

Contents list available at JMCS

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com

Sigma Ideal Amenability of Banach Algebras

M. Momeni¹, T. Yazdanpanah², M. R. Mardanbeigi³

¹ Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran

E-mail address: srb.maryam@gmail.com

² Department of Mathematics, Persian Gulf University, Bushehr 75169, Iran

E-mail address: yazdanpanah@pgu.ac.ir

³ Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran

E-mail address: mrmardanbeigi@srbiau.ac.ir

Article history:
Received August 2013
Accepted September 2013
Available online October 2013

Abstract

Let A be a Banach algebra and let I be a closed two-sided ideal in A. A is I-weakly amenable if $H^{I}(A, I^{*}) = \{0\}$. Further, A is ideally amenable if A is I-weakly amenable for every closed two-sided ideal I in A. In this paper we introduce σ -ideal amenability for a Banach algebra A, where σ is an idempotent bounded endomorphism of A.

Key words: σ -ideally amenable, σ -weakly amenable, closed two-sided ideal, σ -derivation. 2010 Mathematics Subject Classification: 46H25.

1. Introduction

Let A be a Banach algebra and let X be a Banach A-bimodule. Then X^* , the dual space of X, with the following module actions is a Banach A-bimodule,

$$\langle x, a \cdot x^* \rangle = \langle x \cdot a, x^* \rangle, \qquad \langle x, x^* \cdot a \rangle = \langle a \cdot x, x^* \rangle, \qquad (a \in A, x \in X, x^* \in X^*).$$

In particular, if I is a closed ideal in A, then I and I^* will be a Banach A-bimodule and a dual Banach A-bimodule respectively.

Suppose that A is a Banach algebra and X is a Banach A-bimodule. A linear map $D:A\to X$ is called a derivation if

$$D(ab) = aD(b) + D(a)b, (a, b \in A).$$

Given $x \in X$, the map $\delta_x(a) = ax - xa$ is a derivation on A which is called an inner derivation. The set of all bounded derivations and inner derivations are denoted by $Z^1(A,X)$ and $N^1(A,X)$, respectively. $H^1(A,X) = Z^1(A,X)/N^1(A,X)$ is called the first cohomology of A with coefficients in X.

A Banach algebra A is called amenable if $H^1(A, X^*) = \{0\}$ for every Banach A-bimodule X.

Let A be a Banach algebra and σ be a bounded endomorphism of A, i.e. a bounded Banach algebra homomorphism from A into A. A σ -derivation from A into a Banach A-bimodule X is a bounded linear map $D: A \rightarrow X$ satisfying

$$D(ab) = \sigma(a) \cdot D(b) + D(a) \cdot \sigma(b), \quad (a, b \in A).$$

For each $x \in X$, the mapping

$$\delta_x^{\sigma}: A \to X$$

 $\delta_{x}^{\sigma}:A\to X$ defined by δ_{x}^{σ} $(a)=\sigma$ $(a)\cdot x-x\cdot\sigma$ (a), for all $a\in A$, is a σ -derivation called an inner σ derivation.

Let A be a Banach algebra and I be a closed two-sided ideal in A. Then A is called I-weakly amenable if $H^1(A, I^*) = \{0\}$. Furthermore A is called ideally amenable if $H^1(A, I^*) = \{0\}$, for every closed twosided ideal I of A. This definitions was introduced by Eshaghi Gordji and Yazdanpanah in [1]. In this paper we introduce σ -I-weakly amenability and σ -ideal amenability of Banach algebras.

2. σ -ideal amenability

We start this section with the following definition which is the basic definition for the present paper.

Definition 1 Let A be a Banach algebra and σ be a bounded endomorphism of A. Let I be a closed two-sided ideal of A, then A is said to be σ -I-weakly amenable if every σ -derivation from A into I^* is σ -inner. Furthermore A is σ -ideally amenable if A is $\sigma - I$ -weakly amenable for every closed twosided ideal *I* of *A*.

Proposition 2 Let A be a Banach algebra and σ be an idempotent epimorphism of A. If A is σ weakly amenable, then *A* is essential.

Proof. Assume towards a contradiction that $\overline{A^2} \neq A$. So there exists $b_0 \in A$ such that $b_0 \notin \overline{A^2}$. By Hahn-Banach theorem there exists $a_0^* \in A^*$ with $a_0^* | A^2 = 0$ and $\langle b_0, a_0^* \rangle = 1$. Since σ is surjective, there exists $a_0 \in A$ such that $b_0 = \sigma(a_0)$ and so $\langle \sigma(a_0), a_0^* \rangle = 1$ Define $D : A \to A^*$ with

$$\langle b, D(a) \rangle = \langle \sigma(a), a_0^* \rangle \langle \sigma(b), a_0^* \rangle, \qquad (a, b \in A)$$

So D is a continuous linear map. We show that D is a σ -derivation. First note σ is an epimorphism and $a_0^*|A^2 = 0$ so $a_0^*|\sigma(A^2) = 0$. Thus for each $a, b \in A$, we have

$$\langle c, D(ab) \rangle = \langle \sigma(ab), a_0^* \rangle \langle \sigma(c), a_0^* \rangle = 0, \qquad (c \in A).$$

On the other hand for each $c \in A$

$$\langle c, \sigma(a) \cdot D(b) \rangle + \langle c, D(a) \cdot \sigma(ab) \rangle = \langle c\sigma(a), D(b) \rangle + \langle \sigma(b)c, D(a) \rangle$$

$$= \langle \sigma(c\sigma(a)), a_0^* \rangle \langle \sigma(b), a_0^* \rangle$$

$$+ \langle \sigma(b)c), a_0^* \rangle \langle \sigma(a), a_0^* \rangle$$

$$= \langle \sigma(c)\sigma(a)), a_0^* \rangle \langle \sigma(b), a_0^* \rangle$$

$$+ \langle \sigma(b)\sigma(c), a_0^* \rangle \langle \sigma(a), a_0^* \rangle$$

$$= 0,$$

because $a_0^* | \sigma(A^2) = 0$. Thus *D* is a σ -derivation. Now

$$\begin{split} \langle \sigma(a_0), D(a_0) \rangle &= \langle \sigma(a_0), D(a_0) \rangle = \langle \sigma(\sigma(a_0)), a_0^* \rangle \langle \sigma(a_0), a_0^* \rangle \\ &= \langle \sigma(a_0), a_0^* \rangle \langle \sigma(a_0), a_0^* \rangle \\ &= 1. \end{split}$$

But

$$\begin{split} \langle \sigma(a_0), \delta_{a^*}^{\sigma}(a_0) \rangle &= \langle \sigma(a_0), \sigma(a_0) \cdot a^* - a^* \cdot \sigma(a_0) \rangle \\ &= \langle \sigma(a_0) \sigma(a_0), a^* \rangle - \langle \sigma(a_0) \sigma(a_0), a^* \rangle \\ &= 0 \qquad (a^* \in A^*) \end{split}$$

So D is not σ -inner. and it is a contradiction of the fact that A is σ -weakly amenable.

Remark 3 Let A be a non-unital Banach algebra. We denote by $A^{\#}$ the Banach algebra formed by adjoining an identity to A, so that $A^{\#} = A \oplus Ce$, with the product

$$(a,\alpha)(b,\beta) = (ab + \alpha b + \beta a, \alpha \beta) \qquad (\alpha,\beta \in \mathbb{C}, a,b \in A)$$

Let A be a non-unital Banach algebra with adjoined identity e, take $e' \in (A^\#)^*$ with $\langle e, \acute{e} \rangle = 1$ and $\acute{e}|A=0$, and extend $a^* \in A^*$ to an element of $(A^\#)^*$ by setting $(e,a^*)=0$. Then $(A^\#)^*=A^* \oplus \mathbb{C}\acute{e}$ as a Banach space, and $(A^\#)^*$ is an $A^\#$ -bimodule with the following module actions,

$$(a + \alpha e) \cdot (a^* + \beta \acute{e}) = aa^* + \alpha a^* + (\langle a, a^* \rangle + \alpha \beta) \acute{e},$$

$$(a^* + \beta \acute{e}) \cdot (a + \alpha e) = a^* a + \alpha a^* + (\langle a, a^* \rangle + \alpha \beta) \acute{e}.$$

Proposition 4 Let A be a Banach algebra and σ be an idempotent epimorphism of A. If A is σ -weakly amenable, then $A^{\#}$ is $\hat{\sigma}$ -weakly amenable, where $\hat{\sigma}$ is the endomorphism of $A^{\#}$ induced by σ , i.e. $\hat{\sigma}(\alpha + \alpha) = \sigma(\alpha) + \alpha$.

Proof. Let $D: A^\# \to (A^\#)^*$ be a $\widehat{\sigma}$ -derivation. Since D(e) = 0 we can look at D as a map from A into $\left(A^\#\right)^*$. Also since $\left(A^\#\right)^* = A^* \oplus \mathbb{C}\acute{e}$, there exists two bounded linear maps $\lambda: A \to \mathbb{C}$ and $d: A \to A^*$ such that $D(a) = d(a) + \lambda$ $(a)\acute{e}$, $(a \in A)$. Since $\widehat{\sigma}|A = \sigma$, by previose Remark for each $a, b \in A$ we have,

$$d(ab) + \lambda (ab) = D(ab)$$

$$= \sigma(a) \cdot D(b) + D(a) \cdot \sigma(b)$$

$$= \sigma(a) \cdot [d(b) + \lambda(b)] + [d(a) + \lambda(a)] \cdot \sigma(b)$$

$$= \sigma(a)d(b) + \langle \sigma(a), d(b) \rangle + d(a)\sigma(b)$$

$$+ \langle \sigma(b), d(a) \rangle.$$

So

$$d(a) = \sigma(a) \cdot a^* + a^* \cdot \sigma(a), \quad (a \in A)$$

and

$$(ab) = \langle \sigma(a), d(b) \rangle + \langle \sigma(b), d(a) \rangle.$$

Therefore $d: A \to A^*$ is a σ -derivation. So there exists $a^* \in A^*$ such that

$$d(a) = \sigma(a) \cdot a^* + a^* \cdot \sigma(a) \quad (a \in A).$$

Now we show that $\times |A^2 = 0$. let $a, b \in A$, we have,

$$\langle \sigma(a)\sigma(b), \times \rangle = \langle \sigma(\sigma(a)), d(\sigma(b)) \rangle + \langle \sigma(\sigma(b)), d(\sigma(a)) \rangle$$

$$= \langle \sigma(a), \sigma(b) \cdot a^* - a^* \cdot \sigma(b) \rangle + \langle \sigma(b), \sigma(a) \cdot a^* - a^* \cdot \sigma(a) \rangle$$

$$= 0$$

Which shows that $\times |\sigma(A^2) = 0$. Since σ is an epimorphism, so $\times |A^2 = 0$. Also since A is σ -weakly amenable by Proposition 2, $(\overline{A^2}) = A$. Thus $\times = 0$ on A. Therefore D = d is a σ -inner derivation.

Proposition 5 Let σ be a bounded endomorphism of Banach algebra A. If $A^{\#}$ is $\hat{\sigma}$ -weakly amenable, Then A is σ -weakly amenable.

Proof. Let $D: A \to A^*$ be a continuous $\hat{\sigma}$ -derivation. Note A is a Banach $A^{\#}$ -bimodule with the following module actions:

$$(a + \alpha) \cdot b = a \cdot b + \alpha b$$
, $b \cdot (a + \alpha) = b \cdot a + \alpha b$,

for all $a, b \in A, \alpha \in \mathbb{C}$. Define $\widetilde{D}: A^{\#} \to A^{*}$ with $\widetilde{D}(a + \alpha) = D(a)$. Clearly \widetilde{D} is continuous σ -derivation and we can look at it as a function into $(A^{\#})^{*}$.

Since $A^{\#}$ is $\hat{\sigma}$ -weakly amenable, so there exists $a^{*} \in A^{*}$ such that $\widetilde{D} = \delta_{a^{*}}^{\sigma}$. Hence for each $a \in A$ we have

$$D(a) = \widetilde{D}(a + \alpha) = \widehat{\sigma}(a + \alpha)a^* - a^*\widehat{\alpha} = \sigma(a)a^* - a^*\sigma(a).$$

Which shows that D is σ -inner and so A is σ -weakly amenable.

Proposition 6 Let A be a Banach algebra and I be a closed two-sided ideal of A with a bounded approximate identity. Let σ be an idempotent endomorphism of A such that $\sigma(I) = I$. Then I is σ -weakly amenable if and only if $H^1_\sigma(A, I^*) = \{0\}$.

Proof. Suppose that I is σ -weakly amenable and let $D: A \to I^*$ be a σ - derivation and $i: I \to A$ be the embeding map. Then $d = D|_I: I \to I^*$ is a σ -derivation. So there exists $i^* \in I^*$ such that $d = \delta_{i^*}^{\sigma}$. Since I is σ -weakly amenable and $\sigma(I) = I$ by Proposition 2, $\overline{\sigma(I^2)} = \overline{I^2} = I$. On the other hand for $i, j \in I$ we have,

```
\begin{split} \langle \sigma(ij), D(a) \rangle &= \langle \sigma(i)\sigma(j), D(a) \rangle \\ &= \langle \sigma(i)\sigma(j), D(a) \rangle \\ &= \langle \sigma(i)D(ja) - D(j)\sigma(a) \rangle \\ &= \langle \sigma(i), \sigma(ja) \cdot i^* - i^* \cdot \sigma(ja) \rangle \\ &- \langle \sigma(a)\sigma(i), \sigma(j) \cdot i^* - i^* \cdot \sigma(j) \rangle \\ &= \langle \sigma(ij), \sigma(a)i^* \rangle - \langle \sigma(ij), i^*\sigma(a) \rangle \\ &= \langle \sigma(ij), \delta_{i^*}^{\sigma}(a) \rangle \qquad (a \in A). \end{split}
```

Therefore $D = \delta_{i^*}^{\sigma}$, and so D is σ -inner.

Conversely, let $H^1_\sigma(A,I^*)=\{0\}$. and let $D:I\to I^*$ be a σ -derivation. Since I is σ -neo-unital Banach I-bimodule, i.e. $I=\sigma(I)\cdot I\cdot \sigma(I)$, by [2, Proposition 37], D has an extension $\widetilde{D}:A\to I^*$ such that \widetilde{D} is also σ -derivation. Now by hypothesis \widetilde{D} is σ -inner. Thus I is σ -weakly amenable.

Proposition 7 Let σ be a bounded endomorphism of Banach algebra A. If $A^{\#}$ is $\hat{\sigma}$ -ideally amenable, then A is σ -ideally amenable.

Proof. Let I be a closed two-sided ideal of A and $D: A \to I$ be a σ -derivation. It is easy to see that I is a closed two-sided ideal of $A^{\#}$, and $\widetilde{D}: A^{\#} \to I^{*}$ with $D^{\#}(a + \alpha) = D(a)$, $(a \in A, \alpha \in \mathbb{C})$ is a $\widehat{\sigma}$ -derivation. Hence there exists $i^{*} \in I^{*}$ such that $D^{\#} = \delta_{i^{*}}^{\sigma}$. So for each $a \in A$ we have

$$D(a) = \widetilde{D}(a + \alpha) = \widehat{\sigma}(a + \alpha) \cdot i^* - i^* \cdot \widehat{\sigma}(a + \alpha) = \sigma(a) \cdot i^* - i^* \cdot \sigma(a)$$

Which shows that D is σ -inner. So A is σ -ideally amenable.

Proposition 8 Let A be a Banach algebra and σ be an idempotent epimorphism of A. Suppose A is σ -weakly amenable and for each closed two-sided ideal I such that $I = \overline{AI\ U\ IA}$, A is σ -I-weakly amenable. Then A is σ -ideally amenable.

Proof. Let I be a closed two-sided ideal in A. Put $J=\overline{AI\ U\ IA}$. It is easy to see that J is a closed two-sided ideal in A and $J=\overline{AJ\ U\ JA}$. Let $\iota\colon J\to I$ be the natural embeding and $D\colon A\to I^*$ be a σ -derivation. Then $\iota^*\circ D\colon A\to J^*$ is a derivation. So there exists $m\in J^*$ such that $\iota^*\circ D=\delta_m^\sigma$. Let x^* be the extension of m into I, by the Hahn-Banach theorem, for every $a,b\in A$ we have,

```
\begin{aligned} \langle i, D(ab) \rangle &= \langle i\sigma\left(a\right), D(b) \rangle + \langle \sigma(b)i, D(a) \rangle \\ &= \langle \iota(i\sigma(a)), D\left(b\right) \rangle + \langle \iota(\sigma(b)i), D\left(a\right) \rangle \\ &= \langle i\sigma(a), \iota^* \circ D(b) \rangle + \langle \sigma(b)i, \iota^* \circ D(a) \rangle \\ &= \langle i\sigma(a), \sigma(b)m - m\sigma(b) \rangle + \langle \sigma(b)i, \sigma(a)m - m\sigma(a) \rangle \\ &= \langle i, \sigma(ab)m - m\sigma(ab) \rangle \\ &= \langle i, \delta_{x^*}^{\sigma}(ab) \rangle \qquad \qquad (i \in I). \end{aligned}
```

Hence $D(ab) = \delta_{x^*}^{\sigma}(ab)$. Since A is σ -weakly amenable, so $(\overline{A^2}) = A$ and therefore $D = \delta_{x^*}^{\sigma}$ and D is σ -inner.

Proposition 9 Let A be a Banach algebra and σ be a bounded idempotent endomorphism of A. Let I be a closed two-sided ideal in A with a bounded approximate identity. If A is σ -ideally amenable, then I is σ -ideally amenable.

Proof. Let J be a closed two-sided ideal in I. It is easy to see that J is an ideal in A. Let $D: I \to J^*$ be a σ -derivation. By [2, proposition 37], D can be extended to a σ -derivation, $\widetilde{D}: A \to J^*$. So there exists $m \in J^*$ such that $D = \delta_{x^*}^{\sigma}$. Thus $D(i) = \widetilde{D}(i) = \delta_{x^*}^{\sigma}$, for each $i \in I$. So D is σ - inner.

Definition 10 Let I be a closed two-sided ideal in Banach algebra A. We say that I has the trace extension property, if every $m \in I^*$ such that am = ma for each $a \in A$, can be extended to $a^* \in A^*$ such that $aa^* = a^*a$ for each $a \in A$.

Proposition 11 Let A be a Banach algebra and σ be a bounded endomorphism of A with dense range. suppose A is a σ -ideally amenable and I be a closed two-sided ideal in A that has the trace extension property. Then $\frac{A}{I}$ is σ -ideally amenable.

Proof. Let $\frac{J}{I}$ be a closed two-sided ideal in $\frac{A}{I}$. Then J is a closed two-sided ideal in A. Suppose $\pi: J \to I$ $\frac{J}{I}$ and $q:A \to \frac{A}{I}$ are natural quotient maps and π^* is adjoint of π . Let $D:\frac{A}{I} \to \left(\frac{J}{I}\right)^*$ be a σ -derivaton. Then $\pi^* \circ D \circ q : A \to J^*$ is a σ -derivation. So there exists $x^* \in J^*$ such that $\pi^* \circ D \circ q = \delta_{x^*}^{\sigma}$. Let m be the restriction of x^* to I. Then $m \in I^*$ and for each $i \in I$ we have,

$$\begin{aligned} \langle i, \sigma(b)m - m\sigma \rangle &= \langle i\sigma(b) - \sigma(b)i, m \rangle \\ &= \langle i\sigma(b) - \sigma(b)i, x^* \rangle \\ &= \langle i, \sigma(b)x^* - x^*\sigma(b) \rangle \\ &= \langle i, \delta_{x^*}^{\sigma} \rangle &= \langle i, \pi^* \circ D \circ q(b) \rangle \\ &= \langle \pi(i), D \circ q(b) \rangle \\ &= \langle I, D(b+I) \rangle &= 0 \qquad (b \in A) \end{aligned}$$

Therefore $\sigma(b)m = m\sigma(b)$ for each $b \in A$. Since σ has a dense range, for each $a \in A$, there exists a net $(b_{\alpha}) \subseteq A$, such that $a = \lim_{\alpha} \sigma(b_{\alpha})$. So for each $\alpha \in A$ we have,

$$am = \lim \sigma(b_{\alpha})m = \lim m\sigma(b_{\alpha})m = m \lim \sigma(b_{\alpha})m = ma$$

Now since I has the trace extension property, m can be extend to $a^* \in A^*$ such that $aa^* = a^*a$, for each $a \in A$. Let y^* be the restriction of a^* to J. Then $y^* \in J^*$ and $x^* - y^* = 0$ on I. Therefore $x^* - y^* \in \left(\frac{J}{I}\right)^*$ and we have,

$$\langle j+I,D(a+I)\rangle = \langle \pi(j),D(q(a))\rangle$$

$$= \langle j,\pi^* \circ D \circ q(a)\rangle$$

$$= \langle j,\delta_{x^*}^{\sigma}(a)\rangle$$

$$= \langle j,\delta_{x^*-y^*}^{\sigma}(a)\rangle$$

$$= \langle j+I,\delta_{x^*-y^*}^{\sigma}(a+I)\rangle \qquad (j\in J)$$
Hence $D=\delta_{x^*-y^*}^{\sigma}$ and therefore $\frac{A}{I}$ is σ -ideally amenable.

Proposition 12 Let A be a Banach algebra and let j be a closed two-sided ideal in A with a bounded approximate identity. Let σ be a bounded idempotent endomorphism of A. Then for every closed twosided ideal I in I, I is σ -I- weakly amenable if and only if A is σ -I-weakly amenable.

Proof. Let $(e_{\alpha})_{\alpha \in I}$ be a bounded approximate identity for J and $D: J \to I^*$ be a σ -derivation. In [2, Proposition 37], we showed that the map $\widetilde{D}: A \to I^*$ defined by

$$\widetilde{D}(a) = w^* - \lim_{\alpha} (D(ae_{\alpha})) \qquad (a \in A)$$

is a countinuous σ -derivation. If D=0 then $\widetilde{D}=0$, since JI=IJ=I. Therefore $H^1_\sigma(J,I^*)=I$ $H_{\sigma}^{1}(A, I^{*})$ and this implies that A is σ -I-weakly amenable if and only if J is σ -I-weakly amenable.

Proposition 13 Let A be a Banach algebra whit a bounded approximate identity and σ be a bounded idempotent epimorphism of A. Let φ be a non-trivial character on A and $I = \ker \varphi$. If $\sigma(I) \subseteq I$, then

Every σ -derivation $D: A \to A^*$ restricts to a σ -derivation $d: I \to I^*$ such that there exists a function $\psi: I \to \mathbb{C}$ satisfying

$$\psi(ij) = \langle \sigma(i), D(j) \rangle + \langle \sigma(j), D(i) \rangle \qquad (i, j \in I)$$

2) Every σ -derivation $D: I \to I^*$ for which there exists such a function ψ extends to a σ -derivation $\widetilde{D}: A \to A^*$.

Proof. 1) Clearly every σ -derivation restricts to a σ -derivation. Let (e_{α}) be a bounded approximate identity in A. So the bounded net $(\widehat{e_{\alpha}}) \subseteq A^{**}$ with $\langle a^*, \widehat{e_{\alpha}} \rangle = \langle e_{\alpha}, a^* \rangle$, $(a^* \in A^*)$ has a weak*convergence subnet. Thus without loss of generality, we may suppose that for each $a \in A^*$, the limit of the net $\langle e_{\alpha}, a^* \rangle$ exists. Now define $\psi(i) = \lim_{\alpha} \langle e_{\alpha}, D(i) \rangle$ then for each $i, j \in I$ we have,

$$\psi(ij) = \lim_{\alpha} \langle e_{\alpha}, D(ij) \rangle$$

$$= \lim_{\alpha} \langle e_{\alpha}, \sigma(i)D(j) + D(i)\sigma(j) \rangle$$

$$= \lim_{\alpha} \langle e_{\alpha}\sigma(i), D(j) \rangle + \langle D(i)\sigma(j) \rangle$$

$$= \lim_{\alpha} \langle e_{\alpha}\sigma(i), D(j) \rangle + \langle \sigma(i)e_{\alpha}, D(i) \rangle$$

$$= \langle \sigma(i), D(j) \rangle + \langle \sigma(j), D(j) \rangle$$

2)Let (e_{α}) be a bounded pproximate identity for A. Then $\lim_{\alpha} \varphi(e_{\alpha}) = 1$. Hence we may assume that $\varphi(e_{\alpha}) = 1$ for all α . Let $D: I \to I^*$ be a σ -derivation. Since for each $a \in A$, $a - \varphi(a)e_{\alpha} \in I$. So for each $i \in I$ every extension of $D(i) \in I$ to A^* is unique. Therefore we can extend D to $D_1: I \to A^*$ with

$$\langle a, D_1(i) \rangle = \lim \langle a - \varphi(a)e_\alpha, D(i) \rangle + \varphi(a)\psi(i)$$

We show that D_1 is a σ -derivation from $^{\alpha}I$ to A^* .

$$\langle a, D_{1}(ij) \rangle = \lim_{\alpha} \langle a - \varphi(a)e_{\alpha}, D(ij) \rangle + \varphi(a)\psi(ij)$$

$$= \lim_{\alpha} \langle a - \varphi(a)e_{\alpha}, D(i)\sigma(j) + \sigma(i)D(j) \rangle + \varphi(a)\psi(ij)$$

$$= \lim_{\alpha} \langle \sigma(j)(a - \varphi(a)e_{\alpha}, D(i) \rangle$$

$$+ \langle a - \varphi(a)e_{\alpha}, \sigma(i), D(j) \rangle + \varphi(a)\psi(ij)$$

$$= \langle \sigma(j)a - \sigma(j)\varphi(a), D(i) \rangle$$

$$+ \langle a\sigma(i) - \varphi(a)\sigma(i), D(j) \rangle$$

$$+ \varphi(a)(\langle \sigma(i), D(j) \rangle) + \langle \sigma(j), D(i) \rangle$$

$$= \langle \sigma(j)a, D(i) \rangle + \langle a\sigma(i), D(j) \rangle$$

$$= \lim_{\alpha} \langle \sigma(j)a - \varphi(\sigma(j)a)e_{\alpha}, D(i) \rangle$$

$$= \lim_{\alpha} \langle a\sigma(i) - \varphi(a\sigma(i))e_{\alpha}, D(j) \rangle$$

$$+ \varphi(\sigma(j)a)\psi(i) + \varphi(a\sigma(i)\psi(j)$$

$$= \langle \sigma(j)a, D_{1}(i) \rangle + \langle a\sigma(i), D_{1}(j) \rangle$$

$$= \langle a, D_{1}(i)\sigma(j) + \sigma(i), D_{1}(j) \rangle$$

So $D_1: I \to A^*$ is a σ -derivation. Since A has a bounded approximate identity and σ is an epimorphism, A is a σ -neo-unital Banach I-module. Thus by [2; Proposition 4.14] D_1 extends to a σ -derivation $\widetilde{D}: A \to A^*$ which extends D.

Proposition 14 Let A be a Banach algebra with a bounded approximate identity and σ be a bounded idempotent epimorphism of A. Let φ be a non-trivial character on A and $I = \ker \varphi$ which $\sigma(I) \subseteq I$. Suppose that $D: I \to I^*$ be a σ -derivation. If $\left(\overline{I^2}\right) = I$, then there is at most one extension of D to a σ -derivation $D: A \to A^*$.

Proof. Let \widetilde{D}_1 and \widetilde{D}_2 be two extension of a σ -derivatin D. Then $\widetilde{D}_1 - D_2$ is a σ -derivation extending the zero derivation. Therefore we assume that \widetilde{D} be any extension of D = 0. So for each $i, j \in I$ and $a \in A$ we have,

$$\langle a, \widetilde{D}(i,j) \rangle = \langle a, \sigma(i)\widetilde{D}(j) \rangle + \widetilde{D}(i)\sigma(j) \rangle$$

$$= \langle a\sigma(i), \widetilde{D}(j) \rangle + \langle \sigma(j)a, \widetilde{D}(i) \rangle$$

$$= \langle a\sigma(i), D(j) \rangle + \langle \sigma(j)a, D(i) \rangle = 0$$

Since $(\overline{I^2}) = I$, we have $\langle a, \widetilde{D}(i) \rangle = 0$ for all $i \in I$ and $a \in A$. Also for each $a, b \in A$ we have, $\langle \sigma(a)\sigma(b), \widetilde{D}(e_{\alpha}) \rangle = \langle \sigma(a), \widetilde{D}(be_{\alpha}) \rangle - \langle \sigma(e_{\alpha})\sigma(a), \widetilde{D}(b) \rangle$

Thus

$$\lim \langle \sigma(a)\sigma(b), \widetilde{D}(e_{\alpha}) \rangle = 0$$

As σ is an epimorphism and A has α bounded approximate identity, by the Cohen Factorisation theorem, every element of A can be factorized. Hence

$$\langle b, \widetilde{D}(a) \rangle = \lim \langle b, \widetilde{D}(a - \varphi(a)e_{\alpha}) \rangle = 0$$

because $\alpha - \varphi(a)e_{\alpha} \in I$. Which shows that any extension of D is unique.

Next, assume that A is a complex Banach space which has dimension at least 2 and let $0 \neq \varphi \in Ball(A^*)$. Define a multiplication on A by

$$a \cdot b = \varphi(a)b$$
 $(a, b \in A)$

This multiplication evidently makes A into a Banach algebra denoted by A_{φ} . Which is called the ideally factored algebra associated to φ . It is easy to see that A_{φ} has left identity e which is that element

in A such that $\varphi(e)=1$, while it has not right approximate identity. Also if I is a proper ideal of A_{φ} , then $I\subseteq \ker\varphi$. Suppose that $\sigma\colon A_{\varphi}\to A_{\varphi}$ be defined by $\sigma(a)=\varphi(a)e$. Then σ is the only idempotent endomorphism of A_{σ} .

Proposition 15 $^{\tau}$ A_{φ} is σ -ideally amenable, where $\sigma(a)=\varphi(a)e$ is the only idempotent endomorphism of A_{φ} .

Proof. Let I be a closed two-sided ideal in A_{φ} and $D: A_{\varphi} \to I^*$ be a σ -derivation. Since $I \subseteq \ker \varphi$, for each $a,b \in A_{\varphi}$ and $i \in I$ we have,

$$\varphi(a)\langle i, D(b) \rangle = \langle i, D(a \cdot b) \rangle = \langle i, \sigma(a) \cdot D(b) + D(a) \cdot \sigma(b) \rangle$$

$$= \langle i, \sigma(a) \cdot D(b) \rangle + \langle \sigma(b) \cdot i, D(a) \rangle$$

$$= \varphi(b)\langle i, D(a) \rangle \qquad (1)$$

In (1), set b = e. So we have,

$$\varphi(a)\langle i, D(e)\rangle = \varphi(e)\langle i, D(a)\rangle = \langle i, D(a)\rangle \tag{2}$$

On the other hand, let $i^* \in I^*$, and let $\delta_{i^*}^{\sigma}: A \to I^*$ be the σ -inner derivation specified by i^* . Then for each $a \in A_{\sigma}$ and $i \in I$ we have,

$$\begin{aligned} \langle i, \delta_{i^*}^{\sigma}(a) \rangle &= \langle i, \sigma(a) \cdot i^* - i^* \cdot \sigma(a) \rangle \\ &= \langle i \cdot \sigma(a), i^* \rangle - \langle \sigma(a) \cdot i, i^* \rangle \\ &= \varphi(i) \langle \sigma(a), i^* \rangle - \varphi(\sigma(a)) \langle i, i^* \rangle \\ &= -\varphi(a) \langle i, i^* \rangle \end{aligned}$$
(3)

Set $i^* = -D(e)$. By (2), (3) we have

$$\langle i, \delta_{i}^{\sigma}(a) \rangle = -\varphi(a)\langle i, -D(e) \rangle = \langle i, D(a) \rangle, \qquad (a \in A\varphi, i \in I)$$

Therefore, $D = \delta_{i^*}^{\dot{\sigma}}$. Thus $A\varphi$ is σ -ideally amenable.

References

- [1] M. Eshaghi Gordji, T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. 114, 4 (2004), 399–408.
- [2] M. Momeni, T. Yazdanpanah, and M.R. Mardanbeigi, σ –Approximately Contractible Banach Algebras, Abstract and Applied Analysis, Volume 2012(2012), Article ID 653140, 20 pages, doi: .1155/2012/653140.
- [3] H.G. Dales, F. Ghahramani and N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998) 19–54.
- [4] HE. Dales, Banach algebra and automatic continuity, London Mathematical Society Monographs (Oxford: Clarendon Press) (2000) vol. 24