

Sigma Ideal Amenability of Banach Algebras

M. Momeni ${ }^{1}$, T. Yazdanpanah ${ }^{2}$, M. R. Mardanbeigi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran
E-mail address: srb.maryam@gmail.com
${ }^{2}$ Department of Mathematics, Persian Gulf University, Bushehr 75169, Iran
E-mail address: yazdanpanah@pgu.ac.ir
${ }^{3}$ Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran 1477893855, Iran
E-mail address: mrmardanbeigi@srbiau.ac.ir

Article history:

Received August 2013
Accepted September 2013
Available online October 2013 $H^{l}\left(A, I^{*}\right)=\{0\}$. Further, A is ideally amenable if A is I-weakly amenable for every closed twosided ideal I in A. In this paper we introduce σ-ideal amenability for a Banach algebra A, where σ is an idempotent bounded endomorphism of A.

Key words: σ-ideally amenable, σ-weakly amenable, closed two-sided ideal, σ-derivation. 2010 Mathematics Subject Classification: 46H25.

1. Introduction

Let A be a Banach algebra and let X be a Banach A-bimodule. Then X^{*}, the dual space of X, with the following module actions is a Banach A-bimodule,

$$
\left\langle x, a \cdot x^{*}\right\rangle=\left\langle x \cdot a, x^{*}\right\rangle, \quad\left\langle x, x^{*} \cdot a\right\rangle=\left\langle a \cdot x, x^{*}\right\rangle, \quad\left(a \in A, x \in X, x^{*} \in X^{*}\right) .
$$

In particular, if I is a closed ideal in A, then I and I^{*} will be a Banach A-bimodule and a dual Banach A-bimodule respectively.

Suppose that A is a Banach algebra and X is a Banach A-bimodule. A linear map $D: A \rightarrow X$ is called a derivation if

$$
D(a b)=a D(b)+D(a) b, \quad(a, b \in A) .
$$

Given $x \in X$, the map $\delta_{x}(a)=a x-x a$ is a derivation on A which is called an inner derivation. The set of all bounded derivations and inner derivations are denoted by $Z^{1}(A, X)$ and $N^{1}(A, X)$, respectively. $H^{1}(A, X)=Z^{1}(A, X) / N^{1}(A, X)$ is called the first cohomology of A with coefficients in X.

A Banach algebra A is called amenable if $H^{1}\left(A, X^{*}\right)=\{0\}$ for every Banach A-bimodule X.

Let A be a Banach algebra and σ be a bounded endomorphism of A, i.e. a bounded Banach algebra homomorphism from A into A. A σ-derivation from A into a Banach A-bimodule X is a bounded linear map $D: A \rightarrow X$ satisfying

$$
D(a b)=\sigma(a) \cdot D(b)+D(a) \cdot \sigma(b), \quad(a, b \in A) .
$$

For each $x \in X$, the mapping

$$
\delta_{x}^{\sigma}: A \rightarrow X
$$

definedby $\delta_{x}^{\sigma}(a)=\sigma(a) \cdot x-x \cdot \sigma(a)$, for all $a \in A$, is a σ-derivation called an inner σ derivation.
Let A be a Banach algebra and I be a closed two-sided ideal in A. Then A is called I-weakly amenable if $H^{1}\left(A, I^{*}\right)=\{0\}$. Furthermore A is called ideally amenable if $H^{1}\left(A, I^{*}\right)=\{0\}$, for every closed twosided ideal I of A. This definitions was introduced by Eshaghi Gordji and Yazdanpanah in [1]. In this paper we introduce σ-I-weakly amenability and σ-ideal amenability of Banach algebras.

2. σ-ideal amenability

We start this section with the following definition which is the basic definition for the present paper.
Definition 1 Let A be a Banach algebra and σ be a bounded endomorphism of A. Let I be a closed two-sided ideal of A, then A is said to be $\sigma-I$-weakly amenable if every σ-derivation from A into I^{*} is σ-inner. Furthermore A is σ-ideally amenable if A is $\sigma-I$-weakly amenable for every closed twosided ideal I of A.

Proposition 2 Let A be a Banach algebra and σ be an idempotent epimorphism of A. If A is σ weakly amenable, then A is essential.

Proof. Assume towards a contradiction that $\overline{A^{2}} \neq A$. So there exists $b_{0} \in A$ such that $b_{0} \notin \overline{A^{2}}$. By Hahn-Banach theorem there exists $a_{0}^{*} \in A^{*}$ with $a_{0}^{*} \mid A^{2}=0$ and $\left\langle b_{0}, a_{0}^{*}\right\rangle=1$. Since σ is surjective, there exists $a_{0} \in A$ such that $b_{0}=\sigma\left(a_{0}\right)$ and so $\left\langle\sigma\left(a_{0}\right), a_{0}^{*}\right\rangle=1$ Define $D: A \rightarrow A^{*}$ with

$$
\langle b, D(a)\rangle=\left\langle\sigma(a), a_{0}^{*}\right\rangle\left\langle\sigma(b), a_{0}^{*}\right\rangle, \quad(a, b \in A)
$$

So D is a continuous linear map. We show that D is a σ-derivation. First note σ is an epimorphism and $a_{0}^{*} \mid A^{2}=0$ so $a_{0}^{*} \mid \sigma\left(A^{2}\right)=0$. Thus for each $a, b \in A$, we have

$$
\langle c, D(a b)\rangle=\left\langle\sigma(a b), a_{0}^{*}\right\rangle\left\langle\sigma(c), a_{0}^{*}\right\rangle=0, \quad(c \in A)
$$

On the other hand for each $c \in A$

$$
\begin{aligned}
\langle c, \sigma(a) \cdot D(b)\rangle+\langle c, D(a) \cdot \sigma(a b)\rangle & =\langle c \sigma(a), D(b)\rangle+\langle\sigma(b) c, D(a)\rangle \\
& =\left\langle\sigma(c \sigma(a)), a_{0}^{*}\right\rangle\left\langle\sigma(b), a_{0}^{*}\right\rangle \\
& +\left\langle\sigma(\sigma(b) c), a_{0}^{*}\right\rangle\left\langle\sigma(a), a_{0}^{*}\right\rangle \\
& \left.=\langle\sigma(c) \sigma(a)), a_{0}^{*}\right\rangle\left\langle\sigma(b), a_{0}^{*}\right\rangle \\
& +\left\langle\sigma(b) \sigma(c), a_{0}^{*}\right\rangle\left\langle\sigma(a), a_{0}^{*}\right\rangle \\
& =0,
\end{aligned}
$$

because $a_{0}^{*} \mid \sigma\left(A^{2}\right)=0$. Thus D is a σ-derivation. Now

$$
\begin{aligned}
\left\langle\sigma\left(a_{0}\right), D\left(a_{0}\right)\right\rangle & =\left\langle\sigma\left(a_{0}\right), D\left(a_{0}\right)\right\rangle=\left\langle\sigma\left(\sigma\left(a_{0}\right)\right), a_{0}^{*}\right\rangle\left\langle\sigma\left(a_{0}\right), a_{0}^{*}\right\rangle \\
& =\left\langle\sigma\left(a_{0}\right), a_{0}^{*}\right\rangle\left\langle\sigma\left(a_{0}\right), a_{0}^{*}\right\rangle \\
& =1 .
\end{aligned}
$$

But

$$
\begin{aligned}
\left\langle\sigma\left(a_{0}\right), \delta_{a^{*}}^{\sigma}\left(a_{0}\right)\right\rangle & =\left\langle\sigma\left(a_{0}\right), \sigma\left(a_{0}\right) \cdot a^{*}-a^{*} \cdot \sigma\left(a_{0}\right)\right\rangle \\
& =\left\langle\sigma\left(a_{0}\right) \sigma\left(a_{0}\right), a^{*}\right\rangle-\left\langle\sigma\left(a_{0}\right) \sigma\left(a_{0}\right), a^{*}\right\rangle \\
& =0 \quad\left(a^{*} \in A^{*}\right)
\end{aligned}
$$

So D is not σ-inner. and it is a contradiction of the fact that A is σ-weakly amenable.
Remark 3 Let A be a non-unital Banach algebra. We denote by $A^{\#}$ the Banach algebra formed by adjoining an identity to A, so that $A^{\#}=A \oplus C e$, with the product

$$
(a, \alpha)(b, \beta)=(a b+\alpha b+\beta a, \alpha \beta) \quad(\alpha, \beta \in \mathbb{C}, a, b \in A)
$$

Let A be a non-unital Banach algebra with adjoined identity e, take $e^{\prime} \in\left(A^{\#}\right)^{*}$ with $\langle e, \dot{e}\rangle=1$ and é $\mid A=0$, and extend $a^{*} \in A^{*}$ to an element of $\left(A^{\#}\right)^{*}$ by setting $\left(e, a^{*}\right)=0$. Then $\left(A^{\#}\right)^{*}=A^{*} \oplus \mathbb{C}$ é as a Banach space, and $\left(A^{\#}\right)^{*}$ is an $A^{\#}$-bimodule with the following module actions,

$$
\begin{aligned}
& (a+\alpha e) \cdot\left(a^{*}+\beta \dot{e}\right)=a a^{*}+\alpha a^{*}+\left(\left\langle a, a^{*}\right\rangle+\alpha \beta\right) \dot{e}, \\
& \left(a^{*}+\beta \dot{e}\right) \cdot(a+\alpha e)=a^{*} a+\alpha a^{*}+\left(\left\langle a, a^{*}\right\rangle+\alpha \beta\right) \dot{e} .
\end{aligned}
$$

Proposition 4 Let A be a Banach algebra and σ be an idempotent epimorphism of A. If A is σ weakly amenable, then $A^{\#}$ is $\hat{\sigma}$-weakly amenable, where $\hat{\sigma}$ is the endomorphism of $A^{\#}$ induced by σ, i.e. $\hat{\sigma}(a+\alpha)=\sigma(a)+\alpha$.

Proof. Let $D: A^{\#} \rightarrow\left(A^{\#}\right)^{*}$ be a $\hat{\sigma}$-derivation. Since $D(e)=0$ we can look at D as a map from A into $\left(A^{\#}\right)^{*}$. Also since $\left(A^{\#}\right)^{*}=A^{*} \oplus \mathbb{C} e ́$, there exists two bounded linear maps $\lambda: A \rightarrow \mathbb{C}$ and $d: A \rightarrow A^{*}$ such that $D(a)=d(a)+\lambda(a) e ́,(a \in A)$. Since $\hat{\sigma} \mid A=\sigma$, by previose Remark for each $a, b \in A$ we have,

$$
\begin{aligned}
d(a b)+\lambda(a b) & =D(a b) \\
& =\sigma(a) \cdot D(b)+D(a) \cdot \sigma(b) \\
& =\sigma(a) \cdot[d(b)+\lambda(b)]+[d(a)+\lambda(a)] \cdot \sigma(b) \\
& =\sigma(a) d(b)+\langle\sigma(a), d(b)\rangle+d(a) \sigma(b) \\
& +\langle\sigma(b), d(a)\rangle .
\end{aligned}
$$

So

$$
d(a)=\sigma(a) \cdot a^{*}+a^{*} \cdot \sigma(a), \quad(a \epsilon A)
$$

and

$$
\lambda(a b)=\langle\sigma(a), d(b)\rangle+\langle\sigma(b), d(a)\rangle .
$$

Therefore $d: A \rightarrow A^{*}$ is a σ-derivation. So there exists $a^{*} \in A^{*}$ such that

$$
d(a)=\sigma(a) \cdot a^{*}+a^{*} \cdot \sigma(a) \quad(a \in A) .
$$

Now we show that $\lambda \mid A^{2}=0$. let $a, b \in A$, we have,

$$
\begin{aligned}
\langle\sigma(a) \sigma(b), \lambda\rangle & =\langle\sigma(\sigma(a)), d(\sigma(b))\rangle+\langle\sigma(\sigma(b)), d(\sigma(a))\rangle \\
& =\left\langle\sigma(a), \sigma(b) \cdot a^{*}-a^{*} \cdot \sigma(b)\right\rangle+\left\langle\sigma(b), \sigma(a) \cdot a^{*}-a^{*} \cdot \sigma(a)\right\rangle \\
& =0
\end{aligned}
$$

Which shows that $\lambda \mid \sigma\left(A^{2}\right)=0$. Since σ is an epimorphism, so $\lambda \mid A^{2}=0$. Also since A is σ weakly amenable by Proposition 2, $\left(\overline{A^{2}}\right)=A$. Thus $\lambda=0$ on A. Therefore $D=d$ is a σ inner derivation.

Proposition 5 Let σ be a bounded endomorphism of Banach algebra A. If $A^{\#}$ is $\hat{\sigma}$-weakly amenable, Then A is σ-weakly amenable.

Proof. Let $D: A \rightarrow A^{*}$ be a continuous $\hat{\sigma}$-derivation. Note A is a Banach $A^{\#}$-bimodule with the following module actions:

$$
(a+\alpha) \cdot b=a \cdot b+\alpha b, \quad b \cdot(a+\alpha)=b \cdot a+\alpha b,
$$

for all $a, b \in A, \alpha \in \mathbb{C}$. Define $\widetilde{D}: A^{\#} \rightarrow A^{*}$ with $\widetilde{D}(a+\alpha)=D(a)$. Clearly \widetilde{D} is continuous σ derivation and we can look at it as a function into $\left(A^{\#}\right)^{*}$.

Since $A^{\#}$ is $\hat{\sigma}$-weakly amenable, so there exists $a^{*} \in A^{*}$ such that $\widetilde{D}=\delta_{a^{*}}^{\sigma}$. Hence for each $\mathrm{a} \in A$ we have

$$
D(a)=\widetilde{D}(a+\alpha)=\hat{\sigma}(a+\alpha) a^{*}-a^{*} \hat{\alpha}=\sigma(a) a^{*}-a^{*} \sigma(a) .
$$

Which shows that D is σ-inner and so A is σ-weakly amenable.
Proposition 6 Let A be a Banach algebra and I be a closed two-sided ideal of A with a bounded approximate identity. Let σ be an idempotent endomorphism of A such that $\sigma(I)=I$. Then I is σ weakly amenable if and only if $H_{\sigma}^{1}\left(A, I^{*}\right)=\{0\}$.

Proof. Suppose that I is σ-weakly amenable and let $D: A \rightarrow I^{*}$ be a σ-derivation and $i: I \rightarrow A$ be the embeding map. Then $d=\left.D\right|_{I}: I \rightarrow I^{*}$ is a σ-derivation. So there exists $i^{*} \in I^{*}$ such that $d=\delta_{i^{*}}^{\sigma}$. Since I is σ-weakly amenable and $\sigma(I)=I$ by Proposition $2, \overline{\sigma\left(I^{2}\right)}=\overline{I^{2}}=I$. On the other hand for i. $j \in I$ we have,

$$
\begin{aligned}
\langle\sigma(i j), D(a)\rangle & =\langle\sigma(i) \sigma(j), D(a)\rangle \\
& =\langle\sigma(i) \sigma(j), D(a)\rangle \\
& =\langle\sigma(i) D(j a)-D(j) \sigma(a)\rangle \\
& =\left\langle\sigma(i), \sigma(j a) \cdot i^{*}-i^{*} \cdot \sigma(j a)\right\rangle \\
& -\left\langle\sigma(a) \sigma(i), \sigma(j) \cdot i^{*}-i^{*} \cdot \sigma(j)\right\rangle \\
& =\left\langle\sigma(i j), \sigma(a) i^{*}\right\rangle-\left\langle\sigma(i j), i^{*} \sigma(a)\right\rangle \\
& =\left\langle\sigma(i j), \delta_{i^{*}}^{\sigma}(a)\right\rangle \quad(a \in A) .
\end{aligned}
$$

Therefore $D=\delta_{i^{*}}^{\sigma}$, and so D is σ-inner.
Conversely, let $H_{\sigma}^{1}\left(A, I^{*}\right)=\{0\}$. and let $D: I \rightarrow I^{*}$ be a σ-derivation. Since I is σ-neo-unital Banach I-bimodule, i.e. $I=\sigma(I) \cdot I \cdot \sigma(I)$, by [2, Proposition 37], D has an extension $\widetilde{D}: A \rightarrow I^{*}$ such that \widetilde{D} is also σ-derivation. Now by hypothesis \widetilde{D} is σ-inner. Thus I is σ-weakly amenable.

Proposition 7 Let σ be a bounded endomorphism of Banach algebra A. If $A^{\#}$ is $\hat{\sigma}$-ideally amenable, then A is σ-ideally amenable.

Proof. Let I be a closed two-sided ideal of A and $D: A \rightarrow I$ be a σ-derivation. It is easy to see that I is a closed two-sided ideal of $A^{\#}$, and $\widetilde{D}: A^{\#} \rightarrow I^{*}$ with $D^{\#}(a+\alpha)=D(a),(a \in A, \alpha \in \mathbb{C})$ is a $\hat{\sigma}^{-}$ derivation. Hence there exists $i^{*} \epsilon I^{*}$ such that $D^{\#}=\delta_{i^{*}}^{\sigma}$. So for each $a \in A$ we have

$$
D(a)=\widetilde{D}(a+\alpha)=\hat{\sigma}(a+\alpha) \cdot i^{*}-i^{*} \cdot \hat{\sigma}(a+\alpha)=\sigma(a) \cdot i^{*}-i^{*} \cdot \sigma(a)
$$

Which shows that D is σ-inner. So A is σ-ideally amenable.
Proposition 8 Let A be a Banach algebra and σ be an idempotent epimorphism of A. Suppose A is $\sigma-$ weakly amenable and for each closed two-sided ideal I such that $I=\overline{A I} \bar{U} \overline{I A}, A$ is $\sigma-I-$ weakly amenable. Then A is σ-ideally amenable.

Proof. Let I be a closed two-sided ideal in A. Put $J=\overline{A I U I A}$. It is easy to see that J is a closed twosided ideal in A and $J=\overline{A J U J A}$. Let $\iota: J \rightarrow I$ be the natural embeding and $D: A \rightarrow I^{*}$ be a σ derivation. Then $\iota^{*} \circ D: A \rightarrow J^{*}$ is a derivation. So there exists $m \in J^{*}$ such that $\iota^{*} \circ D=\delta_{m}^{\sigma}$. Let x^{*} be the extension of m into I, by the Hahn-Banach theorem, for every $a, b \in A$ we have,

$$
\begin{aligned}
\langle i, D(a b)\rangle & =\langle i \sigma(a), D(b)\rangle+\langle\sigma(b) i, D(a)\rangle \\
& =\langle\iota(i \sigma(a)), D(b)\rangle+\langle\iota(\sigma(b) i), D(a)\rangle \\
& =\left\langle i \sigma(a), \iota^{*} \circ D(b)\right\rangle+\left\langle\sigma(b) i, \iota^{*} \circ D(a)\right\rangle \\
& =\langle i \sigma(a), \sigma(b) m-m \sigma(b)\rangle+\langle\sigma(b) i, \sigma(a) m-m \sigma(a)\rangle \\
& =\langle i, \sigma(a b) m-m \sigma(a b)\rangle \\
& =\left\langle i, \delta_{x^{*}}^{\sigma}(a b)\right\rangle \quad(i \epsilon I) .
\end{aligned}
$$

Hence $D(a b)=\delta_{x^{*}}^{\sigma}(a b)$. Since A is σ-weakly amenable, so $\left(A^{2}\right)=A$ and therefore $D=\delta_{x^{*}}^{\sigma}$ and D is σ-inner.

Proposition 9 Let A be a Banach algebra and σ be a bounded idempotent endomorphism of A. Let I be a closed two-sided ideal in A with a bounded approximate identity. If A is σ-ideally amenable, then I is σ-ideally amenable.

Proof. Let J be a closed two-sided ideal in I. It is easy to see that J is an ideal in A. Let $D: I \rightarrow J^{*}$ be a σ-derivation. By [2, proposition 37], D can be extended to a σ-derivation, $\widetilde{D}: A \rightarrow J^{*}$. So there exists $m \in J^{*}$ such that $D=\delta_{x^{*}}^{\sigma}$. Thus $D(i)=\widetilde{D}(i)=\delta_{x^{*}}^{\sigma}$, for each $i \in I$. So D is σ-inner.

Definition 10 Let I be a closed two-sided ideal in Banach algebra A. We say that I has the trace extension property, if every $m \in I^{*}$ such that $a m=m a$ for each $a \in A$, can be extended to $a^{*} \in A^{*}$ such that $a a^{*}=a^{*} a$ for each $a \in A$.

Proposition 11 Let A be a Banach algebra and σ be a bounded endomorphism of A with dense range. suppose A is a σ-ideally amenable and I be a closed two-sided ideal in A that has the trace extension property. Then $\frac{A}{I}$ is σ-ideally amenable.
Proof. Let $\frac{J}{I}$ be a closed two-sided ideal in $\frac{A}{I}$. Then J is a closed two-sided ideal in A. Suppose $\pi: J \rightarrow$ $\frac{J}{I}$ and $q: A \rightarrow \frac{A}{I}$ are natural quotient maps and π^{*} is adjoint of π. Let $D: \frac{A}{I} \rightarrow\left(\frac{J}{I}\right)^{*}$ be a σ-derivaton. Then $\pi^{*} \circ D \circ q: A \rightarrow J^{*}$ is a σ-derivation. So there exists $x^{*} \in J^{*}$ such that $\pi^{*} \circ D \circ q=\delta_{x^{*}}^{\sigma}$. Let m be the restriction of x^{*} to I. Then $m \in I^{*}$ and for each $i \in I$ we have,

$$
\begin{aligned}
\langle i, \sigma(b) m-m \sigma\rangle & =\langle i \sigma(b)-\sigma(b) i, m\rangle \\
& =\left\langle i \sigma(b)-\sigma(b) i, x^{*}\right\rangle \\
& =\left\langle i, \sigma(b) x^{*}-x^{*} \sigma(b)\right\rangle \\
& =\left\langle i, \delta_{x^{*}}^{\sigma}\right\rangle=\left\langle i, \pi^{*} \circ D \circ q(b)\right\rangle \\
& =\langle\pi(i), D \circ q(b)\rangle \\
& =\langle I, D(b+I)\rangle=0 \quad(b \in A)
\end{aligned}
$$

Therefore $\sigma(b) m=m \sigma(b)$ for each $b \in A$. Since σ has a dense range, for each $a \in A$, there exists a net $\left(b_{\alpha}\right) \subseteq A$, such that $a=\lim _{\alpha} \sigma\left(b_{\alpha}\right)$. So for each $a \in A$ we have,

$$
a m=\lim _{\alpha} \sigma\left(b_{\alpha}\right) m=\lim _{\alpha} m \sigma\left(b_{\alpha}\right) m=m \lim _{\alpha} \sigma\left(b_{\alpha}\right) m=m a
$$

Now since I has the trace é extension prope ${ }^{\alpha}$ rty, m can be exteñ do $a^{*} \in A^{*}$ such that $a a^{*}=a^{*} a$, for each $a \in A$. Let y^{*} be the restriction of a^{*} to J. Then $y^{*} \in J^{*}$ and $x^{*}-y^{*}=0$ on I. Therefore $x^{*}-y^{*} \in\left(\frac{J}{I}\right)^{*}$ and we have,

$$
\begin{aligned}
\langle j+I, D(a+I)\rangle & =\langle\pi(j), D(q(a))\rangle \\
& =\left\langle j, \pi^{* \circ} D^{\circ} q(a)\right\rangle \\
& =\left\langle j, \delta_{x^{*}}^{\sigma}(a)\right\rangle \\
& =\left\langle j, \delta_{x^{*}-y^{*}}^{\sigma}(a)\right\rangle \\
& =\left\langle j+I, \delta_{x^{*}-y^{*}}^{\sigma}(a+I)\right\rangle \quad(j \in J)
\end{aligned}
$$

Hence $D=\delta_{x^{*}-y^{*}}^{\sigma}$ and therefore $\frac{A}{I}$ is σ-ideally amenable.
Proposition 12 Let A be a Banach algebra and let j be a closed two-sided ideal in A with a bounded approximate identity. Let σ be a bounded idempotent endomorphism of A. Then for every closed twosided ideal I in J, J is σ-l- weakly amenable if and only if A is σ - I-weakly amenable.

Proof. Let $\left(e_{\alpha}\right)_{\alpha \in I}$ be a bounded approximate identity for J and $D: J \rightarrow I^{*}$ be a σ-derivation. In [2, Proposition 37], we showed that the map $\widetilde{D}: A \rightarrow I^{*}$ defined by

$$
\widetilde{D}(a)=w^{*}-\lim _{\alpha}\left(D\left(a e_{\alpha}\right)\right) \quad(a \in A)
$$

is a countinuous σ-derivation. If $D=0$ then $\widetilde{D}=0$, since $J I=I J=I$. Therefore $H_{\sigma}^{1}\left(J, I^{*}\right)=$ $H_{\sigma}^{1}\left(A, I^{*}\right)$ and this implies that A is σ - I-weakly amenable if and only if J is σ - I-weakly amenable.

Proposition 13 Let A be a Banach algebra whit a bounded approximate identity and σ be a bounded idempotent epimorphism of A. Let φ be a non-trivial character on A and $I=\operatorname{ker} \varphi$. If $\sigma(I) \subseteq I$, then

1) Every σ-derivation $D: A \rightarrow A^{*}$ restricts to a σ-derivation $d: I \rightarrow I^{*}$ such that there exists a function $\psi: I \rightarrow \mathbb{C}$ satisfying

$$
\psi(i j)=\langle\sigma(i), D(j)\rangle+\langle\sigma(j), D(i)\rangle \quad(i, j \epsilon I)
$$

2) Every σ-derivation $D: I \rightarrow I^{*}$ for which there exists such a function ψ extends to a σ-derivation $\widetilde{D}: A \rightarrow A^{*}$.

Proof. 1) Clearly every σ-derivation restricts to a σ-derivation. Let (e_{α}) be a bounded approximate identity in A. So the bounded net $\left(\widehat{e_{\alpha}}\right) \subseteq A^{* *}$ with $\left\langle a^{*}, \widehat{e_{\alpha}}\right\rangle=\left\langle e_{\alpha}, a^{*}\right\rangle$, ($a^{*} \in A^{*}$) has a weak*convergence subnet. Thus without loss of generality, we may suppose that for each $a \in A^{*}$, the limit of the net $\left\langle e_{\alpha}, a^{*}\right\rangle$ exists. Now define $\psi(i)=\lim _{\alpha}\left\langle e_{\alpha}, D(i)\right\rangle$ then for each $i, j \in I$ we have,

$$
\psi(i j)=\lim _{\alpha}\left\langle e_{\alpha}, D(i j)\right\rangle
$$

$$
\begin{aligned}
& =\lim _{\alpha}\left\langle e_{\alpha}, \sigma(i) D(j)+D(i) \sigma(j)\right\rangle \\
& =\lim _{\alpha}\left\langle e_{\alpha} \sigma(i), D(j)\right\rangle+\langle D(i) \sigma(j)\rangle \\
& =\lim _{\alpha}\left\langle e_{\alpha} \sigma(i), D(j)\right\rangle+\left\langle\sigma(i) e_{\alpha}, D(i)\right\rangle \\
& =\langle\sigma(i), D(j)\rangle+\langle\sigma(j), D(j)\rangle
\end{aligned}
$$

2)Let $\left(e_{\alpha}\right)$ be a bounded pproximate identity for A. Then $\lim _{\alpha} \varphi\left(e_{\alpha}\right)=1$. Hence we may assume that $\varphi\left(e_{\alpha}\right)=1$ for all α. Let $D: I \rightarrow I^{*}$ be a σ-derivation. Since for each $a \in A, a-\varphi(a) e_{\alpha} \in I$. So for each $i \in I$ every extension of $D(i) \in I$ to A^{*} is unique. Therefore we can extend D to $D_{1}: I \rightarrow A^{*}$ with

$$
\left\langle a, D_{1}(i)\right\rangle=\lim _{\alpha}\left\langle a-\varphi(a) e_{\alpha}, D(i)\right\rangle+\varphi(a) \psi(i)
$$

We show that D_{1} is a σ-derivation from ${ }^{\alpha} I$ to A^{*}.

$$
\begin{aligned}
\left\langle a, D_{1}(i j)\right\rangle & =\lim _{\alpha}\left\langle a-\varphi(a) e_{\alpha}, D(i j)\right\rangle+\varphi(a) \psi(i j) \\
& =\lim _{\alpha}\left\langle a-\varphi(a) e_{\alpha}, D(i) \sigma(j)+\sigma(i) D(j)\right\rangle+\varphi(a) \psi(i j) \\
& =\lim _{\alpha}\left\langle\sigma(j)\left(a-\varphi(a) e_{\alpha}, D(i)\right\rangle\right. \\
& +\left\langle a-\varphi(a) e_{\alpha}, \sigma(i), D(j)\right\rangle+\varphi(a) \psi(i j) \\
& =\langle\sigma(j) a-\sigma(j) \varphi(a), D(i)\rangle \\
& +\langle a \sigma(i)-\varphi(a) \sigma(i), D(j)\rangle \\
& +\varphi(a)(\langle\sigma(i), D(j)\rangle)+\langle\sigma(j), D(i)\rangle \\
& =\langle\sigma(j) a, D(i)\rangle+\langle a \sigma(i), D(j)\rangle \\
& =\lim _{\alpha}\left\langle\sigma(j) a-\varphi(\sigma(j) a) e_{\alpha}, D(i)\right\rangle \\
& =\lim _{\alpha}\left\langle a \sigma(i)-\varphi(a \sigma(i)) e_{\alpha}, D(j)\right\rangle \\
& +\varphi(\sigma(j) a) \psi(i)+\varphi(a \sigma(i) \psi(j) \\
& =\left\langle\sigma(j) a, D_{1}(i)\right\rangle+\left\langle a \sigma(i), D_{1}(j)\right\rangle \\
& =\left\langle a, D_{1}(i) \sigma(j)+\sigma(i), D_{1}(j\rangle\right.
\end{aligned}
$$

So $D_{1}: I \rightarrow A^{*}$ is a σ-derivation. Since A has a bounded approximate identity and σ is an epimorphism, A is a σ-neo-unital Banach I-module. Thus by [2; Proposition 4.14] D_{1} extends to a σ derivation $\widetilde{D}: A \rightarrow A^{*}$ which extends D.

Proposition 14 Let A be a Banach algebra with a bounded approximate identity and σ be a bounded idempotent epimorphism of A. Let φ be a non-trivial character on A and $I=\operatorname{ker} \varphi$ which $\sigma(I) \subseteq I$. Suppose that $D: I \rightarrow I^{*}$ be a σ-derivation. If $\left(\overline{I^{2}}\right)=I$, then there is at most one extension of D to a σ derivation $D: A \rightarrow A^{*}$.

Proof. Let \widetilde{D}_{1} and $\widetilde{D_{2}}$ be two extension of a σ-derivatin D. Then $\widetilde{D}_{1}-D_{2}$ is a σ-derivation extending the zero derivation. Therefore we assume that \widetilde{D} be any extension of $D=0$. So for each $i, j \in I$ and $a \in A$ we have,

$$
\begin{aligned}
\langle a, \widetilde{D}(i, j\rangle & =\langle a, \sigma(i) \widetilde{D}(j)+\widetilde{D}(i) \sigma(j)\rangle \\
& =\langle a \sigma(i), \widetilde{D}(j)\rangle+\langle\sigma(j) a, \widetilde{D}(i)\rangle \\
& =\langle a \sigma(i), D(j)\rangle+\langle\sigma(j) a, D(i)\rangle=0
\end{aligned}
$$

Since $\left(\overline{I^{2}}\right)=I$, we have $\langle a, \widetilde{D}(i)\rangle=0$ for all $i \in I$ and $a \in A$. Also for each $a, b \in A$ we have,

$$
\left\langle\sigma(a) \sigma(b), \widetilde{D}\left(e_{\alpha}\right)\right\rangle=\left\langle\sigma(a), \widetilde{D}\left(b e_{\alpha}\right)\right\rangle-\left\langle\sigma\left(e_{\alpha}\right) \sigma(a), \widetilde{D}(b)\right\rangle
$$

Thus

$$
\lim _{\alpha}\left\langle\sigma(a) \sigma(b), \widetilde{D}\left(e_{\alpha}\right)\right\rangle=0
$$

As σ is an epimorphism and A has ${ }^{\alpha}$ a bounded approximate identity, by the Cohen Factorisation theorem, every element of A can be factorized. Hence

$$
\langle b, \widetilde{D}(a)\rangle=\lim _{\alpha}\left\langle b, \widetilde{D}\left(a-\varphi(a) e_{\alpha}\right)\right\rangle=0
$$

because $a-\varphi(a) e_{\alpha} \in I$. Which shows thât any extension of D is unique.
Next, assume that A is a complex Banach space which has dimension at least 2 and let $0 \neq \varphi \in$ Ball (A^{*}). Define a multiplication on A by

$$
a \cdot b=\varphi(a) b \quad(a, b \in A)
$$

This multiplication evidently makes A into a Banach algebra denoted by A_{φ}. Which is called the ideally factored algebra associated to φ. It is easy to see that A_{φ} has left identity e which is that element
in A such that $\varphi(e)=1$, while it has not right approximate identity. Also if I is a proper ideal of A_{φ}, then $I \subseteq \operatorname{ker} \varphi$. Suppose that $\sigma: A_{\varphi} \rightarrow A_{\varphi}$ be defined by $\sigma(a)=\varphi(a) e$. Then σ is the only idempotent endomorphism of A_{φ}.

Proposition $15 A_{\varphi}$ is σ-ideally amenable, where $\sigma(a)=\varphi(a) e$ is the only idempotent endomorphism of A_{φ}.

Proof. Let I be a closed two-sided ideal in A_{φ} and $D: A_{\varphi} \rightarrow I^{*}$ be a σ-derivation. Since $I \subseteq k e r \varphi$, for each $a, b \in A_{\varphi}$ and $i \in I$ we have,

$$
\begin{align*}
\varphi(a)\langle i, D(b)\rangle & =\langle i, D(a \cdot b)\rangle=\langle i, \sigma(a) \cdot D(b)+D(a) \cdot \sigma(b)\rangle \\
& =\langle i, \sigma(a) \cdot D(b)\rangle+\langle\sigma(b) \cdot i, D(a)\rangle \\
& =\varphi(b)\langle i, D(a)\rangle \tag{1}
\end{align*}
$$

$\ln (1)$, set $b=e$. So we have,

$$
\begin{equation*}
\varphi(a)\langle i, D(e)\rangle=\varphi(e)\langle i, D(a)\rangle=\langle i, D(a)\rangle \tag{2}
\end{equation*}
$$

On the other hand, let $i^{*} \in I^{*}$, and let $\delta_{i^{*}}^{\sigma}: A \rightarrow I^{*}$ be the σ-inner derivation specified by i^{*}. Then for each $a \in A_{\varphi}$ and $i \in I$ we have,

$$
\begin{align*}
\left\langle i, \delta_{i^{*}}^{\sigma}(a)\right\rangle & =\left\langle i, \sigma(a) \cdot i^{*}-i^{*} \cdot \sigma(a)\right\rangle \\
& =\left\langle i \cdot \sigma(a), i^{*}\right\rangle-\left\langle\sigma(a) \cdot i, i^{*}\right\rangle \\
& =\varphi(i)\left\langle\sigma(a), i^{*}\right\rangle-\varphi(\sigma(a))\left\langle i, i^{*}\right\rangle \\
& =-\varphi(a)\left\langle i, i^{*}\right\rangle \tag{3}
\end{align*}
$$

Set $i^{*}=-D(e)$. By (2) , (3) we have

$$
\left\langle i, \delta_{i^{*}}^{\sigma}(a)\right\rangle=-\varphi(a)\langle i,-D(e)\rangle=\langle i, D(a)\rangle, \quad(a \in A \varphi, i \in I)
$$

Therefore, $D=\delta_{i^{*}}^{\sigma}$. Thus $A \varphi$ is σ-ideally amenable.

References

[1] M. Eshaghi Gordji, T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. 114, 4 (2004), 399-408.
[2] M. Momeni, T. Yazdanpanah, and M.R. Mardanbeigi, σ-Approximately Contractible Banach Algebras, Abstract and Applied Analysis, Volume 2012(2012), Article ID 653140, 20 pages, doi: .1155/2012/653140.
[3] H.G. Dales, F. Ghahramani and N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998) 19-54.
[4] HE. Dales, Banach algebra and automatic continuity, London Mathematical Society Monographs (Oxford: Clarendon Press) (2000) vol. 24

