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Abstract

This paper studies the existence of infinitely many solutions for a fourth-order Kirchhoff type elliptic

problem
p-1
(|Au| ) l: U|Vu|pdxﬂ Au+pluf P u=2f(xu) in Q
on 0Q.

u=Au=0
Our technical approach is based on Ricceri's principle variational

Keywords: Navier boundary, nonlocal, Ricceri's variational principle
1. Introduction
In this article, we are concerned with the existence of infinitely many solutions for a fourth-order p-

Kirchhoff elliptic problem
(1.2)

p-1
(|Au| ) { [.|'|Vu|p dxﬂ Au+plu” P u=2f(xu) in Q
on 8Q,

u=Au=0
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N
where p > max {1, ?}, Qc IRN(N = 1) is a bounded smooth domain, 4, p >0. The perturbation

f : QxR — Ris a continuous function and M: Rt — Riis a continuous function with the following

bounded condition:

(M) There are two positive constants m,, M, such that
m, <M(t)<m, forall t>0. (1.2)

The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff [15]. More
precisely, Kirchhoff introduced a model given by the following equation

o%u (p,  E ¢tlouf |, )é%u
p@t_z_[T+Z . dx [—-=0, (1.3)

ox?
which extends the classical D'Alembert's wave equation by considering the effects of the changes in the

ou
OX

length of the strings during the vibrations. Latter (1.3) was developed to form
u, —M [“Vuf deAu = f(x,u) in Q (1.4)
Q

After that, many authors studied the following nonlocal elliptic boundary value problem

-M {J‘|Vu|2 deAu =f(x,u) in Q, u=0 on oQ. (1.5)
Q

Problems like (1.5) can be used for modeling several physical and biological systems where U describes
a process which depends on the average of it self, such as the population density, see [3]. Many
interesting results for problems of Kirchhoff type were obtained see for example [3, 10, 11, 12, 13, 16,
21]. The investigation of fourth order boundary value problems has drawn the attention of many
authors, because the static form change of beam or the sport of rigid body can be described by a fourth
order equation, and specially a model to study travelling waves in suspension bridges can be furnished
by the fourth order equation of nonlinearity. Several results are known concerning the existence and
multiplicity of solutions for fourth order boundary value problems, see [1, 4, 5, 6, 8, 9, 17] and the
references therein. In [21], wang and An studied the following fourth-order nonlocal elliptic problem

2 .
Au-M [I|Vu| deAu =Af(xu) in Q (L6)

Q
u=Au=0 on oQ.

By using the mountain pass theorem, the authors established the existence and multiplicity of solutions.

Motivated by the paper [9], we look for the existence of infinitely many solutions of problem (1.1)
More precisely, we will prove the existence of well precise intervals of parameters such that problem
(1.1) admits either an unbounded sequence of solutions provided that the functions f(x,u) and M has
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a suitable behaviour at infinity or a sequence of nontrivial solutions converging to zero if a similar
behaviour occurs at zero. Our main tool is a general critical points theorem due to Bonanno and Molica
Bisci [7] that is a generalization of a previous result of Ricceri [19].

In the sequel, X denotes the space WP (Q) AW,>P (Q), which is a reflexive Banach space

endowed with the norm

1

||u||:[j|Au|p dx+I|Vu|pdx+I|u|pdep .
Q

Q Q
Let
max [u(x)|*
K= sup X2 (1.7)
uex\{o} ||u||p

Since p > max {1, %}, the Rellich Kondrachov theorem assures that W 2P (Q) mWOZ’p (Q) o C (5) is
compact, and hence K < oo,

We say that u € X is a weak solution of problem (1.1) if
p-1
I|Au|p_2AuAde + {M {-[|Vu|p dxﬂ I|Vu|p_2Vqudx + pj|u|p_2uvdx - /Ij f (x,u)vdx =0,
Q Q Q Q Q

forall ve X . The existence of solutions understood as critical points of the energy functional
I;: X — Rgiven by

I,l(u)z%j|Au|pdx+%1\71[J’|Vu|p de+£f|u|p dx—ﬂfF(x,u)dx,
o o Py o
forall ue X, where
M) =j;[|v| ()" " ds and F(x,t):jot f (x, s)ds.
Put
M~ = min{l, mo”‘l,p}.

Fix X’ €Q and pick s, >0 such that B(XO,Sl)CQ, where B(xo,sl) denotes the ball with center at x°

and radius of s, . Set

35



M. Massar, E. M. Hssini, N. Tsouli, M. Talbi / J. Math. Computer Sci. 8 (2014), 33-51

N
2 12(N +1 9(N -1
91=91(N,p,31)= 272 I:| ( 3+ ) _242N ( )E N-Igr
T NJ 2| St S S r
2

2
with | = dist(x, X°)= Z(Xi - X,O) and I" denotes the Gamma function, and let
i=1

M . (1.8)
K (6, +mP?0, + po,)

L:=

Now we are ready to state our main results.

Theorem 1.1. Assume that (M) holds and

(i,) F(x,t)>0 forevery (x,t) e Qx[0,+);

(i,) Thereexist X’ €Q, s, >0 as considered in (1.8) such that, if we put

j F (x, t)dx
J.supMSU F(x,t)dx

; : S=1lim sup%

t—+0 P

a =liminf £

o>+ (o2

one has

a<Lp. (1.9)

Then, for every

dea=M_ |1 18
Kp |LB @

problem (1.1) admits an unbounded sequence of weak solutions.
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Theorem 1.2. Assume that (M), (i;) hold and

(i;) There exist X’ eQ, s, >0 as considered in (1.8) such that, if we put

j F(x, t)dx
jsupMSa F(x,t)dx B(XO%J
@ =liminf £ : B° =limsup

oc—0" o’ t—0" tP

one has
a® <Lp°. (1.10)

Then, for every

depAdM 11
Kp |LB° "a®|’

problem (1.1) admits a sequence (un) of weak solutions such that u, — 0 strongly.

2. Proof of main results

For the reader's convenience, we recall one smooth version of Ricceri's variational principle [19], which
is our main tool.

Theorem 2.1. Let X be a reflexive real Banach space, let ®, ¥: X — R be two Gateaux differentiable
functionals such that @ is sequentially weakly lower semicontinuous, strongly continuous and coercive
and ¥ is sequentially weakly upper semicontinuous. For every r > inf, @, let us put

(= inf ($9Pu sy 1))
¢ " e (] ) r—d(u)

and

y=liminf ¢(r), &6:= liminf @(r).
=+ r—(infy ®)"

Then, one has

1
—{ , the restriction of the functional |, =® - A¥ to

o(r)

ot (]—oo, r[) admits a global minimum, which is a critical point (local minimum) of I, in X ;

(a) foreveryr>inf, ® and every /1€:|0,

1
(b) if y <+oothen, foreach Ae }0,—[ , the following alternative holds:
4

either
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(b)) I, possesses a global minimum,
or

(b,) thereis asequence (un ) of critical points (local minima) of I, such that lim CI)(un ) =400;

(c) O <+oothen, foreach Ae }0%[ , the following alternative holds:

either

(c,) thereis a global minimum of @ which is a local minimum of |,

or

(c,) there is a sequence of pairwise distinct critical points (local minima) of |, which weakly

converges to global minimum of ®@.

Before proving the results, we introduce the functionals

1 p 1/\ p p p
OUu)=—||Au| dx+—M| ||Vu| d = dx, W(u)=|F(x,u)dx. (2.1)
(u) p£| o2 {ﬂ u x]+p£|u| X (u) i( )

It is well known that @ and ¥ are well defined and Gateaux differentiable whose Gateaux derivatives

at ue X are given by

p-1
(®'(u),v)= ‘[|Au|p_2 AuAvdx + {M U|Vu|p dxj] J‘|Vu|p_2 Vuvvdx + ,o-[|u|p_2 uvax,
Q

Q Q Q

(¥'(u),v)= J. f (x, u)vdx,

forall ve X . Moreover @ is strongly continuous, since ¥ has a compact derivative, it results
sequentially weakly continuous. Also, @ is sequentially weakly lower semicontinuous. In fact, let

u, — u weakly in X . By the weakly lower semicontinuity of norm, it follows that

p . p p L. p

'[|Au| dXS|ImIan|AUn| dx , J.|u| dxsllmlnfj|un| dx, (2.2)
N—>+0 o P N>+ o

Q

[[vu[? dx <timinf [[vu,|"dx.
o N>+ &

(2.3)
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In view of the monotonicity and continuity of M, we deduce from (2.3) that

M{ﬂwr’ dx] sM[Iiminf [[vu,]? dx] < liminf 1\7U|Vun|p dx]. (2.4)
N>+ & n—+w

Q Q

This and (2.2) imply that @ is sequentially weakly lower semicontinuous. Now, let us show that @ is
coercive. By (M), for every u e X , we have

1 p mg p P[P
O(u)=—||Au|” dx+——||Vu| dx +=]|ul" dx
(1) pg[l | : il | p£||

(2.5)
M~ e
>M .
p
Consequently, @ is coercive.
2.1. Proof of Theorem 1.1.
Let ® and ¥ be defined asin (2.1). Then
l,(U)=d(Uu)—-A¥(u), forallueX . (2.6)
In order to apply Theorem 2.1, we set
(Supvgcb’l(]—oo,r[) lI’(v)) -¥(u)
o(r)=inf :
UE®71(]—w,r[) r— q)(u)
Note that ®(0) =0, and by (i), ¥(0)>0. Therefore, for every r >0,
(supve (o) lI’(v)) —¥(u)
p(r)= inf
ued*(J-o0,1]) r—o(u)
o v
< M (2.7)

r
SUP g (uy<r I F(x,u)dx
Q

r

In view of (1.7) and (2.5), we have
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O (Joo, 1) ={ue X : du)<r}

{UEX: M <r}
p

ciueX: |u(x)|<[%jp, VxeQ

N

Let (Un) be a sequence of positive numbers such that (an ) — +o0and

ISUp\t\an F(x,t)dx
lim £ = <+, (2.9)

n—>-+o O-np

M~ p
Put r, = Ksn . From (2.7) and (2.8), we obtain

P [ F0
M~ O_np
(2.10)
Isup\tkan F(x,t)dx
Kp o

o(r,) <

<

M- p
M o,

Let ¥ :=liminf ¢(r). It follows from (2.9) and (2.10) that

r—+oo

y <liminf o(r,)

r—+oo

jsupr F(x,t)dx
Kp . o B
<—— lim (2.11)

1
From (2.11), itis clear that A < }0,—{
4

For A € A, we claim that the functional |, is unbounded from below. Indeed, since
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1 _KpLp
A M

7

we can consider a consequence (7,) of positive numbers and 77 >0 such that 7, — +% and

j F(x,7,)dx
B x°,i
1o,k 3 , (2.12)
A M~ 14
for n large enough. Define a consequence (W,) as follow
0 XEﬁ\B(xo,sl)
B 4 5 12, 9 0 05
W, (X) = T“{?' —gl +§I—1J XeB(x ,sl)\B(x >y (2.13)
0
T, xaB(x ,sl).
We have
0 XEﬁ\B(XO,Sl)UB(XO,%j
ow, (x) _ ) ) i
' 7, ( 3 )— ( > )+ ( )—1 XeB(XO,sl)\B[XO,S—l],
S Sy s 2
and
0 xeQ\B(x°,s )uB| x>
coa(x.s)uB( .3
*w_ (x)
— = 12 (x-—x.")2+l2 9 Iz—(x.—xo)2
axl 1 1 24 1 1 0 0 51
7, 3 -—+ 3 XEB(X ,sl)\B X7, = .
s/ S; s 2
According to notations in above, we see that
[law [P =620, [[vw | dx=6,z8,  [lw,|" dx=0,rp. (2.14)
Q Q Q

Therefore
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1 p 1. p P p
d(w,)=—||Aw,| dx+—M Vw,| dx |+ ||w,| d
(w,) p;[| | ) [£| W, | XJ+p£|W| X

= lﬁlrn" ey (ezrnp ) +Lorp
p p p

<

On other hand, by (i;) , we have

\P(wn)zj'F(x,wn)dx

> j F(x, w, )dx.

0S
B(x Ej
So, it follows from (2.12), (2.15) and (2.16) that

Il (Wn) = q)(Wn) - /I\P(Wn)

- P
SM LIy I F(x, w, )dx
KpL 0S5
B(x E)
M~zP
n 1_
“ koL (1=2m).

for n large enough, so lim I, (w,)=—o0, and hence the claim follows.
nN—+w

%(Hnrnp +mPro,cP + p6’3rnp)
M~zp
KpL
(2.15)
(2.16)
(2.17)

The alternative of Theorem 2.1 case (b) assures the existence of unbounded sequence (un) of critical

points of the functional |, and the proof of Theorem 1.1 is complete.
2.2. Proof of Theorem 1.2.
We take ® and W be as before. First, note that

mxin ®=d(0)=0.

42
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Let (O'n) be a sequence of positive numbers such that o, — 0" and

jsupmgan F(x,t)dx

lim £ =0 < +0. (2.19)
N—+o0 O-np
Put
M~ p
F=— 20 and  &:=liminf o(r).
Kp r—0*

Similarly as above, we have

J‘sup‘t‘m F(x,t)dx
Kp "
o(r) < E 2 . (2.20)

p
Oq

It follows from (2.19) and (2.20) that

o <liminf o(r,)

nN—+o0

0
SKp—a<+oo.
M-

(2.21)

By (2.21), we see that A° < }0,%{ Now, for A e A, we claim that |, has not a local minimum at zero.

0
Indeed, since %< K&Lﬂ , we can consider a sequence (7,) of positive numbers and 7 >0 such that

7, > 0" and

j F(x,z,)dx

1 KpL B(X ‘Ej (2.22)

for n large enough. Let (W,) be the sequence defined in (2.13). By (2.15), (2.16) and (2.22), we obtain
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Ii(wn)glelrnp +1M(Hzrnp)+£93rnp—/l I F(x, w,)dx
p p Y

)

<

Mz}
KpL (1=4n) (2.23)
<0=1,(0),

for n large enough. This together with the fact that ||Wn || — 0 shows that |, has not a local minimum at

zero, and the claim follows.

The alternative of Theorem 2.1 case (c) ensures the existence of sequence (un ) of pairwise distinct

critical points (local minima) of I, such that ||un || — 0. This completes the proof of Theorem 1.2.
Corollary 2.1. Assume that assumption (i;) in Theorem 1.1 and (M) hold. Suppose that
(i,) There exist X’ €Q, s, >0 as considered in (1.8) such that

jsupMSa F(x,t)dx

M— B[X0 i]

. . "2

liminf £ < <Llimsup—————.
o>+ O'p p t—>+0 tP

Then, the problem

p-1
A(|Au|'°_2 Au) —{M U|Vu|'D dxﬂ Au+plulfu=f(xu) in
Q

u=Au=0 on 0Q,

admits an unbounded sequence of weak solutions.

Corollary 2.1. Let f: R — R be a continuous function. Assume that (M) holds and

(i) F() =I f (s)ds > 0 for every t [0, +x);

(i) There exist X° €Q, s, >0 as considered in (1.8) such that
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N
2

5 —Nlimsupipt).
|Q|F(1+2J to+o 1

1) |

, the problem
sup., F (t) {

liminf

o>+ (o}

SUPy<o F(t) . L(EJN P

Then, for every A e I\Qp ] NN - ,
s . .
JL(SJ 7?2 Imsup# Q| liminf

t—+0 t o—>+0 (o2
p-1
A(|Au|p72 Au)—{M [.|‘|Vu|p dxﬂ Au+plu"u=f(u) in O
Q
u=Au=0 on 0Q,

admits an unbounded sequence of weak solutions.

Proof. We set F(X,t)=F(t) forall xeQ and t eR. Since

the result follows from Theorem 1.1.
3. A remarkable consequences

This section is concerned, as consequence of Theorem 1.1, with the existence of infinitely many

solutions for the following problem

p-1
A(|Au|p72 Au)—{M U|Vu|p dxﬂ Au+ plu)” u=Ag(x,u)+ uh(x,u) in Q
Q

u=Au=20 on 0Q),
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where p>max{1,%}, QcRN(N > 1) is a bounded smooth domain, 4, p>0, u>0, g:ﬁx R— R

is a continuous function, h: Qx R — R is a function such that h(.,t)is measurablein Q forall teR
and h(x,.) is continuous in R fora.e. xeQ and M: R — Ris a continuous function, which satisfies

the condition (M).
Let us now state our main results of this section.
Theorem 3.1. Assume that (M) holds and

(i;) G(x,t)= J g(x,s)ds >0 for every (X,t) e Qx [O, +oo);

(i) There exist X’ €Q, s, >0 as considered in (1.8) such that, if we put

j G(x,t)dx
IsupMSG G(x,t)dx B(xo,%j
a'=liminf £ , B =limsup ,
o—>+0 O'p t—>+o0 tp
one has
a'<Lp'. (3.2)
Then, for every
Jea=M |1 11
Kp |[LB' o'

t
for every function h: Qx R — R measurable in Q and continuous in R with H(x,1) =Ih(x, s)ds>0
0
forall (x,t)eQx R, satisfying the conditions
sup|h(.,t)| e L'(Q), forall o >0, (3.3)
MSO‘

J.supmgr H (x,t)dx
H_:= lim £ < oo, (3.4)
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and for every ue [0, ym[ where

M (1—1Kp‘f‘) it H, =0
/uh,,u = KpHoo M
+00 if H, =0,

problem (3.1) admits an unbounded sequence of weak solutions.

Kp? >0,and so x4, ; >0.

Proof. Our aim is to apply Theorem 1.1. To this end, fix A A'.Then 1- A

Let e [O, 7 [ If =0, the theorem gives back to Theorem 1.1. Let us assume that 0 < u < 4, ; and

L
M~ K
putﬂiizKL - and ﬂxz:z—p
pLA a'+2H

0

If H, =0, clearly we have ﬂe]ﬂl,ﬂxz[.

KpH '
If H, #0, it follows from u <y, ,that u I\F;I’OO +A Kpa

— <1, thatis A< ,andso A< 4,.

0

a'+“H
A

On other hand, by our hypothesis we have 4> /,. Hence A€ ]21, A [ Now set

F(x1) ::G(x,t)+%H(x,t), forall xeQ and te R.
Then

Isup‘t‘ga F(x,t)dx J.supMSG [G(x,t) + % H (x,t)} dx
Q Q

p p

o O

ISUPMSU G(x,t)dx ISUp\t\ga H (x, t)dx
<2 L Ho
< =

p

NS

o

and from (3.4), we deduce
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jsup‘t‘ga F(x,t)dx

a =liminf £ 5
o+ (o2
J.supMSG G(x,t)dx
<liminf £ +2H, (3.5)
o—>+0 O'p /1
P H..
A
Moreover, since H is nonnegative, we see that
j F(x, t)dx
0S
£ =limsup B(X 'E]
. t—>+o tp
J’ G(x, t)dx
B(xo%]
>limsup—————— (3.6)
t—>+0 tp
:ﬂ',

Therefore (3.5) and (3.6) yield

KDJL/?' aitn | Ke LB a
ﬂ/ o0
and hence
M™ 1 1

From (3.7), we observe that condition (1.9) is verified. Consequently, the conclusion follows by applying

Theorem 1.1.

Remark 3.1. If

Isupmga G(x,t)dx B[ O'SlJ
liminf £ =0 and limsup—~————— =+,

o>+ o P
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clearly condition (3.2) is verified and Theorem 3.1 ensures the existence of infinitely many weak

solutions for problem (3.1), for every (4, u) € |0, +o0[ x [O, KMH
p

{. Moreover, under the condition

o0

H_ =0 problem (3.1) admits infinitely many solutions, for every (4, i) € ]O,+00[ X [0,+00[ .
In view of Theorem 1.2, arguing as in the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Assume that (M), (i;) hold and

(iy) There exist X’ eQ, s, >0 as considered in (1.8) such that, if we put

J.supmgg G(x,t)dx B[XO Sl]

a® =liminf £ : B =limsup
o—0" O'p t—>0" tp

one has
a® <Lp”. (3.8)

Then, for every

o.M 11 1]
/IEA = KpJLﬂO.,aO.L

)

t
for every functionh: Qx R — R measurable in Q and continuous in [1 with H(x,t) = I h(x,s)ds>0
0

forall (x,t)eQx R, satisfying the conditions
sup|h(,t)| e L'(Q), forall o >0, (3.9)
t}<o

J.supMSG H (x,t)dx

Hy = lim Q p <o, (3.10)
o > O'

and for every ue [0, ym[ where
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— 0'
M [1—/1Kp0f j if H, #0
Uy, =9 KpH, M

oo if H, =0,

problem (3.1) admits a sequence (un) of weak solutions such that u, — 0 strongly.
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