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Abstract 
Due the wide applications of truss structures in industries including aviation, transportation, buildings 

and vital structures, design and optimization of these structures have became the most active research 

fields. Furthermore it turns out that in many of structures that have been exposed to wind, hurricanes 

or violent earthquake, the optimization according weight only is not an appropriate way. So recently, 

many efforts have been made according natural frequencies optimization and minimization of weight. 

Due to the importance of optimization and control of natural frequencies in structures and to avoid 

resonance, calculating of natural frequencies of the truss structures in different moods based on 

minimization of weight have been focused. To reach this goal method have been used in this research, 

optimization by Artificial Bee Colony algorithm (ABC). Optimized structures are a planar 10-bar 

truss and a space 72-bar truss. Conclusions show these method have better quality than other 

algorithms and they can use engineering complex structures optimization. 

Keywords:  Size optimization; Truss structures; Artificial Bee Colony algorithm; Frequency 

constraints; Engineering design 

 

1.   Introduction 

It is well known that the natural frequencies are fundamental parameters affecting the dynamic 

behavior of the structures. Therefore, some limitations should be imposed on the natural frequency 

range to reduce the domain of vibration and also to prevent the response phenomenon in dynamic 

response of structures [1]. On the other hand, engineering structures are often supposed to be as light 
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as possible [2]. Thus a frequency constraint weight optimization process should be performed to 

obtain these two aims simultaneously. 

Frequency constraints are highly nonlinear, non-convex and implicit with respect to the design 

variables [3]. Therefore mathematical programming approaches can be hard and time-consuming to 

apply to these optimization problems. Furthermore, a good starting point is vital for these methods to 

be executed successfully [4]. Under such circumstances, the population based meta-heuristic 

algorithms can serve as appropriate alternatives.  

Several researchers have introduced and implemented different algorithms to address this problem. 

Grandhi and Venkayya [5] proposed an algorithm, where an optimality criterion based on uniform 

Lagrangian density was utilized for resizing and scaling procedure to locate the constraint boundary. 

Multiple equality and inequality frequency constraints were considered on truss structures. 

Sedaghati et al. [6] employed an integrated finite element force method frequency analysis together 

with a mathematical programming technique to optimize both frame and truss structures with 

frequency constraints.  

Wang et al. [7] used an optimality criterion based on the differentiation of the Lagrangian function, 

where an infeasible point with the minimum weight increment was considered as the starting point. 

Simultaneous shape and size optimization of three-dimensional truss structures with multiple natural 

frequency constraints was addressed.  

Lingyun et al. [8] introduced a hybridization of the simplex search and genetic algorithms called niche 

genetic hybrid algorithm (NGHA) with a float point codification to tackle the problem of mass 

minimization of trusses with frequency constraints. This algorithm divides the initial population into 

groups called niches. Each niche is then explored by a simplex algorithm to obtain the optimum 

solutions. The procedure is continued by searching amongst the best niches using the simplex method 

in subsequent iterations.  

Gomes [9] utilized the well-known Particle Swarm Optimization (PSO) algorithm to investigate 

simultaneous shape and size optimization of truss structures with multiple frequency constraints.  

Lin et al. [10] proposed a bi-factor    algorithm based on the Kuhn–Tucker criteria for the 

minimum weight design of structures under statical and dynamical constraints. Sizes of the elements 

and/or the coordinates of the nodes were considered as the design variables.  

As a developed type of meta-heuristic algorithm, the Artificial Bee Colony algorithm (ABC) is 

introduced by Karaboga and Basturk for solveing unconstrained and constrained function 

optimization problems [11-12].  

 

2. Statement of the optimization problem 

In truss sizing optimization problems, the structural topology is prescribed in advance and kept fixed 

in the solution process. Element cross-sectional areas are referred to as the design variables and are 

assumed to change continuously in this context. The natural frequencies are posed as constraints for 

the structure to avoid resonance with the external excitations. 

In addition, each variable may be constrained within an acceptable region. Thus, the optimization 

problem can be defined mathematically as follows: 

 



   M. Mashinchi Joubari, M. H. Pashaei, A. Fathi / J. Math. Computer Sci.    9 (2014), 77 - 88 
 

79 
 

( ) ( ) penaltyMinimize Mer A F A f 

 

(1) 

1

( )
n

e e e

e

F A L A



 

(2) 

subject to: 

*

1, 1,2,...,i i i q    (3) 

*

1, 1,...,i i i q q     (4) 

lower upper

j j jA A A   (5) 

where Mer is the merit function, F(A) is the weight of structure and is expressed in Eq.(2) 
eL , 

e  and 

eA  are the length, material density, and cross-sectional area of the eth element, respectively. Here n is 

the total number of elements in the structure and k the number of the independent design variables.

penaltyf  is the penalty function which results from the violations of the violations of the constraints 

corresponding to the response of the structure. Inequality (2) represents that some natural frequencies 

1, 1,2,...,i i q  numbering
1q , should exceed the prespecified lower limits. In inequality (3), other 

natural frequencies
1, 1,2,...,i i q q   . must be less than the corresponding upper limits, respectively. 

Inequality (4) indicates that the design variable
jA , including a sizing variable, should take a value 

between its lower bound lower

jA  and upper bound upper

jA , respectively. 

The penalty function is defined as [4]: 
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Where q is the number of frequency constraints. If the ith constraint is satisfied 
iv will be taken as 

zero, if not it will be taken as: 

*
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The parameters 
1 and 

2 are selected considering the exploration and the exploitation rate of the 

search space. 

 

3. The behavior of real honeybees in their natural environment 

Honeybees live in social units called colonies, depending on the time of year a typical colony includes 

a single queen, thousands of semi-sterile female workers and a few thousand males (drones).  
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Adult workers are responsible for executing all the tasks associated with colony living such as; 

processing and storing food, cleaning cells, feeding larvae (nursing behavior), secreting wax and 

constructing combs, and guarding the entrance [13].When the female bees are about 3 weeks old, they 

begin foraging, cease performing most tasks within the hive and usually remain foragers for the rest of 

their lives [13]. Foragers are able to utilize a large number of flower nectar (food sources) in multiple 

directions up to 12km from the hive, but mostly they fly within a 3km radius [14]. 

In a colony, the female bees start the foraging process by randomly searching for the promising flower 

patches. After finding a food source, the bee loads up with nectar then returns to the hive and unloads 

her nectar. Then, she may inform her nest mates about her findings through the movements known as 

the “waggle dance.” This dance gives three pieces of information regarding the flower patch; the 

direction in which it can be found, distance from the hive and quality rating [15,16]. In a decentralized 

but intelligent fashion, some of the bees decide to follow their nest mates who have performed the 

waggle dance; others, to maximize their nectar intake, search for the food source without following 

the dancers. This means that each bee can follow one of three options after unloading the nectar: (a) 

abandon the food source and search for another promising flower patch, (b) continue to forage at the 

food source without recruiting nest mates, or (c) perform the waggle dance to recruit nest mates 

before returning to the food source. 

Each bee follows one of the above options based upon the food level of that nectar source. If a bee 

finds a nectar source which is above a certain limit, she follows option (c). If the nectar source is 

average, the bee goes to forage at the food source without recruiting nest mates. Otherwise, the bee 

continues to search for promising nectar sources as option (a). The main goal of the foragers is to 

locate the most abundant nectar source [15, 16]. 

 

4. Modeling artificial bee colony behavior 

In the ABC algorithm, each food source exploited by the bees represents a possible solution to given 

optimization problem. The location and amount of nectar from the flower patch correspond to the 

design variables and the fitness function, respectively. All the worker bees (N) leave the hive to 

search for promising flower patches. After the workers bees return to hive with a certainamount of 

nectar, the first half (SN) that found the best food sources become “employed bees.” The remainder of 

the bees watches the waggle dance to decide which of the employed bees followed. These bees, which 

watch the waggle dance, are called “unemployed bees” or “onlooker bees.” 

Each food source has only one employed bee; that is, the number of food sources is equal to the 

number of employed bees. The number of unemployed bees which will fly to a food source depends 

on the amount of nectar at the source. The unemployed bees choose a food source according to the 

quality of the nectar. More unemployed bees prefer to visit an abundant nectar source while fewer or 

no unemployed bees choose the food source having less nectar than others. It means that unemployed 

bees select a food source according to a probability proportional to the amount of nectar to be found at 

the food source [17]. The probability 
ip for that source i is calculated in the following way: 
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A candidate food source is created from the neighborhood of the old food source. It means that the 

ABC algorithm uses the old food source   ( old

i jA ) to search for a candidate food source ( new

i jA ). 
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Numerically, the location of a candidate food source i is determined as: 

( )new old old old

j i j i j k jA A A A    (9) 

Where   is a random number between -1and 1. new

jA  is an updated design variable. The left hand 

subscripts represent the solution number (food source, i=1, 2, 3. . . SN) while the right hand script 

denote the design variable number (j=1, 2, 3. . . D). k is a randomly chosen integer number but cannot 

be equal to i. old

k jA  plays an important role in the ABC convergence behavior since it is employed to 

control the exploration abilities of the bees. It directly influences the location of the new food source, 

which is based on the previous location of other food sources in the regions of the design space. Every 

employed bee determines a new food source in the neighborhood of its currently associated food 

source and evaluates the new amount of food as shown in Eq. (1). If the food level in the new location 

is better than the old one, the new position becomes the food source; otherwise, the old location is 

maintained as the best food source. 

As mentioned above, the ABC algorithm is iterative. If there is no improvement in the amount of 

nectar from a food source after a predefined iteration (LIMIT), this food source is discarded by its 

employed bee. These employed bees become “scout bees” acting as the colony’s explorers [20]. 

Concerned primarily with finding any kind of nectar source and they do not have any guidance as to 

where to look for food. The scouts may accidentally discover rich, entirely unknown food sources and 

when this happens the scout bee becomes an employed bee. A new location found by a scout bee i is 

calculated as: 

( )new l u l

j j j jA A A A    (10) 

Where λ is a random number between 0 and 1. l

jA  and l

jA  are the lower and upper bounds of the jth 

variable, respectively. 

 

5. Numerical Examples 

5.1 A 10- bar truss 

Size optimization of the 10-bar planar truss shown in Fig. 1 is considered. This is a well-known 

problem in the field of weight optimization of the structures with frequency constraints. The cross-

sectional area of each of the members is considered to be an independent variable. A non-structural 

mass of 454.0 kg is attached to the free nodes. Table 1 shows the material properties, variable bounds, 

and frequency constraints for this example. This problem has been investigated by Grandhi and 

Venkayya [5] using the optimality algorithm. Sedaghati et al. [6] have solved it by sequential 

quadratic programming and the finite element force method. Wang et al. [7] have used an 

evolutionary node shift method and Lingyun et al. [8] have used a niche hybrid genetic algorithm to 

optimize this structure. Gomes has analyzed this problem using the particle swarm algorithm [9]. 

Kaveh and Zolghadr [2] have investigated the problem using the Standard and an enhanced CSS. 
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Fig 1. A 10-bar planar truss[8] 

 

 

Table 1. Material properties, variable bounds and frequency constraints  

for 10-bar truss structure 

Property/unit Value 

E (modulus of elasticity)/N/
2m  

106.98 10  

  (Material density)/kg/
3m  2770.0 

Added mass/kg 454.0 

Design variable lower bound/
2m  

40.645 10  

L (Main bar’s dimension)/m 9.144 

Constraints on first three frequencies/Hz 1 2 37, 15, 20      

 

Table 2 represents the design vectors and the mass of the corresponding structures obtained by 

different researchers.  
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Table 2: Optimal design cross sections (
2cm ) for several methods for the 

ten bar planar truss (weight does not include added masses) 

This Work Sedaghati [6] Gomes [9] Wang [7] 
Element 

Number 

31.053 38.245 37.712 32.456 1A  

8.101 9.916 9.959 16.577 2A  

31.055 38.619 40.265 32.456 3A  

10.190 18.232 16.788 16.577 4A  

1.019 4.419 11.576 2.115 5A  

6.007 4.419 3.955 4.467 6A  

20.164 20.097 25.308 22.810 7A  

20.169 24.097 21.613 22.810 8A  

10.138 13.890 11.576 17.490 9A  

10.135 11.452 11.186 17.490 10A  
529.376 535.8 537.98 553.8 Weight (Kg) 

 

Table 3 represents the natural frequencies of the optimized structures obtained by different 

researchers. It can be seen that all of the constraints are satisfied with an exception of the structure 

obtained by Sedaghati et al. [6].  

Table 3. Natural frequency (HZ) of the optimized structures  

(the ten- bar planar truss) 

This work Sedaghati [6] Gomes [9] Wang [7] 
Frequency 

number 

7.008 6.992 7.000 7.011 1 

17.147 17.599 17.786 17.302 2 

20.001 19.973 20.000 20.001 3 

20.225 19.977 20.063 20.100 4 

28.4248 28.173 27.776 30.869 5 

31.420 31.029 30.939 32.666 6 

48.090 47.628 47.297 48.282 7 

52.432 52.292 52.286 53.306 8 

 

Fig. 2 shows the convergence curve of the best result obtained by ABC algorithm for the 10-bar 

planar truss.  
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Figure 2. The convergence curve for ABC algorithm (the ten- bar planar truss) 

 

5.2 A 72- bar space truss 

Topology and element numbering of a 72-bar space truss is depicted in Fig. 3. The elements are 

classified in 16 design groups according to Table 4. Four non-structural masses of 2270 kg are 

attached to the nodes 1–4.  

This is a mere size optimization. This example has been solved by Sedaghati [19] using the force 

method (FM). Gomes [9] has investigated the problem using the Particle Swarm Optimization. Kaveh 

and Zolghadr [2] have investigated the problem using the standard and enhanced CSS. Material 

properties, variable bounds, frequency constrains and added masses are listed in Table 5. The optimal 

cross-sectional areas for the 72-bar space truss, obtained by different researchers, together with the 

results gained by the proposed algorithm are shown in Table 6. It can be seen that optimization by the 

proposed algorithm obtained the best result so far.  

 

Table 4. Member linking detail for the 72 bar space truss 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Group 

number 

71- 

72 

67- 

70 

59- 

66 

55- 

58 

53- 

54 

49- 

52 

41- 

48 

37- 

40 

35- 

36 

31-

34 

23- 

30 

19- 

22 

17- 

18 

13- 

16 

5- 

12 

1- 

4 
Members 
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Fig 3. A 72-bar space truss 

 

Table 5. Material properties, variable bounds and frequency constraints 

 for 72-bar space truss  

Property/unit Value 

E (modulus of elasticity)/N/
2m  

106.98 10  

  (Material density)/kg/
3m  2770.0 

Added mass/kg 2270.0 

Design variable lower bound/
2m  

40.645 10  

Constraints on first three frequencies/Hz 1 34, 6    
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Table 6: Optimal design cross sections (
2cm ) for several methods for the 

72 bar space truss (weight does not include added masses) 

This Work Gomes [9] Kaveh [2] Sedaghati [19] Group number 

3.315 2.987 2.528 3.499 1 

8.229 7.849 8.704 7.932 2 

0.645 0.645 0.645 0.645 3 

0.645 0.645 0.645 0.645 4 

8.186 8.765 8.283 8.056 5 

7.976 8.153 7.888 8.011 6 

0.645 0.645 0.645 0.645 7 

0.645 0.645 0.645 0.645 8 

13.367 13.450 14.666 12.812 9 

7.880 8.073 6.793 8.061 10 

0.645 0.645 0.645 0.645 11 

0.645 0.645 0.645 0.645 12 

17.351 16.684 16.464 17.279 13 

8.061 8.159 8.809 8.088 14 

0.645 0.645 0.645 0.645 15 

0.645 0.645 0.645 0.645 16 

327.381 328.823 328.814 327.605 Weight (Kg) 

 

Table 7 represents the natural frequencies obtained by various methods for the 72- bar space truss. 

Fig. 4 shows the convergence curve of the best result obtained by ABC algorithm for the 72-bar space 

truss. 

 

Table 7. Natural frequency (HZ) of the optimized structures 

 (the 72 bar space truss) 

This Work Gomes [9] Kaveh [2] Sedaghati [19] 
Frequency 

number 

4.000 4.000 4.000 4.000 1 

4.000 4.000 4.000 4.000 2 

6.001 6.000 6.006 6.000 3 

6.247 6.219 6.210 6.247 4 

9.047 8.976 8.684 9.074 5 
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6. Conclusions 

In this paper we optimize two samples of structures include a planar 10-member truss and a space 72-

member truss. The trusses were optimized under frequency constrains with Artificial Bee Colony 

algorithm (ABC).Conclusions show that ABC has better qualities than other algorithms, also the 

accuracy of this algorithm is too high and it prevent the converge of algorithm to local optima. In 

other words this algorithm has high potential to solve optimized problems under limited conditions.   

 
Figure 4. The convergence curve for ABC algorithm (the 72 bar space truss) 
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