
Journal of mathematics and computer science 8 (2014), 265-281

DRAFS: A Routing Algorithm based on Distributed Food Sources

using Ant Colony Optimization

 a
Arash Ghorbannia Delavar,

 a
Emetis Niazmand,

 a
Javad Bayrampoor,

b
Vahe Aghazarian

aComputer Science Department, Payame Noor Universtiy, PO BOX 19395-3697, Tehran, Iran

bIslamic Azad University, Central Tehran Branch, Tehran, Iran

 a_ghorbannia@pnu.ac.ir, emetis.niazmand@yahoo.com, javadbayrampoor@yahoo.com,

v_aghazarian@iauctb.ac.ir

Article history:

Received July 2013

Accepted August 2013

Available online August 2013

Abstract
Distribution in routing algorithms based on food sources is a critical issue and the desired

result could not be achieved through the old algorithms. For this purpose, participation of all

sources through balanced distribution has been made in this proposed algorithm. In this paper,

an improved routing algorithm based on distributed food sources is presented using the ant

colony optimization. DRAFS algorithm helps us find the shortest path in order that we can

generate a competence function, with the help of index parameters, to provide an optimal

solution compared with other algorithms. Observing the distance and time parameters in

finding the optimal solution, we introduce a target function which is accompanied by an

increase in the algorithm efficiency. Comparing DRAFS algorithm with the previous routing

algorithms, we have enjoyed the ants’ collaboration mechanism that results in the ants with

high efficiency guiding the ants with low efficiency. Consequently, an optimal quality is

achieved in the algorithm compared with the existing solutions. Finally, these two techniques

help us improve the efficiency and reliability of the algorithm and, in comparison with

previous algorithms, provide a distributed food source to reduce time accessibility to the source

in large datasets.

mailto:a_ghorbannia@pnu.ac.ir
mailto:emetis.niazmand@yahoo.com
mailto:javadbayrampoor@yahoo.com
mailto:v_aghazarian@iauctb.ac.ir

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

266

Keywords: Ant colony optimization, Distributed food sources, Ants’ collaboration.

1. Introduction

The use of ant colony optimization (ACO) as an optimization technique in order to reach an

optimal solution, or a set of approximate solutions to a range of problems in specific areas

has evolved over the years. The first ACO algorithm was published by Marco Dorigo called

Ant System (AS). ACO is metaheuristics used to find the best paths in a graph with respect

to the predefined functional ones. This algorithm has been successfully applied to a variety

of problems, and was first applied on the traveling salesman problem (TSP), where the goal

was to find a closed tour of minimal length connecting n given cities with each city visited

once and only once [13].

For many years, researchers and scientists, inspired by the environment, have managed to

invent methods in order to address the existing issues, particularly issues that are NP-

complete. Ant colony method is one of the technical approaches to solving NP-complete

problems using the current state of the environment.

Using ACO algorithms with invariance property is definitely desirable for at least two main

reasons: first, it reduces possible numerical problems in the implementations and therefore

contributes to enhance the stability of the algorithm; second, it greatly improves the

readability of the solution process [11].

Distribution is an important issue in generating efficient and optimal algorithms, such as

ACO. In the distributed systems, each layer provides service for the upper layer, and of

course the upper layer has to request this service. It should be noted that in the distributed

system, cost is higher than centralized systems [7].

Basically, routings are divided into several categories: single–path and multi–path routings,

source routing and next step, hierarchical and flat routings, centralized and distributed

routings, data–centric and address–centric routings, QoS–based and best–effort routings,

event–driven and queue–based routings and ant-net routing [20]. Ant-net routing using ant

colony optimization technique provides a better result than others due to its real time

computation and less control overhead. Comparing all routing algorithms with ACO, it is

concluded that ants are relatively small, can be piggybacked in data packets and more

frequent transmission of ants may be possible in order to provide updates of routing

information for solving link failures. Routing in ACO is achieved by transmitting ants rather

than routing tables.

ACO algorithm [18] minimizes complexity in the nodes at the expense of the optimality of

the solution, and results to be particularly suitable in environments where fast

communication establishment and minimum signaling overhead are requested. A fault

tolerant routing protocol [19] using greedy ACO routing mechanism may tend to choose

single path.

In the second part of this paper, the function of ant colony optimization and the related

works done previously on it will be discussed. In the third part, the main task and the

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

267

formulas which include presenting the new algorithm and competence function will be

analyzed in order to improve the effective function of the algorithm. Then, related

simulations are conducted along with a comparison made between the proposed method

with that of TSIACO and ACODA. In the last part, a conclusion will be presented.

2. Related Works

The basic idea of ACO-type algorithms applied to a combinatorial optimization problem to

minimize a single objective function consists of four interwoven rules. First, each ant of the

colony concurrently, independently, and asynchronously constructs a solution by selecting

components and using a probabilistic rule (p) that considers both the experience acquired

during the search (through τ, the trace of pheromone deposited) and heuristic information of

the related components (η) [17].













)),,((*)),((

)),,((*)),((

),(

ant
mkiki

ant
mjiji

jiP





 (1)

The next stage optionally applies a local search method to improve the solutions. In the third

stage, the pheromone trails are updated: the pheromone that stands for the weight of a graph

edge evaporates after each iteration [2] (ρ is the evaporation rate), consequently the trace

values are decreased and increased by deposited pheromone in the components used to

construct solutions.

 (2)

The net change in the pheromone value depends on the contributions of these two updating

processes. Δτ equals Q/LS, where Q is the quantity of trail laid by ants and LS is the length of

the shortest path.

Finally, in the last stage, the best solution found since the start of the algorithm (the best-so-

far solution) is updated if a better solution is found.

Then, the algorithm iterates until a given stop condition is reached. ACO returns the best-so-

far solution, when the stop condition is accomplished. Since the shorter paths have a higher

traffic density, they can accumulate higher proportion of pheromone. Hence, the probability

of ants following these shorter paths would be higher than that of those following the longer

ones [1].

An ant colony optimization algorithm should have the following basic characteristics: an

appropriate problem representation; a probabilistic transition rule which determines which

node an artificial ant should visit next; a fitness function which determines the quality of the

solution built by an artificial ant; a pheromone update rule which specifies how the

modification of the pheromone trail laid along the edges of the graph will happen. For more

),(*),(*)1(),(jiji
old

ji
new

 

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

268

information and details about ACO-related methods the reader is advised to read the work of

[9, 12].

2.1. Two-stage updating pheromone for invariant ant colony optimization (TSIACO)

algorithm

In TSIACO algorithm, ordinal update rule is introduced. Compared with standard ACO

algorithms, the quality function uses the solution order as its independent variable in one

iteration. Using independent variable with problem dimension instead of solution as an

independent variable for quality function can get an invariant ACO algorithm inherently [3].

Standard ACO algorithms with random proportional rule are independent of the scale of the

problem under some conditions [11]. TSIACO algorithm also employs the random

proportional rule. But the pheromone trail is updated stage by stage. In one stage, the first r

iterative optimal solutions are employed to enhance search capability, and in another stage,

only optimal solution is used to accelerate the speed of convergence.

In TSIACO algorithm, the pheromone trail is limited to the interval [τmin, τmax], where in

general case, τmax is 0.999 and τmin is 0.001. The limits in TSIACO are not to be updated

every time when a new best-so-far solution is found.

There are two methods to determine the update stage. One is hard partition. That is, if

NC<m1Nmax, use the first r solutions update pheromone trail; otherwise, use the iteration-

best solution or the global-best solution update pheromone trail, where Nmax is a maximum

number of algorithm iterations, 0 <m1< 1 is a real number, and NC is an iteration number.

The similar partition method is also introduced in [8, 10]. The second method is soft

partition. That is, if cf<c1, use the first r solutions update pheromone trail; otherwise, use the

iteration-best solution or the global-best solution update pheromone trail, where cf is

convergence factor, and c1 is 0 <c1< 1.

2.2. Ant colony optimization on a distributed architecture (ACODA)

In this paper we have made use of the distribution feature of ACODA to distribute food

sources. ACODA allows the distributed, asynchronous and decentralized implementation of

ACO. In this method the physical environment of the ants is conceptualized, represented

and implemented as a distributed system [4]. The distribution of the ants is influenced more

by the environment than by their interactions [14]. By distributing the food sources on

several machines, the communication load is divided between them, thus resulting in the

execution time being reduced. Whenever an ant completes a tour by reaching its destination

node, it moves to the next district with more food source.

Various suggestions have been offered for ACODA and each of them carries its own

particular design, competence function and update. Some of these suggestions have been

presented in [5, 15, and 16].

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

269

Table1. Introducing the parameters used in DRAFS algorithm

Definitions Parameters
Number of ants

Number of nodes

Number of districts

Velocity of ants as a set of attributes

Size of ants as a set of attributes

Age of ants as a set of attributes

Weight of ants as a set of attributes

(i= 1, ... , mant)

Ants of high efficiency

Ants of low efficiency

Amount of food in nodes in each district

(j= 1, ... , n)

Shortest path from origin to destination

Proportion of F to S (k= 1,...,d)

Total amount of food in nodes is high

Total distance between nodes is high

Total amount of food in nodes is low

Total distance between nodes is low

mant

n

d

vi

hi

ai

wi

mh

ml

Fj

S

Ck

HF

HD

LF

LD

3. Proposed algorithm

In this paper, a target function has been introduced that leads to a high efficiency of the

proposed algorithm by optimizing the distance and time parameters existing in the previous

algorithms. By making use of the invariance feature of ACO algorithm and, also, two-stage

updating of pheromone and using the distributed food sources, we can access an optimal

DRAFS algorithm. Taking into account the importance and complexity of the decentralized

and distributed environments, a fast and optimal algorithm can play a key role in increasing

the productivity of a system. In order to optimize the previous algorithms, DRAFS uses the

heuristic information (η) parameter. η is considered one of the most important factors in

ACO. Presumptions and formulas have been presented to calculate various heuristics and

results have been achieved through simulations. Considerable results based on a new

definition of η and calculating its value have also been produced.

We have been able to prevent undesired solutions (as far as the amount of distance and time

is concerned) by exerting a set of attributes on ants by encouraging collaboration among

weak ants (ants of low efficiency), and strong ants (ants of high efficiency). Consequently,

this has reduced the existing time and calculation complexities in the previous cases.

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

270

Table2. h (size of ants), v (velocity of ants), a (age of ants), and w (weight of ants)

Type of ants

(efficiency)

m Set of attributes

[0.5 3]

 [3 4]

Low (h,v) , High (a,w)

High (h,v) , Low (a,w)

Equations related to DRAFS algorithm will be mentioned later.

)()*(iiiii wahvm 

i=1,...,mant (3)

Parameter m, here, is the set of attributes implemented on ants which includes speed (v),

size (h), age (a), and weight (w). In Table 1, all parameters used in proposed algorithm have

been shown. In Table 2, by using these parameters and based on the values defined for them,

we have assumed intervals 0.5 to 4 for parameter m.

These intervals can vary in different experiments.

(i) Generating solutions by weak and strong ants individually

(ii) Encouraging collaboration among weak and strong ants to find the shortest path

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

271

(iii) Finding the best solution considering the food source with the largest mass

Fig1. (Ants of high efficiency), (Ants of low efficiency)

By encouraging collaboration among weak and strong ants, undesirable solutions are

prevented which is defined by M. ml represents ants whose value of m is at 0.5 to 2 intervals,

that is, ants of low efficiency; and mh represents ants whose value of m is at 2 to 4 intervals,

that is, ants of high efficiency. Every time ml with the least value is added to mh with the

highest value and this goes on.

l
m

h
mM 

 (4)

As shown in Figure 1, first in (i), ants start finding solutions. Considering the power and

strength of these ants, those with better attributes choose better solutions compared with ants

of low efficiency. As this goes on, however, in (ii), by encouraging collaboration among

ants of high efficiency and ants of low efficiency, longer solutions and lower access to food

source are prevented. Finally, in (iii), ants manage to find the best path with shorter length

and access to more food source, and consequently the efficiency increases.

By distribution we divide the structure of the related instances into districts. In this article

we refer to Sh07, Lau15, Bays29, Dantzig42, and Wg59 instances selected from TSPLIB

[6].

As shown in Figures 2, 3 and 4, the graph respecting Sh07, Lau15, and Bays29 consists of 7,

15, and 29 nodes respectively where the amount of food source from node (i) to node (j) and

length of these two has been shown as (F(i), F(j), Di,j) on each edge. Values of F have been

considered for the processors of which the intervals are at 0.5 to 5 that we have assumed in

this experiment. By calculating the ratio of the weight of processors (∑F) to the shortest

path in that district, priorities are given to these districts called C parameter. The more this

ratio (C), the higher the priority of that district is. Because this higher ratio shows that the

amount of food is more in that district (HF) and the distance to be traveled is less (LD). The

less this ratio (C), the less the priority of that district is. Because this lower ratio shows that

the amount of food is less in that district (LF) and the distance to be traveled is more (HD).

HF is attributed to a district when the sum of foods is at 12 to 20 intervals, and LF is

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

272

attributed to a district when the sum of foods is at 1.5 to 11.5 intervals, supposing all the

nodes contain food. All the above intervals were assumed by the authors, which can vary in

different experiments. In Table 3, 4, 5 and 6 the values for the instances have been

mentioned. Priorities are given to the districts according to these values. k is the number of

districts, Sum of Foods is the total amount of food sources in each district, and Shortest Path

is the shortest distance between the nodes in each district a, b, c…

Therefore, efficiency will be increased in the algorithm by moving from the district of

higher priority, that is, the district with larger C, to the district of lower priority, that is, the

district with smaller C.

S
j

F
k

C 

 k=1,..., d (5)

j doesn’t include all the nodes but covers only the nodes in each district.

Table3. Data set of Sh07 with k=2

Districts Sum of Foods Shortest Path C

a 12 83 0.144

b 5 47.2 0.105

Fig2. Graph of Sh07

Regarding Sh07, C is calculated for each district taking into account the sum of foods,

which we had defined earlier, and length of edges in this instance, as shown in Table 3. That

is, we move from the district of high priority, a, to the district of low priority, b (see Figure

2).

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

273

Table4. Data set of Lau15 with k=4

Districts Sum of Foods Shortest Path C

a 18 71 0.253

b 16 108 0.148

c 7 49 0.142

d 6 82 0.073

Fig3. Graph of Lau15

As far as Lau15 is concerned, it is divided into four districts and C is calculated for each one

as shown before (see Table 4). Movement from one district to the other one has been shown

in Figure 3.

Table5. Data set of Bays29 with k=6

Districts Sum of Foods Shortest Path C

a 13 414 0.031

b 12.5 404 0.03

c 13 436 0.029

d 12.5 588 0.021

e 8.5 474 0.017

f 10.5 721 0.014

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

274

Fig4. Graph of Bays29

Six, ten, and twelve districts are divided into Bays29, Dantzig42, and Wg59 respectively as

above.As observed in the instances discussed earlier, so far we have moved from districts

with high foods to those with low foods considering, of course, the distance between the

nodes. In some cases, in order to avoid very long distances, we may have to overlook

districts with high foods and select the ones with lower foods. Furthermore, in most cases,

according to the routing algorithms, we start from districts with high distance to those with

lower distance. However, in instances like Sh07, in order to improve the algorithm, due to

the lack of sufficient food sources in the district with low distance we may have to ignore it

and select district with a little longer distance but with more food source. At any rate, the

criteria for prioritization of districts will constantly be parameter C.

The pseudo-code respecting the execution of the proposed algorithm has been shown in

Figure 5:

Set parameters, initialize pheromone trails

Consider attributes set for ants;

m= getM();

M= mh+ml;

For each districts:

i= 1,…,k;

i= i+1;

Ci= ∑Fj /S;

Prioritization based on the value of C;

While Iteration <n_cycle
Construct ants solutions;

p= getP();

Update pheromone trail

End

End

Fig5. Pseudo-code of DRAFS Algorithm

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

275

Therefore, by implementing M and C parameters in the heuristic information, the formula

will be as follows:

TaskCMg i)**(
 (6)

Where g > 0 is an arbitrary constant.

The heuristic information for the distance traveled from the origin to the destination is

calculated as follows:

DTaskCMg i _)**(
 (7)

The heuristic information for the time of Task implementation and the time taken to go from

the origin to the destination is calculated as follows:

TTaskCMg i _)**(
 (8)

In the algorithm, if q<q0, where q is selected randomly, the best Task is selected regarding

the competence function, otherwise task selection will be carried out randomly.

After each ant selects the next node using Formula (1), of which η has been defined as

above, pheromone value is updated by a local pheromone updating rule. Then, after all ants

have completed their solutions at the end of each iteration, pheromone values corresponding

to the best-so-far solution are updated by a global pheromone updating rule using Formula

(2).

Once all the districts have been covered, the algorithm will end.

The flowchart respecting the execution of the proposed algorithm has been shown in Figure

6:

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

276

No

No

Yes

Yes

Start

Ci+1 > Ci

Number of
districts > k

Print the best solution

M = mh + ml

Stop

i= 1,…, k

η = (g*M *Ci)/ Task

Input α, β, Q, q0, mant , and

distance, time, attribute set matrix

Initial input τ0, F, S

Graph division into k

districts

mm_ant = (v*h) / (a+w)

i ++

Ci = ∑Fj / S

τnew(i,j) = (1-ρ)*τold(i,j) +ρ*Δτ(i,j)

Fig6. DRAFS Flowchart

4. Simulation and Analysis

In this part the implementation of the previous algorithms and the proposed one has been

taken into consideration in programming and simulation environments. In the end, a

comparison and evaluation of the results achieved from the implementation of the

algorithms are presented in the form of graphs based on the distance and time for the

previous algorithms and the proposed one. Number of iterations was set as 100. These

experiments have been carried out on five instances which are, of course, applicable to any

other instance.

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

277

Since experiments on small datasets such as Sh07 and Lau15, compared with larger ones,

like Bays29, Dantzig42, and Wg59, do not have significant effect and are not of

considerable improvement; therefore we have just shown the experimental results excluding

the simulations of small datasets. The reason for this is that distributed food sources are

more usable for large datasets.

Results of the simulation along with the distance and time optimization have been shown in

Table 6.

Compared with the previous algorithms, DRAFS indicates less time complexity and more

efficiency.

4.1. Choosing the parameters of the algorithm

A range of parameters affect the proposed algorithm. Some of them play a more important

role in the execution of the algorithm. Simulation and analysis in this paper based on giving

preliminary value to the parameters is as follows: ncycle=100, α=1, β=6, mant=100 and

τ0=0.05.

Experiments have been carried out based on the varied rates of evaporation and the results

achieved will be discussed later. It should be noted that, taking into account the results, we

have used the lower evaporation rate here, that is, ρ = 0.001.

Four controlling variables play an important role in the algorithm presented: α, pheromone

effect; β, heuristic information effect; ρ, pheromone evaporation rate; and τ0, threshold for

pheromone at the beginning of the algorithm. The influence of these four parameters has

been studied thoroughly in the algorithm.

Simulations in Figures 7, 8, and 9 show the distance and time optimizations for Bays29,

Dantzig42, and Wg59.

Table6. Experimental results

 Instance Algorithm k Dmin Davg Tmin Tang

 Sh07 TSIACO 2 66 44 10.86 7.63

 ACODA 66 55 13.2 11

 DRAFS 66 51 11 9.02

 Lau15 TSIACO 4 345 288 70.4 59.8

 ACODA 385 290 72.8 65.6

 DRAFS 380 293 71.8 63.7

 Bays29 TSIACO 6 2111 2182.7 669.5 706

 ACODA 2152 2199 661 678.5

 DRAFS 2047 2109 647 703

 Dantzig42 TSIACO 10 845 867 547 569.2

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

278

 ACODA 848 884.5 562 576

 DRAFS 818 887.5 538 555.5

 Wg59 TSIACO 12 1192.5 1304.7 721 751

 ACODA 1204 1268 718 753

 DRAFS 1127 1218.5 708 737.5

Fig7. Graphical representation of distance and time optimization for Bays29

Figure8. Graphical representation of distance and time optimization for Dantzig42

Figure9. Graphical representation of distance and time optimization for Wg59

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

279

5. Effect of ants collaboration in generating solutions on ρ

In the first step, by using Bays29, a mode is considered where a solution is found only by

implementing a set of attributes on the ants. In this case, by carrying out various

experiments based on varied evaporation rates, we prove that an optimal solution can be

reached with larger evaporation rate traveling less distance in shorter time. Therefore, an

evaporation rate of higher amount has to be used when ants do not collaborate with each

other. As shown in Figure 10, using the evaporation rate of 0.005 has led to a better result.

Fig10. Without ants’ collaboration

Now we consider a mode where a solution is generated by both implementing a set of

attributes on ants and encouraging collaboration among them. In this case, by carrying out

various experiments based on varied evaporation rates, we prove that the less the

evaporation rate is, we can reach an optimal solution by traveling less distance and using

shorter time. Therefore, when ants collaborate with each other, an evaporation rate of lower

amount should be used. As shown in Figure 11, using the evaporation rate of 0.001 has led

to a better result.

Fig11. With ants’ collaboration

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

280

6. Conclusion

Results of the experiments indicate that by making use of the distributed food sources,

DRAFS has managed to show more improvements than other routing algorithms. This high

efficiency and less complexity in the proposed algorithm have led to a high improvement

compared with TSIACO and ACODA. The average improvement in the proposed algorithm

for distance optimization amounts to 3.77 and for time optimization is 2.29 compared with

TSIACO. And as far as ACODA is concerned, the average improvement in the proposed

algorithm for distance optimization amounts to 5.04 and for time optimization is 2.47.

References

[1] C.J. Liao, Y.L. Tsai, C.W. Chao, An ant colony optimization algorithm for setup

coordination in a two-stage production system, Applied Soft Computing, 11 (2011) 4521–

4529.

[2] V.A. Gromov, A.N. Shulga, Chaotic time series prediction with employment of ant colony

optimization, Expert Systems with Applications, 39 (2012) 8474–8478.

[3] Z. Zhang, Z. Feng, Two-stage updating pheromone for invariant ant colony optimization

algorithm, Expert Systems with Applications, 39 (2012) 706–712.

[4] S. Ilie, C. Bădică, Multi-agent approach to distributed ant colony optimization, Science of

Computer Programming, 78 (2013) 762–774.

[5] S. Ilie, A. Bădică, C. Bădică, Distributed agent-based ant colony optimization for solving

traveling salesman problem on a partitioned map, in: Proceedings of the International

Conference on Web Intelligence, Mining and Semantics, WIMS ’11, ACM, 2011, 23:1–

23:9.

[6] G. Reinelt, Tsplib — a traveling salesman library. ORSA Journal on Computing, 3 (1991)

376–384.

[7] A. Ghorbannia Delavar and V. Aghazarian and S. Sadighi, ERPSD: A New Model for

Developing Distributed, Secure, and Dependable Organizational Software, CSIT (2009).

[8] A. Puris, R. Bello, F. Herrera, Analysis of the efficacy of a Two-Stage methodology for ant

colony optimization: Case of study with TSP and QAP Expert Systems with Applications,

37 (2010) 5443–5453.

[9] R.J. Mullen, D. Monekosso, S. Barman, P. Remagnino, A review of ant algorithms, Expert

Systems with Applications, 36 (2009) 9608–9617.

[10] A. Puris, R. Bello, Y. Martinez, A. Nowe, Two-stage ant colony optimization for

solving the traveling salesman problem. In Nature inspired problem-solving methods in

knowledge engineering, Second international work conference on the interplay between

natural and artificial computation, La Manga del Mar Menor, Spain, IWINAC (2007) 307–

316.

A. Ghorbannia Delavar, et. al. / J. Math. Computer Sci. (), -

281

[11] M. Birattari, P. Pellegrini, M. Dorigo, On the invariance of ant colony optimization,

IEEE Transactions on Evolutionary Computation, 11 (2007) 732–742.

[12] M. Dorigo, C. Blum, Ant colony optimization theory: A survey, Theoretical Computer

Science, 344 (2005) 243-278.

[13] Y. Bai, W. Zhang, Z. Jin, An new self-organizing maps strategy for solving the

traveling salesman problem, Chaos, Solitons and Fractals, 28 (2006) 1082–1089.

[14] S. Depickere, D. Fresneau, J. Deneubourg, Effect of social and environmental factors

on ant aggregation: A general response? Journal of Insect Physiology, 54 (2008) 1349–

1355.

[15] S. Ilie, C. Bădică, Distributed multi-agent system for solving traveling salesman

problem using ant colony optimization. in: M. Essaaidi, M. Malgeri, C. Bădică (Eds.),

Intelligent Distributed Computing IV, in: Studies in Computational Intelligence, Springer,

Berlin/Heidelberg, 315 (2010) 119–129.

[16] S. Ilie, C. Bădică, Effectiveness of solving traveling salesman problem using ant

colony optimization on distributed multi-agent middleware, in: Proceedings of the

International Multi conference on Computer Science and Information Technology, (2010)

197–203.

[17] M. Pedemonte, S. Nesmachnow, H. Cancela, A survey on parallel ant colony

optimization, Applied Soft Computing, 11 (2011) 5181–5197

[18] R. Laura, B. Matteo, R. Gianluca, On ant routing algorithms in ad hoc networks with

critical connectivity, Ad Hoc Networks (Elsevier), 6 (2008) 827–859.

[19] S. Misra, S.K. Dhurandher, M.S. Obaidat, K. Verma, P. Gupta, A low-overhead fault-

tolerant routing algorithm for mobile ad hoc networks: A scheme and its simulation

analysis, Simulation Modelling Practice and Theory, 18 (2010) 637–649.

[20] A. Ghorbannia Delavar, S. Hoseyny, R. Maghsoudi, BCO-Based Optimized Heuristic

Strategies for QoS Routing, The Journal of Mathematics and Computer Science, 5 (2012)

105-114.

