       either  



   M. Massar, E. M. Hssini, N. Tsouli , M. Talbi / J. Math. Computer Sci.    8 (2014), 33-51 

 

38 
 

    1( )b   Iλ  possesses a global minimum, 

      or   

     2( )b   there is a sequence ( )nu of critical points (local minima) of Iλ  such that ( )lim nn
u

→+∞
Φ = +∞ ; 

(c) δ < +∞ then, for each 
10,λ
δ

 ∈  
, the following alternative holds:  

       either  

    1( )c   there is a global minimum of Φ  which is a local minimum of Iλ , 

      or   

   2( )c   there is a sequence of pairwise distinct critical points (local minima) of Iλ which weakly 

converges to global minimum of Φ . 

    Before proving the results, we introduce the functionals 

                  
1 1( )

p
u u dx

p p
Ω

Φ = ∆ +∫ 𝑀𝑀� ,
p pu dx u dx

p
ρ

Ω Ω

 
∇ +  

 
∫ ∫      ( ) ( , ) .u F x u dx

Ω

Ψ = ∫                        (2.1) 

It is well known that Φ  and Ψ   are well defined and Gâteaux  differentiable whose Gâteaux  derivatives 
at u X∈  are given by

1
2 2 2'( ), ,

p
p p p pu v u u vdx M u dx u u vdx u uvdxρ

−

− − −

Ω Ω Ω Ω

  
 Φ = ∆ ∆ ∆ + ∇ ∇ ∇ ∇ +     

∫ ∫ ∫ ∫  

'( ), ( , ) ,u v f x u vdx
Ω

Ψ = ∫  

for all v X∈ .  Moreover Φ  is strongly continuous, since Ψ  has a compact derivative, it results 
sequentially weakly continuous. Also, Φ  is sequentially weakly lower semicontinuous. In fact, let 
𝑢𝑢𝑛𝑛 ⇀ 𝑢𝑢 weakly in X . By the weakly lower semicontinuity of norm, it follows that 

                 lim inf , lim inf ,
p pp p

n n
n n

u dx u dx u dx u dx
→+∞ →+∞Ω Ω Ω Ω

∆ ≤ ∆ ≤∫ ∫ ∫ ∫                                 (2.2) 

                                                                        lim inf .
pp

n
n

u dx u dx
→+∞Ω Ω

∇ ≤ ∇∫ ∫                                                      

(2.3) 
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In view of the monotonicity and continuity of 𝑀𝑀� ,  we deduce from (2.3) that 

                               𝑀𝑀� pu dx
Ω

 
∇  

 
∫ ≤𝑀𝑀� lim inf p

n
n

u dx
→+∞ Ω

 
∇  

 
∫ ≤ lim inf

n→+∞
𝑀𝑀� p

nu dx
Ω

 
∇  

 
∫ .                           (2.4) 

This and (2.2) imply that Φ  is sequentially weakly lower semicontinuous. Now, let us show that Φ  is 
coercive. By (M), for every u X∈ , we have 

                                                 

1
01( )

.

p
p p p

p

m
u u dx u dx u dx

p p p

M u
p

ρ−

Ω Ω Ω

−

Φ ≥ ∆ + ∇ +

≥

∫ ∫ ∫
                                   (2.5) 

Consequently, Φ  is coercive.       

2.1. Proof of Theorem 1.1.  

Let Φ  and Ψ  be defined as in (2.1). Then  

                                                        ( ) ( ) ( ),I u u uλ λ= Φ − Ψ   for all u X∈ .                                                (2.6)   

In order to apply Theorem 2.1, we set 

] [( )

] [( )( )1

1

,

,

sup ( ) ( )
( ) : inf .

( )
v r

u r

v u
r

r u
ϕ

−

−

∈Φ −∞

∈Φ −∞

Ψ − Ψ
=

− Φ
 

Note that (0) 0Φ = , and by 1( )i , (0) 0Ψ ≥ . Therefore, for every 0r > ,  

                                              

] [( )

] [( )( )

] [( )

1

1

1

,

,

,

( )

sup ( ) ( )
( ) inf

( )
sup

sup ( , )

v r

u r

r

u r

v u
r

r u

r
F x u dx

r

ϕ
−

−

−

∈Φ −∞

∈Φ −∞

Φ −∞

Φ <
Ω

Ψ − Ψ
=

− Φ
Ψ

≤

=
∫

                                             (2.7) 

In view of (1.7) and (2.5), we have  
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] [( ) { }1

1

, : : ( )

:

: ( ) ,

p

p

r u X u r

Mu X u r
p

Kpru X u x x
M

−

−

−

Φ −∞ = ∈ Φ <

  ⊆ ∈ < 
  
 
  ⊆ ∈ < ∀ ∈Ω  

   

                                     

(2.8) 

Let ( )nσ  be a sequence of positive numbers such that ( )nσ → +∞ and  

                                                                     

sup ( , )
lim .

nt

pn
n

F x t dxσ

α
σ

≤
Ω

→+∞
= < +∞

∫
                                                (2.9) 

Put : .
p
n

n
M

r
Kp
σ−

=  From (2.7) and (2.8), we obtain 

                                              

{ }: ( ) ,sup ( , )
( )

sup ( , )
.

n

n

u X u x x

n p
n

t

p
n

F x u dx
Kpr
M

F x t dx
Kp
M

σ

σ

ϕ
σ

σ

∈ < ∀ ∈Ω
Ω

−

<
Ω

−

≤

≤

∫

∫
                                          (2.10)     

Let : lim inf ( )
r

rγ ϕ
→+∞

= . It follows from (2.9) and (2.10) that 

                                                            

lim inf ( )

sup ( , )
lim

.

n

n
r

t

pn
n

r

F x t dx
Kp
M
Kp
M

σ

γ ϕ

σ
α

→+∞

≤
Ω

− →+∞

−

≤

≤

≤ < +∞

∫
                                                  (2.11) 

From (2.11), it is clear that 
10, .
γ

 
Λ ⊆  

 
  

Forλ∈Λ , we claim that the functional Iλ  is unbounded from below. Indeed, since  
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1 KpL
M

β
λ −
< , 

we can  consider a consequence ( )nτ  of positive numbers and 0η >  such that nτ → +∞  and  

                                                            
0 1,

2

( , )

1 ,

n
s

B x

p
n

F x dx

KpL
M

τ

η
λ τ

 
 
 

−
< <

∫
                                                   (2.12) 

for n  large enough. Define a consequence ( )nw  as follow 

                      

( )

( )

( )

0
1

3 2 0 0 1
13 2

11 1

0
1

0 \ ,

4 12 9( ) 1 , \ ,
2

, .

n n

n

x B x s

s
w x l l l x B x s B x

ss s

x B x s

τ

τ

 ∈Ω

    = − + − ∈        


∈

               (2.13) 

We have

( )

( ) ( ) ( ) ( )

0 0 1
1

0 0 0
0 0 1

13 2
11 1

0 \ , ,
2( )

12 24 9
1 , \ , ,

2

n

i i i i i ii
n

s
x B x s B x

w x
l x x x x x xx s

x B x s B x
s ls s

τ

  
∈Ω ∪  

 ∂ =   − − −∂    − + − ∈        
and 

( )

( ) ( )
( )

0 0 1
1

2
2 20 2 2 0

2
0 0 1

13 2 3
1 1 1

0 \ , ,
2

( )
12 924 , \ , .

2

n
i i i i

i
n

s
x B x s B x

w x
x x l l x xx s

x B x s B x
s l s s l

τ

  
∈Ω ∪  

 
∂      =  − + − −    ∂      − + ∈        

 
According to notations in above, we see that 

                                      1 2 3, ,p p pp p p
n n n n n nw dx w dx w dxθ τ θ τ θ τ

Ω Ω Ω

∆ = ∇ = =∫ ∫ ∫ .                  (2.14) 

Therefore 
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1 1( )

p

n nw w dx
p p

Ω

Φ = ∆ +∫ 𝑀𝑀�
p p

n nw dx w dx
p
ρ

Ω Ω

 
∇ +  

 
∫ ∫  

                   1
1 p

np
θ τ=

1
p

+ 𝑀𝑀� ( )2
p
nθ τ + 3

p
np

ρ θ τ  

                  

( )1
1 2 3

1

.

pp p p
n n n n

p
n

m
p

M
KpL

θ τ θ τ ρθ τ

τ

−

−

≤ + +

=
                                                                                                     

(2.15) 

On other hand, by 1( )i , we have 

                                                            

0 1,
2

( ) ( , )

( , ) .

n n

n
s

B x

w F x w dx

F x w dx
Ω

 
 
 

Ψ =

≥

∫

∫                                                                    (2.16) 

So, it follows from (2.12), (2.15) and (2.16) that 

                                                          

( )

0 1,
2

( ) ( ) ( )

( , )

1 ,

n n n
p
n

n
s

B x

p
n

I w w w

M
F x w dx

KpL

M
KpL

λ λ

τ
λ

τ
λη

−

 
 
 

−

= Φ − Ψ

≤ −

< −

∫                                              (2.17) 

for n  large enough, so lim ( ) ,nn
I wλ→+∞

= −∞ and hence the claim follows.  

    The alternative of Theorem 2.1 case (b) assures the existence of unbounded sequence ( )nu  of critical 

points of the functional Iλ  and the proof of Theorem 1.1 is complete. 

2.2. Proof of Theorem 1.2. 

We takeΦ  and Ψ  be as before. First, note that  

                                                                      min (0) 0.
X

Φ =Φ =                                                                   (2.18) 
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Let ( )nσ  be a sequence of positive numbers such that 0nσ
+→  and        

                                                         0

sup ( , )
lim .

nt

pn
n

F x t dxσ

σ
σ

≤
Ω

→+∞
= < +∞

∫
                                                (2.19) 

Put   

:
p
n

n
M

r
Kp
σ−

=          and        
0

: lim inf ( ).
r

rδ ϕ
+→

=  

Similarly as above, we have  

                                                             

sup ( , )
( ) .

nt

n p
n

F x t dx
Kpr
M

σ

ϕ
σ

<
Ω

−
≤

∫
                                                     (2.20) 

It follows from (2.19) and (2.20) that  

                                                                                       0

lim inf ( )

.

n
n

r

Kp
M

δ ϕ

α
→+∞

−

≤

≤ < +∞
                                                            

(2.21) 

By (2.21), we see that 0 10, .
δ

 Λ ⊆   
 Now, for 0λ∈Λ , we claim that Iλ  has not a local minimum at zero. 

Indeed, since 
01 KpL

M
β

λ −
< , we can consider a sequence ( )nτ  of positive numbers and 0η >  such that  

0nτ
+→   and  

                                                                
0 1,

2

( , )

1 ,

n
s

B x

p
n

F x dx

KpL
M

τ

η
λ τ

 
 
 

−
< <

∫
                                               (2.22) 

for n  large enough. Let ( )nw  be the sequence defined in (2.13). By (2.15), (2.16) and (2.22), we obtain   
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( )nI wλ ≤ 1
1 p

np
θ τ 1

p
+ 𝑀𝑀� ( )2

p
nθ τ + 3

p
np

ρ θ τ -
0 1,

2

( , )n
s

B x

F x w dxλ
 
 
 

∫  

           
( )1

0 (0),

p
nM

KpL
Iλ

τ
λη

−

< −

< =

                                                                                                                                    (2.23) 

for n  large enough. This together with the fact that 0nw →  shows that Iλ  has not a local minimum at 

zero, and the claim follows.  

   The alternative of Theorem 2.1 case (c) ensures the existence of sequence ( )nu of pairwise distinct 

critical points (local minima) of Iλ such that 0nu → . This completes the proof of Theorem 1.2. 

Corollary 2.1. Assume that assumption 1( )i  in Theorem 1.1 and  (M) hold. Suppose that 

4( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that 

0 1,
2

( , )
sup ( , )

lim inf lim sup
st B x

p p
t

F x t dx
F x t dx

M L
Kp t

σ

σ σ

 ≤ −  
 Ω

→+∞ →+∞
< <

∫
∫

. 

Then, the problem 

( )
1

2 2 ( , )

0 ,

p
p p p

pu u M u dx u u u f x u in

u u on

ρ
−

− −

Ω

   ∆ ∆ ∆ − ∇ ∆ + = Ω   
    

= ∆ = ∂Ω

∫  

admits an unbounded sequence of weak solutions.  

Corollary 2.1.  Let :f ℝ⟶ ℝ  be a continuous function. Assume that (M) holds and 

5( )i  
0

( ) ( ) 0
t

F t f s ds= ≥∫ for every [ )0,t∈ +∞ ;  

6( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that 
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2
1

sup ( ) ( )lim inf lim sup .
2 1

2

N
N

t
p p

t

F t s F tL
N t

σ

σ

π
σ
≤

→+∞ →+∞

 
<      Ω Γ + 

 

 

Then, for every 
1 2

1
12 , ,
sup ( )( ) lim inflim sup

2

N N
t

pp
t

N
M

F tKp s F tL
t

σ

σ

λ

π
σ

−

≤

→+∞→+∞

   Γ + 
  ∈    Ω    

the problem  

( )
1

2 2 ( )

0 ,

p
p p p

pu u M u dx u u u f u in

u u on

ρ
−

− −

Ω

   ∆ ∆ ∆ − ∇ ∆ + = Ω   
    

= ∆ = ∂Ω

∫  

admits an unbounded sequence of weak solutions. 

Proof. We set ( , ) ( )F x t F t=  for all x∈Ω  and t∈ℝ. Since  

2
0 1 1, ,

2 2 1
2

N
Ns s

B x
N

π   
=         Γ + 

 

 

the result follows from Theorem 1.1. 

3. A remarkable consequences  

This section is concerned, as consequence of Theorem 1.1, with the existence of infinitely many 

solutions for the following problem

( )
1

2 2 ( , ) ( , )

0 ,

p
p p p

pu u M u dx u u u g x u h x u in

u u on

ρ λ µ
−

− −

Ω

   ∆ ∆ ∆ − ∇ ∆ + = + Ω   
    


= ∆ = ∂Ω

∫                       

(3.1) 
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where max 1, ,
2
Np  > Ω ⊂ 

 
ℝ𝑁𝑁(𝑁𝑁 ≥ 1) is a bounded smooth domain, , 0λ ρ > , 0µ ≥ , :g Ω×  ℝ⟶ ℝ  

is a continuous function, :h Ω×  ℝ⟶ ℝ  is a function such that (., )h t is measurable in Ω  for all  t∈ℝ 

and ( ,.)h x  is continuous in ℝ  for a.e. x∈Ω  and 𝑀𝑀: ℝ+ ⟶ℝ is a continuous function, which satisfies 

the condition (M). 

    Let us now state our main results of this section. 

Theorem 3.1.  Assume that (M) holds and 

7( )i  
0

( , ) : ( , ) 0
t

G x t g x s ds= ≥∫  for every [ )( , ) 0,x t ∈Ω× +∞ ; 

8( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that, if we put  

0 1,
2

( , )
sup ( , )

' : lim inf , ' : lim sup ,
st B x

p p
t

G x t dx
G x t dx

t

σ

σ
α β

σ

 ≤
 
 Ω

→+∞ →+∞
= =

∫
∫

 

       one has  

                                                                                          ' '.Lα β<                                                                 (3.2) 

Then, for every  

1 1' : , ,
' '

M
Kp L

λ
β α

−  
∈Λ =  

 
 

for every function :h Ω×  ℝ⟶ ℝ measurable in Ω  and continuous in ℝ with 
0

( , ) ( , ) 0
t

H x t h x s ds= ≥∫  

for all  ( , )x t ∈Ω×  ℝ, satisfying the conditions  

                                                       1sup (., ) ( ),
t

h t L
σ≤

∈ Ω   for all 0,σ >                                                        (3.3) 

                                                     

sup ( , )
: lim ,

t

p

H x t dx
H

σ

σ σ

≤
Ω

∞ →+∞
= < ∞

∫
                                                        (3.4) 
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and for every ,0, h λµ µ ∈   where  

,

'1 0
:

0,
h

KpM if H
KpH M

if H
µ

αλ
µ

−

∞−
∞

∞

  − ≠  =  
+∞ =

 

problem (3.1) admits an unbounded sequence of weak solutions.  

Proof. Our aim is to apply Theorem 1.1. To this end, fix 'λ∈Λ . Then 
'1 0,Kp

M
αλ
−

− > and so , 0h λµ > . 

Let ,0, h λµ µ ∈  . If 0µ = , the theorem gives back to Theorem 1.1. Let us assume that ,0 h λµ µ< < and 

put 1 :
'

M
KpL

λ
β

−

=  and  2 :
'

M
Kp

H
λ

µα
λ

−

∞

=
+

. 

If 0H∞ = , clearly we have ] [1 2,λ λ λ∈ . 

If 0H∞ ≠ , it follows from ,h λµ µ< that 
' 1

KpH Kp
M M

αµ λ∞
− −

+ < , that is 
'

M
Kp

H
λ

µα
λ

−

∞

<
+

, and so 2λ λ< . 

On other hand, by our hypothesis we have 1λ λ> . Hence ] [1 2,λ λ λ∈ . Now set 

( , ) : ( , ) ( , ),F x t G x t H x tµ
λ

= +  for all x∈Ω  and t∈  ℝ. 

Then   

sup ( , ) sup ( , ) ( , )

sup ( , ) sup ( , )
,

t t

p p

t t

p p

F x t dx G x t H x t dx

G x t dx H x t dx

σ σ

σ σ

µ
λ

σ σ

µ
λσ σ

≤ ≤
Ω Ω

≤ ≤
Ω Ω

 +  
=

≤ +

∫ ∫

∫ ∫
 

and from (3.4), we deduce  
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sup ( , )
: lim inf

sup ( , )
lim inf

' .

t

p

t

p

F x t dx

G x t dx
H

H

σ

σ

σ

σ

α
σ

µ
λσ

µα
λ

≤
Ω

→+∞

≤
Ω

∞
→+∞

∞

=

≤ +

= +

∫

∫
                                          (3.5) 

Moreover, since H is nonnegative, we see that 

                                                                           

0 1

0 1

,
2

,
2

( , )

: lim sup

( , )

lim sup

'.

s
B x

p
t

s
B x

p
t

F x t dx

t
G x t dx

t

β

β

 
 
 

→+∞

 
 
 

→+∞

=

≥

=

∫

∫
                                              (3.6) 

Therefore (3.5) and (3.6) yield  

1 1 1 1, , ,
' '

M M
Kp L Kp LHµβ β αα

λ

− −

∞

 
   

⊆   
  +

  

 

and hence 

                                                             ] [1 2
1 1, : , .M

Kp L
λ λ λ

β α

−  
∈ ⊆ Λ =  

 
                                                          (3.7) 

From (3.7), we observe that condition (1.9) is verified. Consequently, the conclusion follows by applying 

Theorem 1.1. 

Remark 3.1. If  

sup ( , )
lim inf 0

t

p

G x t dxσ

σ σ

≤
Ω

→+∞
=

∫
    and     

0 1,
2

( , )

lim sup ,
s

B x

p
t

G x t dx

t

 
 
 

→+∞
= +∞

∫
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clearly condition (3.2) is verified and Theorem 3.1 ensures the existence of infinitely many weak 

solutions for problem (3.1), for every ] [( , ) 0, 0, M
KpH

λ µ
−

∞

 
∈ +∞ ×  

 
. Moreover, under the condition 

0H∞ =  problem (3.1) admits infinitely many solutions, for every ] [ [ [( , ) 0, 0,λ µ ∈ +∞ × +∞ . 

    In view of Theorem 1.2, arguing as in the proof of Theorem 3.1, we have the following result. 

Theorem 3.2.  Assume that (M), 7( )i  hold and  

9( )i  There exist 0
1, 0x s∈Ω >   as considered in (1.8) such that, if we put  

0 1,
20 ' 0 '

0 0

( , )
sup ( , )

: lim inf , : lim sup ,
st B x

p p
t

G x t dx
G x t dx

t

σ

σ
α β

σ+ +

 ≤
 
 Ω

→ →
= =

∫
∫

 

       one has  

                                                                                           0 ' 0 ' .Lα β<                                                                (3.8) 

Then, for every  

0 '
0 ' 0 '

1 1: , ,M
Kp L

λ
β α

−  
∈Λ =  

 
 

for every function :h Ω×  ℝ⟶ ℝ measurable inΩ  and continuous in   with 
0

( , ) ( , ) 0
t

H x t h x s ds= ≥∫  

for all   ( , )x t ∈Ω×  ℝ, satisfying the conditions  

                                                       1sup (., ) ( ),
t

h t L
σ≤

∈ Ω   for all 0,σ >                                                        (3.9) 

                                                     0
0

sup ( , )
: lim ,

t

p

H x t dx
H

σ

σ σ+

≤
Ω

→
= < ∞

∫
                                                        (3.10) 

and for every ,0, h λµ µ ∈   where  
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0 '

0
, 0

0

1 0
:

0,
h

KpM if H
KpH M

if H
µ

αλ
µ

−

−

  
− ≠  =   

+∞ =

 

problem (3.1) admits a sequence ( )nu  of weak solutions such that 0nu →  strongly. 
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