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Abstract 
Benefiting from Schur theorem and temple's theories, we exposure new enough conditions for obtaining 

multiplicative resupinate eigenvalue with use Hermitian matrices. 

 

1. Introduction 

Let Hn be the set of Hermitian matrices of order n.:  

( ) ( )
ij n

MH LetA a H 
 

be a positive semi-definite matrix and 
1 2

( , ..., ) n

n
R     be a nonnegative vector. The problem is to 

find a nonnegative diagonal matrix C such that the matrix CA has eigenvalues 1 2
, ..., .

n
   We assume in 

the problem that 1( 1,2,... ).
ii

a i n   

(GH) Let 
( )( ), ( ) ( 1,..., ),t

ij t ij n
A a A a H t n    and 

1
( ,..., ) n

n
R    . The problem is to find 

1
( ,... ) n

n
c c c R  such that the matrix 

1

n

t tt
A c A


 has eigenvalues 1

,..., .
n

  We assume in the 

problem that 
( ) ( , 1,..., )i

ii it
a i t n  . 

In this section, main results are introduced. Section 2 contains the proofs.  

 

 

 

mailto:h.fathaliani@ymail.com


    H. Fathaliani / J. Math. Computer Sci.     ( ), -  

 

56 
 

For 
1( ) ( ,..., ) , :n

ij n nB b H andb b b R define     

1/2

2

2

( ) min{ }, ,

( ) max , ( ) min{ }.

i j
i j

ij i j
i jj

i j

d b b b b b

k B b m B b






  

   
   

   


 

THEOREM   1.      Let    
n

A H
      

be positive semi-definite with 

1 2
1( 1,..., ) 0 ... .

ii n
a i n and         Define 

1 1

1 1

1 1

1 1

1 1

1 1

( ... ).

... ,

( ... ) / 2.

0 ( ... ) ( ) / 3,

[ ( ) / 6][ ... ( ) / 6],

... ( ) / 3.

n n

n n

n n

n n

n n

n n

d

d d

d

  

  

  


   

    

   













  


  
   

 
    

    

    

 

Suppose 

 
(1.1)   

( ) 2 3 ( ) ( ).d m A    

 

Then (MH) is solvable. 

THEOREM   2.      Let A and 
'

i
s be the same as in Theorem 1. Suppose  

(1.2)       
1 2

( ) 3( ) ( ).
n n

d k A  


   

Then (MH) is solvable. 

REMARK 1. Theorem 5 in [1] is contained in our Theorem 1 in the case when 1 1
...

n n
  


   , and in 

our Theorem 2.  

 

IVNERSE EIGENVALUE PROBLEM  

Conditions in [1,2, 8] show that n
 the largest component of  , plays a role in the solvability of (MH). In 

Theorems 1 and 2 we go further to show the effects of the smaller components of  .  

In problem (GH), let 

1 11
( ,..., ) ( ,..., ),

n nn
a a a a a   
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(0) (0) ( ) ( )

1 11( ,..., ), ( ,..., ),t t

n t t nnA A diag a a A A diag a a     

(0) (0)

1 1

, ;
n n

t t t

t t

A A a A S A
 

   


 

here, for ( )
ij

B b , by B  we denote the matrix ( )
ij

b . Define  

2 2 2 2
( ) ( ), ' ( ) ( )k a k S k A k k S k A     



.
 

THEOREM   3.   Let ,
t n

A A H with 
( ) ( , 1,..., )t

ii it
a i t n   and 1 2

...
n

    . Suppose  

(1.3)     ( ) 2 3 '.d k   

Then (GH) is solvable.  

THEOREM  4.   Let A, At, and 
'

i
s  be the same as in Theorem 3. Suppose 11 22

...
nn

a a a    and 

(1.4)     ( ) 2 3 .d k   

Then (GH) is solvable. 

 REMARK  2.  Considering a suitable congruent permutation of A an At and reordering of {At}, we see 

that the condition 11
...

nn
a a  can always be satisfied in problem (GH). Theorem 4 improves 

substantially Theorem 8 in [5]. 

 

2. PROOF OF THE THEOREMS 

We need a lemma deduced from Krylov, Bogoljubov, and Weinstein's and Temple's theories.  
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LEMMA 1 (See [5, Lemma 5]). Let ( )
ij n

B b H   with 11
...

nn
b b  . Let 2 2

( ) 0, 2 ( )k B d k B  , 

and (1 )
ij ii ij

b b d     for , 1,...i j n . Then for the eigenvalues 1 2
...

n
      of B 

1/2
2 2

24 ( )
.

2
i ii

d d k B
b

      

We also need the concept of majorization and the following  

LEMMA  2    (See [6,p. 193]). Let ( )
ij n

B b H  . Then for the eigenvalues 1
,...,

n
   of B, 

 𝑏11, … , 𝑏𝑛𝑛  ⊢   𝜆1, … , 𝜆𝑛 , 

Where 𝑢𝑣 means that the real 𝜐𝑒𝑐𝑡𝑜𝑟 𝜐 is majorized by the real 𝜐𝑒𝑐𝑡𝑜𝑟 𝑢.  

Some properties of quadratic functions are helpful in the proof. 

LEMMA 3. Let 
2 2

1 1 1 2 2 2
( ) , ( )Q x x p x q Q x x p x q      be polynomials with 1 2

0p p   and 

2 1
0q q  . Suppose Q1 and Q2 have real roots 1 2

x x  and 1 2
y y , respectively. Then 1 1

, . .x y i e  

2 1/2 2 1/2

1 1 1 2 2 2
( 4 ) ( 4 )

.
2 2

p p q p p q   
  

Proof. It suffices to show 1 1
( ) 0.Q y  In fact, since 1

0y   obviously, then 

2

1 1 1 1 1 1

2 1 2 1 1 1

2 1 1 2 1

( )

( )

0,

Q y y p y q

p y q p y q

p p y q q

  

   

   



 

and we get the result.  

LEMMA  4.   Let ( ) ( )y x x a x   be a quadratic function defined on the interval [ , ].x c d Then  
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( ), / 2,

max{ ( ) } ( / 2), / 2 ,

( ), / 2 .

y d d a

y x c x d y a c a d

y c a c




    
 

 

Proof of Theorem 1. Let 

1/2
2 2 2( ) ( ) 12 ( ) ( )

.
6

d d m A   


     

By the assumption ( ) 2 3 ( ) ( )d m A   we have 

( ) ( ) ( )
, .

63

m A d  
  

                       (2.1)

 

Define  

𝐾 𝜀, 𝜆 = {𝑥 ∈ 𝑅𝑛   𝑥 − 𝜆 ≤ 𝜀}, 𝐷 𝜆 = {𝑥 ∈ 𝑅𝑛  𝑥 ⊢ 𝜆}.  

 

It can be verified that ( , ) ( , ) ( )V K D      is a nonempty, bounded, convex, and closed set in R
n
. 

For 1
( ,..., ) ( , )

n
x x x V     define the matrix 1

( ,..., ).
n

X diag x x Then X is nonnegative. Define 

1/2 1/2( ) .A x X AX  We know that XA and A(x) have the same set of eigenvalues, denoted by 

1
( ) ... ( ).

n
x x    Let 1

( ) ( ( ),..., ( )).
n

x x x   Since ( ) / 6d   and 1
... ,

n
    then 

1
...

n
x x   for any vector ( , ).x V   With 𝑥 ⊢ 𝜆 we have 1 1

... ....
n n

x x       for 

( , )x V   and therefore  
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2
2

2

1

2

1

2

1 1

2

1

( ( )) max

( ) max

( ) ( ... )

( ) ,

ij i j
i

j

i j
i

j

n n

n

n j n

j

k A x a x x

m A x x

m A x x x

m A x x









 
  

 

 
  

 

  

 
  

 







 

Since ( ) / 6
n n n

d x     , then from Lemma 4 we have  

1 1

1

2

1

1

1 1

1

( ... ),

( ... ) / 2,

( ... )
,

4

...( )
,

6 2

( ) ( )
... ,

6 6

... ( )
.

2 6

n n

n n

n

n
n j n n n

j

n n

n
n

d
x x

d d

d

  

  

 

   

 
  

  






 


  

  



    
     

  
  

     
  
  

 


  

Therefore  

(2.2)     2
( ( )) ( ) ( ).k A x m A    

By the assumption in Theorem 1 and (2.1), (2.2) 

2

( ) 2 3 ( ) ( )

2 ( ) ( ) (2 2 / 3) 3 ( ) ( )

2 ( ) ( ) 2

2 ( ( )) 2 .

d m A

m A m A

m A

k A x

  

   

  





  

 

 
                        (2.3)

 

Besides, ( ) ( ) 2d x d    for ( , )x K   . Thus for ( , )x V    

2
( ) ( ) 2 2 ( ( )).d x d k A x     
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Note that 
1
,...

n
x x are diagonal elements of A(x). hence by Lemmas 1 and 3 

2 2 1/2

2

2 2 2 1/2

( ) [ ( ) 4 ( ( )) ]
( )

2

[ ( ) 2 ] {[ ( ) 2 ] 4 ( ) ( ) }

2

.

d x d x k A x
x x

d d m A



     



 
 

   


 (2.4) 

To verify the late equality of (2.4). we note that   satisfies 

2 2 23 ( ) ( ) ( ) 0,d m A        

Which is equivalent to  

2 2 2 2[ ( ) 4 ] [ ( ) 2 ] 4 ( ) ( ) .d d m A A         

Since ( ) 4 0d    [ (2.1) : ( ) / 6 ( ) / 4]see d d    . Then we have  

2 2 2 1/2( ) 4 {[ ( ) 2 ] 4 ( ) ( ) } .d d m A          

Thus (2.4) can be verified.  

Now define a continuous map ( ) : ( , ) nf x V R   with  

(2.5)     ( ) ( ).f x x x     

For the proof of Theorem 1 it suffices to show that f(x) has a fixed point in ( , )V   . (See [5].) 

The inequality (2.4) means for ( , )x     

( ) ( )

( ) / 6 :

f x x x

d

 





  




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Thus ( ) ( , )f x    and 1
( ) ... ( ),

n
f x f x   where fi(x) is the ith component of f(x). Since 𝑥 ⊢ 𝜆(𝑥) 

(Lemma 2) and {fi(x)}, { ix }, and { ( )}i x  are all in increasing order, it can be verified that 𝑓 𝑥 ⊢

𝜆, 𝑖. 𝑒. ( ) ( )f x D  . Therefore ( ) ( , )f x V   . Applying Brouwer's fixed-point theorem, we conclude 

that there is a fixed point 1
( ,... ) ( , )

n
c c c V     such that ( ) , . . ( ) .f c c i e c  

 
The proof of 

Theorem 1 is completed.  

Proof of Theorem 2. We just give an outline for conciseness. Define  

2 2 2 1/2

2 1
1

( ) [ ( ) 3 ( ) ( ) ]
,

6

n n
d d k A   

 
  

  

1 1
( , ) ( , ) ( ),V K D       and consider the map 

1
( ) : ( , ) nf x V R    with (2.5). for 1

( , )x    

we have 

(2.6)   

2
2

2

2

1

1

2 1 2

1
2

1
2

( ( )) max

max ,

( ( )) ( )

( )
2

( ) .
2

i ij j
j

j i

n n ij
i

j

n n

n n

n n

k A x x a x

x x a

k A x x x k A

x x
k A

k A
 













 
  

 

 
  

 













 

The value 2 1
( )( ) / 2

n n
k A  


 plays the same role as ( ) ( )m A    in Theorem 1. Replacing   and (2.2) 

by 1
  and (2.6) in the proof of Theorem 1. Respectively, we can get the result by similar arguments.  

Proof of Theorem 3. Let  

2 2 1/2( ) [ ( ) 12 ' ]
'

6

d d k 


 
  
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It can be verified that  

(2.7)    
( ) '

' , ' .
6 3

d k
    

Define  

( ', , ) { '}.nK a x R x a         

𝐷 𝜆, 𝑎 = {𝑥 ∈ 𝑅𝑛  𝑥 + 𝑎 ⊢ 𝜆}.  

It can be verified that ( ', , ) ( ', , ) ( , )V a K A D a       is a nonempty. Bounded, convex, and closed 

set in R
n
. With (2.7) and 1

...
n

    we have 1 1
...

n n
x a x a    for 1

( ,... ) ( ', , ).
n

x x x V a   Let 

1
( )

n

t tt
A x A x A


 

  
for 1

( ,..., )
n

x x x in ( ', , ).V a   By 1
( ) ... ( )

n
x x    we donote the 

eigenvalues of ( )A x .let 1( ) ( ( ),..., ( )),nx x x   Since 
1

( ) ( )
n

t t tt
A x A x a A


  



and 𝑥 + 𝑎 ⊢ 𝜆, 

we have
i i

x a   and therefore  

(2.8)    2 2 2( ( )) ( ) ( )

'.

k A x k A k S

k

 





 

Define the continuous map ( ) : ( ', , ) nf x V a R   with (2.5). for the proof of Theorem 3 it suffices to 

show that f has a fixed point in ( ', , )V a  (see [5]). Similarly to (2.3) we have  

2

( ) 2 ' 2 '

2 ( ( )) 2 '

d k

k A x

 



 

 

 
With the assumption in Theorem 3. On the other hand, for ( ', , )x V a  we have 

( ) ( ) 2 'd x a d     . Thus  
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(2.9)      

2

( ) ( ) 2 '

2 '

2 ( ( )).

d x a d

k

k A x

   





 

By Lemmas 1 and 3 we have ( ) ( ) 'x a x     for ( ', , )x V a  . The deduction is similar to 

(2.4). On the other hand ( ) ( ) ( )f x a x a x     
.
 

Thus ( ) ( ', , ).f x K a  With ' ( ) / 6d  and 1
....

n
   we have 1 1

( ) ... ( )
n n

f x a f x a    . 

Since 𝑥 + 𝑎 ⊢ 𝜆(𝑥), we can verify that 𝑓 𝑥 + 𝑎 ⊢ 𝜆 and therefore 

( ) ( ', , ) ( , ) ( ', , )f x K a D a V a       . Brouwer's fixed-point theorem implies that there is a 

vector 1
( ,..., )

n
c c c  such that ( ) , . . ( ) .f c c i e c    In other words, 

1
( )

n

t tt
A c A c A


  has 

eigenvalues 1
,...

n
  . The proof is completed.  

Proof of Theorem 4. Define  

1/2
2 2( ) ( ) 12

''
6

d d k 


   
 

( '', , ) ( '', , ) ( , )V a K a D a      and consider the map ( ) : ( '', , ) nf x V a R    with (2.5). For 

1
( ,... ) ( '', , )

n
x x x V a   we have 1

( 1,..., )
i i n

x a i n     ,                    since 𝑥 + 𝑎 ⊢ 𝜆. Thus 

with the assumption 1
...

n
a a  we have x a  and  

(2.10)    2 2 2
( ( )) ( ) ( )

.

k A x k A x k S

k

 


 

Then replacing '  and k' by ''  and k in the proof of Theorem 3, respectively, we can get the result by 

similar arguments.  
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3. NUMERICAL EXAMPLES 

EXAMPLE 1. Let (0,1,2)   and  

0 1 1

0.19 1 0 1

1 1 0

A I

 
 

 
 
  

 

Consider problem (MH). 

 Apply Theorem 1. Since  

3 2 1

( ) ( ) 77
( ) 1, ( )

6 6 6

( ) 0.19,

d d
d

m A

 
     

  
       

  



 

and thus 2 3 ( ) ( ) 0.9625833 ( ) 1m A d     , we know by Theorem 1 that problem (MH) in this 

example is solvable. In fact C= diag (0, 1.081552, 1.9184448) is a numerical solution. We also see that 

the vector c= diag (C) satisfies 0.1401566c      and  c 𝜆 . This agrees with our theoretical 

analysis. 

In some cases, reordering of the rows and columns of matrix A may affect the question of solvability 

when sufficient conditions shown in [2] and [8] are applied. (See also [3].) The matrix in Example 1, 

hewever, does not change under arbitrary congruent permutation, For this  we use this kind of matrices in 

our numerical tests.  

EXAMPLE Let (2.5,5,7.5,10,12.4)   and A=I+0.039 B. where  
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0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

B

 
 
 
 
 
 
 
 

 

Consider problem (MH). 

Apply Theorem 1. Since 
5 4 3 2 1

( ) ( ) 17.606816, ( ) 0.039m A            , and  

2 3 ( ) ( ) 2.3786803 ( ) 2.4,m A d      

The problem is solvable. C= diag (2.5197887, 5.0386475, 7.5492414, 10.039076, 12.252945) is a 

numerical solution. The vector c=diag(C) satisfies 0.3468022c      and 𝑐 ⊢ 𝜆.  

EXAMPLE 3. Let (0,0.333,0.666,1,7)  and A = 1 + 0.012B. Where B is the same as in Example 2. 

Consider problem (MH). 

Apply Theorem 2. With k2(A)=0.024 and  

5 4 23( ) ( ) 0.3325537 ( ) 0.333k A d       

we know the problem is solvable. The matrix C = diag(0, 0.3332137, 0.6662960, 0.9998153, 6.9996749) 

is a numerical solution. The vector c = diag (C) is in 1
( , )V   , where 1

0.0526277  .  

REMARK 3. Examples 1-3 show that our results are not contained in those of [1], [2], or [8]. The 

following examples, however. Show the converse.  
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Let  

1
1

4
(0.5,1) .

1
1

4

and A

 
 

   
 
  

 

This example satisfies [2, Theorem 3] and [8, Theorem 2], but does not satisfy our Theorem 1 or 2.  

 Let 

0 2 0
1

(5,6,7) 2 0 1 .
42

0 1 0

and A I

 
 

    
 
  

 

This example (note that 3 1 2
    ) satisfies [1, Theorem 5], 

 but does not satisfy our Theorem 1.  

Our results do not contain those in [3], which can be applied to non-symmetric matrices.  

EXAMPLE 4. Let 
1 1 1

(0,0.4), ( 1,1), 0.05 ,TA diag A e e B      and 2 2 2 0.1 ,TA e e B   where ei is 

the ith column of I2 and 2 1
[ , ].B e e  Consider problem (GH).  

 Since S= 0.15B, A = -0.05B, then  

2 2
2 3 ' 2 3 ( ) ( )

0.3810511

0.4 ( )

k k A k S

d





 
   



 



 

By Theorem 3 problem (GH) is solvable. c = (1.0002507, -0.6002507) is a numerical solution. For this 

example, assumptions in [5, Theorem 5] are not satisfied.  
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REMARK 4. Theorem 6 in [5] is not contained in our Theorem 3. See the numerical example shown in 

[5].  

Our theorems 3-4 are not contained in the results of [7] and vice versa.  
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