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Abstract 
In the present paper, a numerical approach to efficiently calculate the solution of space fractional 

diffusion equations is investigated. The finite difference scheme and Chebyshev collocation method is 

applied to solve this problems. Also, the matrix form of the proposed method is obtained. The 

numerical examples and comparison with other methods shows that the present method is effective.  
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1. Introduction 

    The use of fractional partial differential equations (FPDEs) in mathematics, physics, engineering 

and chemistry has become increasingly popular in recent years [4, 8, 14]. 

    To obtain an analytical solution of this problems is extremely difficult thus many authors are 

seeking ways to numerically solve these problems. 

    Some different numerical methods have been proposed for solving FPDEs. Liu and et al. 

proposed method of lines to transform the space fractional Fokker-Planck equation into a 

system of ordinary differential equations [7]. Fix and Roop [5] developed a least squares 

finite element solution of a fractional-order two-point boundary value problems. Afrouzi and 

et al. [1] proposed Homotopy-perturbation method for a kind of Time-Fractional Evolution 

Equations. In [3] Darzi and et al. used Sumudu transform method for solving fractional 

differential equations and fractional Diffusion-Wave equation. Also Neamaty [13] solved 

Fractional Partial Differential Equation by Using Wavelet Operational Method. 
    Meerschaert, Tadjeran and et al. suggested three kinds of finite difference approximations which 

are the implicit Euler method, the explicit Euler method and the fractional Cranck-Nicholson method 
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for FPDEs based on shifted Grünwald formula. Also they derived some detailed stability and 

convergence analysis [10, 11, 12, 18, 19]. 

    The space fractional diffusion equations are a type of fractional partial differential equations which 

by many authors are solved numerically. For example Khader [6] used Chebyshev collocation method 

to discretize space fractional diffusion equations to obtain a linear system of ordinary differential 

equations and used the finite difference method for solving the resulting system. Saadatmandi and 

Dehghan [15] used tau approach and Sousa [16] applied splines to solve space fractional diffusion 

equations. 

    In this paper, we proposed a different approach to obtain the solution of space fractional diffusion 

equation  
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Note that for 2= , Eq.(1) is the classical diffusion equation  
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   This work presents a numerical method to solve this kind of problems using finite difference 

scheme and collocation method via Chebyshev polynomials. 

2. Description of the method 

    In this section, the process of solving the space fractional diffusion equations is described as in 1-4. 

    Let tntn  = , Mn ,...,0,1=  where 
M

T
t = , Ttt M = 0,=0 . 

    First, we use a finite difference technique and  weighted scheme [2] to discritize the time 

derivative.  
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Definition 1. [9] The well-known Chebyshev polynomials of the first kind of degree n  are defined on 

the interval 1,1][  as  

 )),(arccos(cos=)( xnxTn  

where 1=)(0 xT , xxT =)(1  and they satisfy the recurrence relations:  

 .1,2,=),()(2=)( 11   nxTxxTxT nnn  

     In order to use these polynomials on the interval [0,1]  we define the so called shifted Chebyshev 

polynomials by introducing the change of variable 12= xz . The shifted Chebyshev polynomials 

are defined as: 1)(2=)(  xTxT nn . 

    Now we expand )(xun  by shifted Chebyshev polynomials:  
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 where 
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    From equation (6) and (7) we obtain: 
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     In order to find the unknown coefficients, Chebyshev collocation method with collocation points 
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 Also boundary conditions (3) and (4) for 10,1,...,= Mn  are used to obtain:  
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    Therefor eqautions (9)-(11) generate a set of (N+1) algebraic equations, which can be solved for 

unknown coefficients. 

    Clearly )(0 xu  can be obtained from the initial condition (2) as follows:  

 )(=),(=)( 00 xgtxuxu  

3. The matrix form of the proposed method 

    In order to find the matrix form of suggested method, first by using (9) for 11,2,...,= Nk  we 

obtain the preliminary matrices, 
T  and .Q  Finally by using (10) and (11) the matrix form for this 

method is 

Atchieved. 

    Let 
Tn

N

nnn uuuu ],...,,[=][ 121   and 
Tn

N

nnn rrrr ],...,,[=][ 10  where 11,2,...,= ),(= Nkxuu kn

n

k . 
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From (7) we obtain 
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    Therefor the matrix form for this equations is as follows:  
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    Note that 0=)( * xTD j


 for 1][0,1,...,= j  thus 0=ijq  for j=1,2. 

    Therefore above matrices and equations (9) for 11,2,...,= Nk  leads to the following matrix 

form: 
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    Now by using boundary conditions (10), (11) and relation (12) we obtain the matrix form of our 

method as follows:  
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matrix B  is obtained by adding two zero rows to the first and last row of matrix ) )((1  TQt
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4.  Numerical examples 

    In this section, we consider some examples of proposed scheme for the space fractional diffusion 

equations and for showing the accuracy, efficiency and validity of the method, we compare the our 

numerical results with other methods. 

Remark: In all of examples the time step is taken as 0.001=t  and 
2

1
= .  

Example 4.1. [15] Consider the following space fractional diffusion equation  
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on a finite domain 1<<0 x , with the diffusion coefficient 

,(1.5)=)( 0.5xxp   

the source function 
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with the initial condition 
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and the boundary conditions 

1)(sin=)(0, ttu ,       1)(sin2=)(1, ttu ,     for   0.>t  

    The exact solution of this problem is 1)(sin1)(=),( 2  txtxu . 

     We applied the present method with 2=N  and compared absolute error function 

|,1)(,1)(| xuxu approx  of our scheme with the method in [15] which are shown in Table 1. In Table 2 

the maximum absolute errors for ...,0.9,10,0.1,0.2,=t  and 1<<0 x  are reported. 

    Also, figure 1 shows the exact solution and approximate solution for u(x, 1) with 2=N . Note that 

the matrices A and B for this example are as follows: 
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    Easily seen that A  is non-singular matrix and the spectral radius of matrix BA
1

 is less than one 

therefore the proposed method has unique solution and is unconditionally stable [17]. 

 

Table 1: Comparison of present method for ,1)(xu  with the tau method [15] for Exa. 4.1. 

 x  7m with [15] Method   2N with methodpresent   

0.1  5104.66     
7109.34   

0.2  5107.74     
6103.23   

0.3  5105.00     
6106.29   

0.4  5102.30     
6109.54   

0.5  5102.74     
5101.45   

0.6  5104.38     
5103.27   

0.7  5103.87     
6101.26   

0.8  5101.01     
6101.26   

0.9  6103.35     
7101.43   

 

Table 2: Absolute errors for example 4.1 with N=2 in domain 1<<0 x  

  t  |),(),(| txutxu approx  

  0                                    0  

0.1                                    8102.24   

0.2                                    8103.20   

0.3                                    7104.33   

0.4                                    7107.79   

0.5                                    7108.25   

0.6                                    6102.40   

0.7                                    6104.30   

0.8                                    6105.44   

0.9                                    5104.54   

  1                                   5106.21   
 

 

Figure 1:  Approximate solution and exact solution for ,1)(xu  with 2=N  for Ex. 4.1 
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Example 4.2. [15] In this example, we consider the following space fractional diffusion equation:  
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with the initial condition 

,=,0)( 32 xxxu   

and the boundary conditions 

0=)(0,tu ,       0=)(1,tu ,     for 0.>t  

    The exact solution of this problem is .)(1=),( 2 texxtxu  We solved this equation by using 

proposed method and in Table 3 we compared our results with results of obtained in [6, 15]. Also in 

Table 4 maximum absolute errors for .,1.8,2.,1,1.2,..0.2,0.4,..=t  and 1<<0 x  are reported. 

    Also, figure 2 shows the exact solution and approximate solution for u(x, 2) with 3=N . Note that 

the matrices A  and B  for this example are as follows: 
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1.00130.50030.51

1.00810.50390.51
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.
0000

0.99870.49970.51

0.99190.49610.51

0000

=











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B  

    Easily seen that A  is non-singular matrix and the spectral radius of matrix BA
1

 is less than one 

 therefore the proposed method has unique solution and is unconditionally stable.  

 

Table 3: Comparison of absolute errors for ,2)(xu  for example 4.2. 

x  Method [6] with m=5 Method [15] with m=5 present method(N=3) 

0.0  5102.74   0.0  0.0  

0.1  5104.20   
6104.47   

7103.15   

0.2  5103.76   
7102.78   

7104.23   

0.3  5108.44   
6105.81   

7102.94   

0.4  5103.27   
5101.02   

6105.70   

0.5  5103.61   
5101.17   

5106.28   

0.6  5101.94   
5101.08   

5101.05   

0.7  5102.95   
6108.54   

6102.43   

0.8  5104.92   
6106.06   

6108.50   

0.9  5102.83   
6103.67   

7107.68   

0.1  5107.73   0.0  0.0  
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Table 4: Absolute errors for example 4.2 with N=3 in domain 1<<0 x  

   t  |),(),(| txutxu approx  

  0                                    0  

0.2                                                 7104.05   

0.4                                     7104.81   

0.6                                     7106.91   

0.8                                      6101.21   

  1                                    6105.00   

2.1                                     6107.26   

4.1                                    5102.48   

6.1                                     5103.21   

8.1                                     5106.60   

  2                                    5108.00   

 

Figure 2:  Approximate solution and exact solution for ,2)(xu  with 3=N  for Ex. 4.2 

 

Example 4.3. [16] Consider the problem (1) with initial condition 

1<<0  ,=,0)( 4 xxxu  

and boundary conditions 

0=)(0,tu ,  .=)(1, tetu 
 

     Let 
 xxp )(5

24

1
=)(   and .2=),( 4xetxv t  The exact solution for this problem is 

.=),( 4xetxu t
 

    We solved this problem by applying the present method. In Table 5, we obtained the maximum 

errors between the exact solution and the approximate solution for different values of   for 4=N  

in finite domain 1,0  tx . 

    Also, figure 3 shows the exact solution and approximate solution for u(x,1) with 4=N  for 

1.2= . The matrices A  and B  for this example for 1.2=  are as follows: 
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,
11111

1.00010.70720.0000060.70711

1.00060.00011.000201

1.0030.70890.00060.70711

11111

=































A  

 

.
00000

0.99980.70710.0000060.70711

0.99940.00010.999801

0.99730.70530.00060.70711

00000

=





























B  

    Easily seen that A  is non-singular matrix and the spectral radius of matrix BA
1

 is less than one 

therefore the proposed method has unique solution and is unconditionally stable. 

    Note that in [16] this problem has been solved by finite difference method and splines. The 

maximum errors for 1.4=1.2,=  , 1.5=  and 1.8=  with 
30

1
=x  are 

3100.3566  , 

3100.24616  , 
3100.2067   and 

3100.1150   respectively. 

 

   Table 5: The absolute errors for N=4 and different values of   for example 4.3 

  t  1.2=  1.4=  1.5=  1.8=  

0.1  7104.89   
7103.24   

7102.43   
7101.04   

0.2  7106.22   
7105.68   

7103.73   
7101.74   

0.3  7107.36   
6102.71   

7106.15   
7104.26   

0.4  7108.00   
6104.12   

7108.57   
7105.91   

0.5  6101.38   
6105.19   

6101.88   
7107.09   

0.6  6104.12   
6108.06   

6102.15   
6102.49   

0.7  6107.24   
5104.94   

5101.67   
6102.80   

0.8  5102.73   
5105.16   

5101.89   
6104.55   

0.9  5105.40   
5107.63   

5104.53   
5103.25   

  1  5106.93   
5108.44   

5106.34   
5102.43   

 

 

Figure 3:  Approximate solution and exact solution for ,1)(xu  with 4=N , 1.2= . 
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       5. Conclusion 
    In this paper, finite difference scheme and Chebyshev collocation method have been successfully 

applied to find the solution of the space fractional diffusion equations. Sine using matrix form of the 

method is more convenient for application of collocation method, thus the matrix form of the 

proposed method was obtained. The results and comparison of the our proposed method and other 

methods indicate that this scheme is accurate and efficient approach for the solution of this problems. 

Proposed method for the examples of this paper was unconditionally stable but, unconditionally stable 

for the general case is open problem. 
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