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Abstract 
Distribution in routing algorithms based on food sources is a critical issue and the desired 

result could not be achieved through the old algorithms. For this purpose, participation of all 

sources through balanced distribution has been made in this proposed algorithm. In this paper, 

an improved routing algorithm based on distributed food sources is presented using the ant 

colony optimization. DRAFS algorithm helps us find the shortest path in order that we can 

generate a competence function, with the help of index parameters, to provide an optimal 

solution compared with other algorithms. Observing the distance and time parameters in 

finding the optimal solution, we introduce a target function which is accompanied by an 

increase in the algorithm efficiency. Comparing DRAFS algorithm with the previous routing 

algorithms, we have enjoyed the ants’ collaboration mechanism that results in the ants with 

high efficiency guiding the ants with low efficiency. Consequently, an optimal quality is 

achieved in the algorithm compared with the existing solutions. Finally, these two techniques 

help us improve the efficiency and reliability of the algorithm and, in comparison with 

previous algorithms, provide a distributed food source to reduce time accessibility to the source 

in large datasets. 
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1. Introduction 

The use of ant colony optimization (ACO) as an optimization technique in order to reach an 

optimal solution, or a set of approximate solutions to a range of problems in specific areas 

has evolved over the years. The first ACO algorithm was published by Marco Dorigo called 

Ant System (AS). ACO is metaheuristics used to find the best paths in a graph with respect 

to the predefined functional ones. This algorithm has been successfully applied to a variety 

of problems, and was first applied on the traveling salesman problem (TSP), where the goal 

was to find a closed tour of minimal length connecting n given cities with each city visited 

once and only once [13]. 

For many years, researchers and scientists, inspired by the environment, have managed to 

invent methods in order to address the existing issues, particularly issues that are NP-

complete. Ant colony method is one of the technical approaches to solving NP-complete 

problems using the current state of the environment. 

Using ACO algorithms with invariance property is definitely desirable for at least two main 

reasons: first, it reduces possible numerical problems in the implementations and therefore 

contributes to enhance the stability of the algorithm; second, it greatly improves the 

readability of the solution process [11]. 

Distribution is an important issue in generating efficient and optimal algorithms, such as 

ACO. In the distributed systems, each layer provides service for the upper layer, and of 

course the upper layer has to request this service. It should be noted that in the distributed 

system, cost is higher than centralized systems [7]. 

Basically, routings are divided into several categories: single–path and multi–path routings, 

source routing and next step, hierarchical and flat routings, centralized and distributed 

routings, data–centric and address–centric routings, QoS–based and best–effort routings, 

event–driven and queue–based routings and ant-net routing [20]. Ant-net routing using ant 

colony optimization technique provides a better result than others due to its real time 

computation and less control overhead. Comparing all routing algorithms with ACO, it is 

concluded that ants are relatively small, can be piggybacked in data packets and more 

frequent transmission of ants may be possible in order to provide updates of routing 

information for solving link failures. Routing in ACO is achieved by transmitting ants rather 

than routing tables. 

ACO algorithm [18] minimizes complexity in the nodes at the expense of the optimality of 

the solution, and results to be particularly suitable in environments where fast 

communication establishment and minimum signaling overhead are requested. A fault 

tolerant routing protocol [19] using greedy ACO routing mechanism may tend to choose 

single path. 

In the second part of this paper, the function of ant colony optimization and the related 

works done previously on it will be discussed. In the third part, the main task and the 
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formulas which include presenting the new algorithm and competence function will be 

analyzed in order to improve the effective function of the algorithm. Then, related 

simulations are conducted along with a comparison made between the proposed method 

with that of TSIACO and ACODA. In the last part, a conclusion will be presented. 

2. Related Works 

The basic idea of ACO-type algorithms applied to a combinatorial optimization problem to 

minimize a single objective function consists of four interwoven rules. First, each ant of the 

colony concurrently, independently, and asynchronously constructs a solution by selecting 

components and using a probabilistic rule (p) that considers both the experience acquired 

during the search (through τ, the trace of pheromone deposited)  and heuristic information of 

the related components (η) [17]. 
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The next stage optionally applies a local search method to improve the solutions. In the third 

stage, the pheromone trails are updated: the pheromone that stands for the weight of a graph 

edge evaporates after each iteration [2] (ρ is the evaporation rate), consequently the trace 

values are decreased and increased by deposited pheromone in the components used to 

construct solutions. 

 (2) 

 

The net change in the pheromone value depends on the contributions of these two updating 

processes. Δτ equals Q/LS, where Q is the quantity of trail laid by ants and LS is the length of 

the shortest path. 

Finally, in the last stage, the best solution found since the start of the algorithm (the best-so-

far solution) is updated if a better solution is found. 

Then, the algorithm iterates until a given stop condition is reached. ACO returns the best-so-

far solution, when the stop condition is accomplished. Since the shorter paths have a higher 

traffic density, they can accumulate higher proportion of pheromone. Hence, the probability 

of ants following these shorter paths would be higher than that of those following the longer 

ones [1].  

An ant colony optimization algorithm should have the following basic characteristics: an 

appropriate problem representation; a probabilistic transition rule which determines which 

node an artificial ant should visit next; a fitness function which determines the quality of the 

solution built by an artificial ant; a pheromone update rule which specifies how the 

modification of the pheromone trail laid along the edges of the graph will happen. For more 
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information and details about ACO-related methods the reader is advised to read the work of 

[9, 12]. 

2.1. Two-stage updating pheromone for invariant ant colony optimization (TSIACO) 

algorithm 

In TSIACO algorithm, ordinal update rule is introduced. Compared with standard ACO 

algorithms, the quality function uses the solution order as its independent variable in one 

iteration. Using independent variable with problem dimension instead of solution as an 

independent variable for quality function can get an invariant ACO algorithm inherently [3]. 

Standard ACO algorithms with random proportional rule are independent of the scale of the 

problem under some conditions [11]. TSIACO algorithm also employs the random 

proportional rule. But the pheromone trail is updated stage by stage. In one stage, the first r 

iterative optimal solutions are employed to enhance search capability, and in another stage, 

only optimal solution is used to accelerate the speed of convergence. 

In TSIACO algorithm, the pheromone trail is limited to the interval [τmin, τmax], where in 

general case, τmax is 0.999 and τmin is 0.001. The limits in TSIACO are not to be updated 

every time when a new best-so-far solution is found. 

There are two methods to determine the update stage. One is hard partition. That is, if 

NC<m1Nmax, use the first r solutions update pheromone trail; otherwise, use the iteration-

best solution or the global-best solution update pheromone trail, where Nmax is a maximum 

number of algorithm iterations, 0 <m1< 1 is a real number, and NC is an iteration number. 

The similar partition method is also introduced in [8, 10]. The second method is soft 

partition. That is, if cf<c1, use the first r solutions update pheromone trail; otherwise, use the 

iteration-best solution or the global-best solution update pheromone trail, where cf is 

convergence factor, and c1 is 0 <c1< 1. 

 

2.2. Ant colony optimization on a distributed architecture (ACODA) 

In this paper we have made use of the distribution feature of ACODA to distribute food 

sources. ACODA allows the distributed, asynchronous and decentralized implementation of 

ACO.  In this method the physical environment of the ants is conceptualized, represented 

and implemented as a distributed system [4]. The distribution of the ants is influenced more 

by the environment than by their interactions [14]. By distributing the food sources on 

several machines, the communication load is divided between them, thus resulting in the 

execution time being reduced. Whenever an ant completes a tour by reaching its destination 

node, it moves to the next district with more food source. 

Various suggestions have been offered for ACODA and each of them carries its own 

particular design, competence function and update.  Some of these suggestions have been 

presented in [5, 15, and 16]. 
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Table1. Introducing the parameters used in DRAFS algorithm 

Definitions Parameters 
Number of ants 

Number of nodes 

Number of districts 

Velocity of ants as a set of attributes 

Size of ants as a set of attributes 

Age of ants as a set of attributes 

Weight of ants as a set of attributes 

( i= 1, ... , mant ) 

Ants of high efficiency 

Ants of low efficiency 

Amount of food in nodes in each district 

( j= 1, ... , n ) 

Shortest path from origin to destination 

Proportion of F to S (k= 1,...,d) 

Total amount of food in nodes is high 

Total distance between nodes is high 

Total amount of food in nodes is low 

Total distance between nodes is low 

mant 

n 

d 

vi 

hi 

ai 

wi 

 

mh 

ml 

Fj 

 

S 

Ck 

HF 

HD 

LF 

LD 

 

 

3. Proposed algorithm 

In this paper, a target function has been introduced that leads to a high efficiency of the 

proposed algorithm by optimizing the distance and time parameters existing in the previous 

algorithms. By making use of the invariance feature of ACO algorithm and, also, two-stage 

updating of pheromone and using the distributed food sources, we can access an optimal 

DRAFS algorithm. Taking into account the importance and complexity of the decentralized 

and distributed environments, a fast and optimal algorithm can play a key role in increasing 

the productivity of a system. In order to optimize the previous algorithms, DRAFS uses the 

heuristic information (η) parameter. η is considered one of the most important factors in 

ACO. Presumptions and formulas have been presented to calculate various heuristics and 

results have been achieved through simulations. Considerable results based on a new 

definition of η and calculating its value have also been produced. 

We have been able to prevent undesired solutions (as far as the amount of distance and time 

is concerned) by exerting a set of attributes on ants by encouraging collaboration among 

weak ants (ants of low efficiency), and strong ants (ants of high efficiency). Consequently, 

this has reduced the existing time and calculation complexities in the previous cases. 
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Table2. h (size of ants), v (velocity of ants), a (age of ants), and w (weight of ants) 

Type of ants  

(efficiency) 

m Set of attributes 

 

 
 

 

[0.5  3] 

 [3   4]             

 

Low ( h,v) , High ( a,w ) 

High ( h,v) , Low ( a,w ) 

 

 

 

Equations related to DRAFS algorithm will be mentioned later. 

)()*( iiiii wahvm 
  

i=1,...,mant              (3) 

 

Parameter m, here, is the set of attributes implemented on ants which includes speed (v), 

size (h), age (a), and weight (w). In Table 1, all parameters used in proposed algorithm have 

been shown. In Table 2, by using these parameters and based on the values defined for them, 

we have assumed intervals 0.5 to 4 for parameter m. 

These intervals can vary in different experiments.  

 
(i) Generating solutions by weak and strong ants individually 

 

 
(ii) Encouraging collaboration among weak and strong ants to find the shortest path 
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(iii) Finding the best solution considering the food source with the largest mass 

Fig1.  (Ants of high efficiency),  (Ants of low efficiency) 

 

 

By encouraging collaboration among weak and strong ants, undesirable solutions are 

prevented which is defined by M. ml represents ants whose value of m is at 0.5 to 2 intervals, 

that is, ants of low efficiency; and mh represents ants whose value of m is at 2 to 4 intervals, 

that is, ants of high efficiency. Every time ml with the least value is added to mh with the 

highest value and this goes on. 

 

l
m

h
mM 

                 (4) 

 

As shown in Figure 1, first in (i), ants start finding solutions. Considering the power and 

strength of these ants, those with better attributes choose better solutions compared with ants 

of low efficiency. As this goes on, however, in (ii), by encouraging collaboration among 

ants of high efficiency and ants of low efficiency, longer solutions and lower access to food 

source are prevented. Finally, in (iii), ants manage to find the best path with shorter length 

and access to more food source, and consequently the efficiency increases.  

By distribution we divide the structure of the related instances into districts. In this article 

we refer to Sh07, Lau15, Bays29, Dantzig42, and Wg59 instances selected from TSPLIB 

[6]. 

As shown in Figures 2, 3 and 4, the graph respecting Sh07, Lau15, and Bays29 consists of 7, 

15, and 29 nodes respectively where the amount of food source from node (i) to node (j) and 

length of these two has been shown as ( F(i), F(j), Di,j) on each edge. Values of F have been 

considered for the processors of which the intervals are at 0.5 to 5 that we have assumed in 

this experiment.  By calculating the ratio of the weight of processors (∑F) to the shortest 

path in that district, priorities are given to these districts called C parameter. The more this 

ratio (C), the higher the priority of that district is. Because this higher ratio shows that the 

amount of food is more in that district (HF) and the distance to be traveled is less (LD). The 

less this ratio (C), the less the priority of that district is. Because this lower ratio shows that 

the amount of food is less in that district (LF) and the distance to be traveled is more (HD). 

HF is attributed to a district when the sum of foods is at 12 to 20 intervals, and LF is 
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attributed to a district when the sum of foods is at 1.5 to 11.5 intervals, supposing all the 

nodes contain food. All the above intervals were assumed by the authors, which can vary in 

different experiments. In Table 3, 4, 5 and 6 the values for the instances have been 

mentioned. Priorities are given to the districts according to these values. k is the number of 

districts, Sum of Foods is the total amount of food sources in each district, and Shortest Path 

is the shortest distance between the nodes in each district a, b, c… 

Therefore, efficiency will be increased in the algorithm by moving from the district of 

higher priority, that is, the district with larger C, to the district of lower priority, that is, the 

district with smaller C.  

 

S
j

F
k

C 

    k=1,..., d           (5) 

 

j doesn’t include all the nodes but covers only the nodes in each district.  

 

Table3. Data set of Sh07 with k=2 

Districts Sum of Foods Shortest Path C 

a 12 83 0.144 

b 5 47.2 0.105 

 

 

 

 

 
Fig2. Graph of Sh07 

 

 

 

Regarding Sh07, C is calculated for each district taking into account the sum of foods, 

which we had defined earlier, and length of edges in this instance, as shown in Table 3. That 

is, we move from the district of high priority, a, to the district of low priority, b (see Figure 

2). 
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Table4. Data set of Lau15 with k=4 

Districts Sum of Foods Shortest Path C 

a 18 71 0.253 

b 16 108 0.148 

c 7 49 0.142 

d 6 82 0.073 
 

 

 

 

 

 
Fig3. Graph of Lau15 

 

As far as Lau15 is concerned, it is divided into four districts and C is calculated for each one 

as shown before (see Table 4). Movement from one district to the other one has been shown 

in Figure 3.  

 

Table5. Data set of Bays29 with k=6 

Districts Sum of Foods Shortest Path C 

a 13 414 0.031 

b 12.5 404 0.03 

c 13 436 0.029 

d 12.5 588 0.021 

e 8.5 474 0.017 

f 10.5 721 0.014 
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Fig4. Graph of Bays29 

 

Six, ten, and twelve districts are divided into Bays29, Dantzig42, and Wg59 respectively as 

above.As observed in the instances discussed earlier, so far we have moved from districts 

with high foods to those with low foods considering, of course, the distance between the 

nodes. In some cases, in order to avoid very long distances, we may have to overlook 

districts with high foods and select the ones with lower foods. Furthermore, in most cases, 

according to the routing algorithms, we start from districts with high distance to those with 

lower distance. However, in instances like Sh07, in order to improve the algorithm, due to 

the lack of sufficient food sources in the district with low distance we may have to ignore it 

and select district with a little longer distance but with more food source. At any rate, the 

criteria for prioritization of districts will constantly be parameter C. 

The pseudo-code respecting the execution of the proposed algorithm has been shown in 

Figure 5: 

Set parameters, initialize pheromone trails 

Consider attributes set for ants; 

m= getM(); 

M= mh+ml; 

For each districts: 

i= 1,…,k; 

i= i+1; 

Ci= ∑Fj /S; 

Prioritization based on the value of C; 

While Iteration <n_cycle 
Construct ants solutions; 

p= getP(); 

Update pheromone trail 

End 

End 
 

Fig5. Pseudo-code of DRAFS Algorithm 
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Therefore, by implementing M and C parameters in the heuristic information, the formula 

will be as follows: 

 

TaskCMg i )**(
            (6) 

 

Where g > 0 is an arbitrary constant. 

The heuristic information for the distance traveled from the origin to the destination is 

calculated as follows: 

 

DTaskCMg i _)**(
            (7) 

 

The heuristic information for the time of Task implementation and the time taken to go from 

the origin to the destination is calculated as follows: 

 

TTaskCMg i _)**(
            (8)                                                  

 

In the algorithm, if q<q0, where q is selected randomly, the best Task is selected regarding 

the competence function, otherwise task selection will be carried out randomly. 

After each ant selects the next node using Formula (1), of which η has been defined as 

above, pheromone value is updated by a local pheromone updating rule. Then, after all ants 

have completed their solutions at the end of each iteration, pheromone values corresponding 

to the best-so-far solution are updated by a global pheromone updating rule using Formula 

(2). 

Once all the districts have been covered, the algorithm will end. 

The flowchart respecting the execution of the proposed algorithm has been shown in Figure 

6: 
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No 

No 

Yes 

Yes 

Start 

Ci+1 > Ci 

 

Number of 
districts > k 

 

Print the best solution 

 

M = mh + ml 

 
 

 

Stop 

i= 1,…, k 
 

η = (g*M *Ci )/ Task 

 

Input α, β, Q, q0, mant , and 

distance, time, attribute set matrix 

Initial input τ0, F, S 

 

Graph division into k 

districts 
 
 

mm_ant = (v*h) / (a+w) 

i ++ 
 

Ci = ∑Fj / S 

τnew(i,j) = (1-ρ)*τold(i,j) +ρ*Δτ(i,j) 

 

Fig6. DRAFS Flowchart 

 

4. Simulation and Analysis 

In this part the implementation of the previous algorithms and the proposed one has been 

taken into consideration in programming and simulation environments. In the end, a 

comparison and evaluation of the results achieved from the implementation of the 

algorithms are presented in the form of graphs based on the distance and time for the 

previous algorithms and the proposed one. Number of iterations was set as 100. These 

experiments have been carried out on five instances which are, of course, applicable to any 

other instance. 
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Since experiments on small datasets such as Sh07 and Lau15, compared with larger ones, 

like Bays29, Dantzig42, and Wg59, do not have significant effect and are not of 

considerable improvement; therefore we have just shown the experimental results excluding 

the simulations of small datasets. The reason for this is that distributed food sources are 

more usable for large datasets. 

Results of the simulation along with the distance and time optimization have been shown in 

Table 6. 

Compared with the previous algorithms, DRAFS indicates less time complexity and more 

efficiency. 

 

4.1. Choosing the parameters of the algorithm 

A range of parameters affect the proposed algorithm. Some of them play a more important 

role in the execution of the algorithm. Simulation and analysis in this paper based on giving 

preliminary value to the parameters is as follows: ncycle=100, α=1, β=6, mant=100 and 

τ0=0.05. 

Experiments have been carried out based on the varied rates of evaporation and the results 

achieved will be discussed later. It should be noted that, taking into account the results, we 

have used the lower evaporation rate here, that is, ρ = 0.001. 

Four controlling variables play an important role in the algorithm presented: α, pheromone 

effect; β, heuristic information effect; ρ, pheromone evaporation rate; and τ0, threshold for 

pheromone at the beginning of the algorithm. The influence of these four parameters has 

been studied thoroughly in the algorithm.  

Simulations in Figures 7, 8, and 9 show the distance and time optimizations for Bays29, 

Dantzig42, and Wg59. 

Table6. Experimental results 

 

     Instance    Algorithm  k  Dmin Davg  Tmin Tang 

 

    Sh07     TSIACO  2  66 44  10.86 7.63 

     ACODA    66 55  13.2 11 

             DRAFS    66 51  11 9.02 

 
    Lau15    TSIACO  4  345 288  70.4 59.8 

     ACODA    385 290  72.8 65.6 

         DRAFS    380 293  71.8 63.7 

 
    Bays29    TSIACO  6  2111 2182.7  669.5 706 

     ACODA    2152 2199  661 678.5 

             DRAFS    2047 2109  647 703 

 
    Dantzig42    TSIACO  10  845 867  547 569.2 
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             ACODA    848 884.5  562 576 

             DRAFS    818 887.5  538 555.5 

 
    Wg59     TSIACO  12  1192.5 1304.7  721 751 

             ACODA    1204 1268  718 753 

             DRAFS    1127 1218.5  708 737.5 

 

 

 

Fig7. Graphical representation of distance and time optimization for Bays29 

 
 

Figure8. Graphical representation of distance and time optimization for Dantzig42 

 
 

Figure9. Graphical representation of distance and time optimization for Wg59 
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5. Effect of ants collaboration in generating solutions on ρ 

In the first step, by using Bays29, a mode is considered where a solution is found only by 

implementing a set of attributes on the ants. In this case, by carrying out various 

experiments based on varied evaporation rates, we prove that an optimal solution can be 

reached with larger evaporation rate traveling less distance in shorter time. Therefore, an 

evaporation rate of higher amount has to be used when ants do not collaborate with each 

other. As shown in Figure 10, using the evaporation rate of 0.005 has led to a better result. 

 

Fig10. Without ants’ collaboration 

 

Now we consider a mode where a solution is generated by both implementing a set of 

attributes on ants and encouraging collaboration among them. In this case, by carrying out 

various experiments based on varied evaporation rates, we prove that the less the 

evaporation rate is, we can reach an optimal solution by traveling less distance and using 

shorter time. Therefore, when ants collaborate with each other, an evaporation rate of lower 

amount should be used. As shown in Figure 11, using the evaporation rate of 0.001 has led 

to a better result. 

 

Fig11. With ants’ collaboration 
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6. Conclusion 

Results of the experiments indicate that by making use of the distributed food sources, 

DRAFS has managed to show more improvements than other routing algorithms. This high 

efficiency and less complexity in the proposed algorithm have led to a high improvement 

compared with TSIACO and ACODA. The average improvement in the proposed algorithm 

for distance optimization amounts to 3.77 and for time optimization is 2.29 compared with 

TSIACO. And as far as ACODA is concerned, the average improvement in the proposed 

algorithm for distance optimization amounts to 5.04 and for time optimization is 2.47. 
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