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1. Introduction

Zadeh introduced fuzzy sets in his seminal work in 1965[18] and after a decade in 1975
Kramosil and Michalek in [6] introduced fuzzy metric spaces by generalizing the definition of
probabilistic metric spaces. Afterwards, fuzzy metric spaces were introduced by fuzzify metric
spaces from different angles. Some of these definitions are obtainable in [3], [4] and [5]. Fixed
point results in fuzzy metric spaces in the sense of Kramosil and Michalek [6] have been
obtained in works. The main purpose of this modification is to introduce some desirable
topological properties such as Hausdroff property. For more detail, one can refers to papers [1],
[2], [7], [12] and [17]. Fixed point results were discussed in modified M '-fuzzy metric spaces
defined in the sense of Sedghi and Shobe [10]. Presently we take up some issues of fixed point
theory involving R-commuting mappings is such spaces. .In this paper, we obtain some
common fixed point results on M -fuzzy metric spaces generalizing the earlier results of Pant
[8], Vasuki [15] and Som [13,14] in fuzzy metric spaces.

Definition 1.1:[9] A binary operation *: [0,1] x [0,1] —[0,1] is a continuous t-norm if it
satisfies the following conditions

(i) *isassociative and commutative

(if) *is continuous

(iii) a*1=afor all a € [0,1].

(iv) a*b <c*d whenevera<candb<d, foreacha, b, c,d e [0,1].
Examples for continuous t-norm are a*b = ab and a*b = min {a,b}

Definition 1.2:[11] Let X be a non empty set. A generalized metric (or D* - metric) on X is a
function D*: X® — [0,x) that satisfies the following conditions for each x, y, z, a € X.

1.D*(x,y,2)>0

2.D*(x,y,z)=0ifandonlyifx=y =2

3. D* (x,Y, ) = D* (p{X, y, Z}) where p is permutation.

4.D* (X,¥,2) <D*(x,y,a) + D* (g, z, 2).

The pair (X, D*) is called generalized metric (or D* - metric) space.

Definition 1.3: [10] A 3-tuple (X, M ,*) is called M -fuzzy metric space if X is an arbitrary non-
empty set, * is a continuous t-norm, and M is a fuzzy set on X® x (0,:0), satisfying the following
conditions for each x,y,z,aecX andt,s >0

(FM-1) M (x,y,z,t) >0

(FM-2) M (xy,zt) =liffx=y =1z

(FM-3) M (x,y,z,t) = M (p{xy,z},t), where p is a permutation function.

(FM-4) M (x,y,a,t)* M(a,z,2,5) < M (X,y,z,t + )
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(FM-5) M (x,y,z,) : (0,0) — [0,1] is continuous
(FM-6) tlim M (x,y,2,1) =1,

Examples 1.4: [11] Let X be a nonempty set, D * is the D* metric on X. Denote a*b = ab for all

a,be[0,1]. For each te (0,:), define M (X, Y, z, t) =m for all x,y,zeX, then (X, M ,*)

is a M'-fuzzy metric space. We call this M'-fuzzy metric induced by D* -metric space. Thus
every D* - metric induces a M -fuzzy metric.

Lemma 1. 5: [10] Let (X, M, *) be a M'-fuzzy metric space. Then for every t > 0 and for every
x,yeX. We have M (x,x,y,t) = M (X,y,Y,1).

Definition 1. 6: [16] Let (X, M,*) be a M-fuzzy metric space and {x,}be a sequence in X then

(@) {x,}issaid to be converges to a point xe X if lim M (X, X, X,, t) =1 forallt>0.
n—oo
(b) {x.} is called Cauchy sequence if lim M (Xn+ p, Xn+ p, Xn, t) =1 forallt>0and p > 0.
n—oo

(c) aM-fuzzy metric space (X, M ,*) is said to be complete in which every Cauchy sequence
is convergent.

Definition 1.7: The mappings f and g of M -fuzzy metric space (X, M,*) into itself is said to be
weakly commuting M (fgx, gfx, gfx, t) > M (fx, gx, gx, t) for all xeX, t>0.

Definition 1.8: Let f and g be two self mapping of a M -fuzzy metric space (X, M ,*). Then the

mapping are said to be R-weakly commuting provided there exists some positive real number R
such that M (fgx, gfx, gfx, t) > M (fx, gx, gx, t/R) for all xe X, t>0and R > 0.

2. Fixed point theorem for three self maps

Theorem 2.1: Let S and T be two continuous self mappings of a complete M -fuzzy metric
space (X, M,*), where * is a continuous t-norm. Let A be a self mappings in X such that:

(2.1) {A,S} and {A, T} are R-weakly commuting;

2.2) AX)c SX)ATX)

@3 (a2 = @ "Gy =) Gaswars =) Geearmn -
1

where ¢: [0,00) — [0, ) is a continuous function such that ¢ (t) <t for all t > 0 and ¢(0) = 0;
(2.4) letx,—> X,y,—yandz, — z,t>0implies M (Xn, Yn, Zn, 1) > M (X, Y, Z, 1)

Then A, S and T have a unique common fixed point in X.
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Proof : Let xoeX be an arbitrary point. As A(X) < S(X). So, there exists a point x;eX such
that Axy= Sx.

Again A(X) < T(X), hence there exists another point x,e X such that Ax;= Tx,. In general,

we get points Xone1 and Xonsz in X, such that SXone1 = AXon, TXonez = AXones forn=0, 1...

Let fort> 0,

— 1 -
Ha(t) = (M(AXH,AXn+1:AXn+1't) 1)

Therefore Hy,(t) = ( ! - 1) = ( = — 1)

M (Ax2n,AXon+1,AX2n +1,t) M (AX2n +1,AXon,AXon t)

s¢ [max{( M(SXZH+1,1ls.sz,sz“,t) N 1) (=D, (M(szn,Aizn,szn,t) - 1)}]

=@ [max {(M(AXZn,Axlzn,sz,,,l,t) B 1) ), (M(sz,,,l,ixz“,sz,,,t) B 1)}]

= @[max{Hz, 1 (1), Hp (1), Hzp—1(D)}]

= @[max{Hp, 1 (t), H, (D)} (2.9)

We claim that Hy, (t) < Han1(t). If not, then max {Han 1(t), Han(t)} = Han(t)

Therefore, by (2.5), Han(t) < @ [Han(t)] < Han(t), which is a contradiction.

Hence, Hy, (t) < Han1(t). This gives, by (2.5),

Han(t) < @ [Han1(t)] < Hana(t) (2.6)

Now, Hons1(t) =

1 1
- -y
<M (AXon +1, AXon 42, AXon 42, ) M (AXon+2, AXon +1, AXon+1, 1)

( + + I + ) ( + + )
M(SX ,AX X ,t) ’ M(SX ,AX ,AX ,t) !
< 2n+2 2n+1 2n+1 2n+2 2n+2 2n+1

1 )
( M (TX2n+1,AX2n +1,AX2n +1,)

1 1
-1).( -1)
= ¢ [ max (M (Axon +1,A%X2n +1,AX 0 1) " \M (Ax2n +1,AX20 +2,A% 20 +1,t) ’

( : 1)
M (AX2n,AX2n +1,AX2n +1,8)

= @[max{Hy, (t), Hop 41 (), Hon (03] = @[max{H,, (t), Hpp41 (D3]

As done above, we can easily prove that Han.1(t) < Han(t) .
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Therefore, Honea(t) < Han(t) < Han1(1).
Hence, {H,(t)} is a decreasing sequence of positive real numbers, hence it tends to a limit L > 0.

We claim that L= 0. If not, taking limit as n—co, as ¢ is a continuous function, (2.6) gives L
< o(L) <L, acontradiction. Hence L= 0, that is, for t >0

lim M (AXn, AXne1, AXpsg, 1) =1 (2.7)

n-—-oo

Now, for any positive integer p, we have

M (AXn, AXnsp, AXns p, 1) = M (AXn, AXni1, AXnst, UP) * M(AXnir, AXnsz, AXnsp, tp) * .0 >
M (AXnsp-1, AXnep, AXns p, D).

Taking limit as n—oo, in the above inequality and using (2.7) and continuity of *, we have

MM (AXn, AXnip, AXns p, 1) > 1im M (AXn, AXne1, AXnet, 1P)* M (AXns1, AXniz, AXnsz, t/P)
n—oo

n—oo

* o M(AXnep-1,A%np, AXnep, /D)

In other words, limM (AXn, AXnip, AXns p, t) = 1 for all t > 0 and positive integer p.
n—oo

Thus {Ax,} is a Cauchy sequence and by completeness of X, we have {Ax,} converges to a
point ze X.

Obviously, the subsequences {Sxan+1} and {Txzn} of {Ax,} also converges to the same limit.
Thus AX, = Z, SXope1 — Z and TX,, — Z aS N—>0 (2.8)

Since pair {A, S} is R-weakly commuting, we get

( 1 1) = ( : 1)
M (ASX2n +1,5AX2n +1,SAX2n +1,t) — \M(AX2n+1,5%2n +1,5%2n +1,t/R)

1
= - 1)
(M (AXon +1,AX2n,AX2n t/R)

Taking limit as n—oco we have by virtue of (2.5) and the continuity of S gives,

. 1 . 1
lim —1)< lim -1
n-oo \M (ASX2n+1,5A X2 +1,SA X2n +1,t) n-oo \M (Ax2q +1,AX2n,AX2n t/R)

(e 1) =0

Again Ax,—z, therefore by continuity of S, SAx,—Sz.
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Therefore, by the above inequality, JL‘}}, ASXon+1 ZHILI‘g SAXon41 = Sz (2.9)
Similarly, as pair {A, T} is R-weakly commuting and using continuity of T, we can easily prove
BmMATXgn1 = iMT A =Tz (2.10)
Now, we prove that Sz = z. Suppose otherwise. Then there exists t > 0, such that

1
(m - 1) > 0. By (2.3) we have,

ey Y
M (ASxop +1,AX2n,AX 2 ,t)

1 1
M(SZXZ 1AXon, TXop t) -1 ! M(SZXZ 1,AS Xon +1,AX2n,t) -1 !
S (p max n+1- n- n- n+1» n+1» n-

e 1)
M (Txon,AX0p ,AXop ,t)

Taking limitas n — c we have by virtue of (2.5), (2.8),(2.9) and the continuity of S,

Geeaan — 1) = @ (s Y Gesesan Y- Geeaas ~ M

1 1 L L.
= ( MGzt 1) < ( T 1), which is a contradiction

Thus z is a fixed point of S.

Next, we can show that z is a fixed point of A.

If otherwise, z is not a fixed point of A, then ( > 0. By (2.3) we have,

1
M (Az,z,z,t) B 1)

( : 1)

1 M (Sz,Ax94,TXop ,t

(——1) < ¢ |max ( 20, Tx20,0)

M (Az,AXopn,AxXop ,t) ( 1 _ ) ( 1 _ 1)
M (Sz,Az,Axp, ,t) " \M (Tx2n,AX0,,AXon ,t)

As n —oo, we have,

(m 1) < ¢ |max {(m -1), (m -1), (M(z,lz,z,t) ~1)}]

=¢ [ma)dz}g(lvf(z,lz,z,t) - 1) ’ (M(Z,lz,z,t) - 1) ’ (M(Z,lz,z,t) a 1)}]

= ¢ [max (0,0,0)]

=¢(0)=0

which is a contradiction to the fact that ( : 5 1) > 0. Hence z is a fixed point of A.

M(Az,z,z,t
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1

Now we claim that z is also a fixed point of T. Suppose not, then (m

—1)>o.

By (2.3) we have,

Graams 1)

1 M (Sz,AT Xpp,T2Xop ,t) ’

— 1) < max " "

(]V[(AZ,Aszn,Aszn,t) =@ ( 1 . ) ( 1 . )
M (Sz,Az,AT X2y t) " \M (T2x 2, AT X2 AT X2, t)

Taking limit as n —oo, it gives

(m N 1) = ® [max{(m N 1) ! (M(Z,i,TZ,t) - 1) ’ (M(TZ,'::‘Z,TZ,t) - 1)}]
= o| (s~ V)

< (s~

which is a contradiction. Hence z is a fixed point of T.

Uniqueness: Let v be another fixed point of A, Sand T . Thatis Av=Sv=Tv

and ( — 1) >0. Thatis ( L

M(AzAvVAVL) 1) >0.

1
M (z,v,v,t)

Now , by (2.3) we have,

Gemanen — 1) = o [med{(momn — 1) s — 1) oo ~ UM
= o[max{(5es— 1) Gres ~ ) G — V)]
= o[max{(5zm5 — 1) Gres — )0
= |Gz ]

< (M(z,];;,v,t) - 1)

which is a contradiction. Hence z is a fixed point of A, S and T. This completes the proof.

Taking T = S in the above theorem we get the following corollary unifying Vasuki’s Theorem
1.9 [11], which in turn also generalizes the result of Pant [5].

Corollary 2.2: Let S be a continuous self mappings of a complete M'-fuzzy metric space
(X, M ,*), where * is a continuous t-norm. Let A be another self mappings of X such that:

(2.11) {A, S} is R-weakly commuting;

95



R. Muthuraj, et. al. / J. Math. Computer Sci. 9 (2014), 89-102

(2.12)  AX) < S(X);

(2.13)

(m - 1) s [max {(m N 1) ’ (M(SX,iX,Ay,t) - 1) ’ (M(Sy,iy,Az,t) - 1)}]

where ¢: [0,00) — [0, ) is a continuous function such that o (t) <t for all t >0 and ¢(0) = 0;
(2.14) letx,—> X, y,—> yand z, — z, t > 0 implies M (Xn, Yn, Zn, 1) = M (X, Y, Z, 1).

Remark 2.3: The conclusions of Theorem 2.1 remain true if we replace condition (2.3) by any
of the following conditions:

(2.15) (m - 1) <o [max{(m - 1) « (m — 1)}]

where ¢: [0,00) — [0, o) is a continuous function such that ¢ (t) <t for all t > 0 and ¢(0) = 0;

(2.16) M (Ax, Ay, Az, t) = r [min{M (Sx, Ay, Ty, t), M (Sx, Ax, Ay, t), M (Ty, Ay, Az, t)}]
wherer : [0, 1] — [0, 1] is a continuous function such thatr (t) > tforallt<1and r(1) = 1.

Remark 2.4: The conclusions of Corollary 2.2 remain true if we replace condition (2.13) by
any of the following conditions:

(2.17) Gramms Y < @ [max{Gamss Y * G — V)]

where ¢: [0,0) — [0, o) is a continuous function such that ¢ (t) <t for all t > 0 and ¢(0) = 0;
(2.18) M (Ax, Ay, Az t) = r [min{M (Sx, Ay, Sy, t), M (Sx, Ax, Ay, t)}]

wherer : [0, 1] — [0, 1] is a continuous function such thatr (t) > tforallt<1andr(1) = 1.

Remark 2.5: From Theorem 2.1 and Remark 2.3, it is clear that above results generalizing the
earlier results of Pant [8], Vasuki [15] and Som [13,14] in fuzzy metric spaces.

3. Fixed point theorem for four self maps:
We prove a common fixed point theorem for four maps:
Theorem 3. 1: Let S and T be two continuous self-mappings of a complete M'-fuzzy metric
space (X, M,*) , when * is a continuous t-norm. Let A and B be two self mapping of X

satisfying:

(3.1) A(X)c S(X) and B(X) c T(X)
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(3.2) {A,T}and{B, S} are R-weakly commuting pairs

(3 a(immas VP Graass U+ Gramms - U+

min {(M(AX,jS-Z,Sy,t) - 1) ! (M(By,']I-‘x,Sy,t) N 1)} = q (m - 1)

for all x, y, zeX , where a, b, ¢ €[0,1], g >2 withg>a+ b +c. Then, A, B, Sand T have a
unique common fixed point.

Proof: Let x,eX be any arbitrary point. Since A(X) < S(X), there is a point x; €X such that
AXxy = Sx;. Again since B(X) < T(X), for this xy, there is an x,eX such that Bx;=Tx, and so
on. Inductively, we get a sequence {yn} in X such that Y., = AXon = SXon+1 @Nd Yone1 = BXoneg =
TXons2, N=0,1, 2. ..

1

Letfort>0, Hy(t)= (m

—1) > 0 for all n.

Putting X = Xon, Y = Xone1, aNd Z = Xon41 i (3.3), We get,

1 1 1
a( —1)+b( —1)+ c( —1)
M (TX2n,5% 20 +1,AX 2n,t) M (Tx2n,AX 20,5X 20 +1,t) M (SX2n+1,BX2n +1,BX2n +1,)

. 1 1
+ min {( -1).( -1)}
M (AX 2n,5% 2n +1,5X 20 +1.1) " \M (BX 21 +1,TX2n,5X 20 +1,t)

>q( : 1)
= 4\ (Axzn Sx2n 0B 2n10)

1 1 1
A S WU S S P )4
M (Yon-1.Y2n,Y2n:t) M (Y2n-1.Y2nY2n:t) M (Yonyon+1Y2n+1t)

1 1 1
i - - @@ 1)1 >qg(———————1
min {(M(YZnIYZnﬂYZn ) 1) ’ (M(Y2n +1Y2n-1Y2n,t) )} =14 (M(YanYZn Yon+1t) )
= aHppa(t) + bHzn(t) + CHan(t) + 0 > qHan(1).
= (@+D0) Hau1 (1) > (q - c)Han (V).

b
= Hx() < :%lz Han1 (1) < pH2n.1(t) < Hana(t), where p = :%C <L (3.4)

Again putting X = Xon+1, ¥ = Xons2, Z = Xonsp, 10 (3.3) we have

1 1 1
a —1)+b( —1)+¢(
M (TX 2n +1,5X 2n +2,AX 2n +1,1) M (TX2n +1,AX 2n +1,5%n +2,t) M (SX 2n+2,BX2n +2,BX 2n 42,1
1+

. 1 1
min {( -1),( -1)}
M (AX 2n +1,5% 2n +2,5% 2n +2,t) M (BX 2 42, TX 21 +1,5X 20 +2:4)
1
>q(

M (AX 2 +1,5% 2n +2,BX 25 +2,£)
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1 1 1
a( —1)+b( —1)+c( —1)+
M(y2n,yon+1Y2n+18) M(Y2ny2n+1Y2n+1.t) M(y2n+1Y2n+2Y2n+2,1)

1 1
o ) )
{ M (Yon+1,Yon+1,Yon+1, £ . M (Yont2:Y2n:Yon+1, )
= q{

_ 1}
M (Yon+1,Y2n+1,Yon+2, £

= aHy, (t) + bHy, (1) + CHanea(t) + 0 > q Hopaa(1).

= (a + b) H2n(t) 2 (q - C) H2n+l(t)-

a+b

= Hapua(t) < q—c Han(t).
= Hora() € T2 Han() <P Han(t) < Hara () where p =22 < 1. (35)

Hence for t > 0, {H,(t)} is a decreasing sequence of positive real numbers and therefore tends

to a limit L > 0. If L > 0, taking limit as n — oo on (3.4), we get L< L. which is a contradiction.

Hence L=0, lim M (y,,Vn+1, Yns1,t) = 1 forall t > 0. Now for any positive integer p, we
n—oo

have
M (Y Yntps Yntpr ) = M s Yot Y1 /D) * M (Ynt1 Y42, Yo t/P)
* LM Yatp-1 Yntp Ynap t/p) 211> *1 =1
= M My, Vnsp) Ynspst) 2 UMM o, Yot Yor1, /0 * M Gnsts Yz Ynaa t/P) *o%

M(Yn+p—1' Yn+p' Yn+pr t/p)

Thus {y,} is a Cauchy sequence in X. Since X is complete, there is a point ueX, such that
yn—> U and this implies that {Ax,,} and {BX.n+1} converges to u such that the sequence {Sxan+1}
and{TXzn+2} also converges to u, that is SXzps1 — U and TXpne —> U @S h — co. We show that u
is a common fixed point of A, B, Sand T

Since the pair {A, T} is R-weakly commuting, therefore

( = —1)<( = —1)—>0asn—>oo
M (ATX 5y TAX 5y, TAX 21t) = \M (Tx2n,AX 25 Ax 25 t/R) '

Therefore, lim ATX,,=lim TAX,,= Tu (as T is continuous).
n—oo n—oo

Now, we claim that u is fixed point of T. Suppose not, then for any t > 0, we get
X = TXon, Y = Xons1, Z = Xons1 from (3.3),
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1 1
a —1)+b( -1)
(]Vf (T?X2n,S% 20 +1,ATX 2 t) + M (T?Xpp,ATX 2n,SX 20 +1,t) +

1
c( — 1) +
M (SX2n+1,BX2n+1,BX2n +1.1)

. 1 1
mm{( —1)+( —1)} >
M (ATX 2n,5% 2n +1,5X 2; +1.t) M (B 21 4+1,T?Xon +1,5% 20 41,t)
a(

M (ATX 2n,5%2n +1,BX2n +1.1)

As n— oo, we have

2 (e~ D)+ Gramms ~ 1) + < Graamn — 1) +

min{(semmis ~ L) Geams — 1)) 2 4 Grgns — )

1 1
= (a +b+ 1) (M(Tu,u,u,t) N 1) = q (M(Tu,u,u,t) - 1)

= @+b+1)>q.

= (@+b) >(g—1), which is a contradiction. Thus u is a fixed point of T.

Next, we claim that u is a fixed point of A. Suppose that Au = u, then for any t > 0,
1
(M(Au,u,u,t) N 1) >0.

Again using (3.3), we get X = U, ¥ = Xon+1, Z = Xons1.

1 1 1
S S Y S S O 1)+
M (Tu,Sx 2n +1,Au,t) M (Tu,Au,Sx 25 +1,t) M (SX2n +1,BX2n +1,BX2n +1,)

. 1 1 1
min -1), -1)t=q -1
M (Au,SX2n +1,5X 20 +1,£) M (Bx2n+1,Tu,SX2n +1,t) M (Au,SX2n +1,BX2n +1,t)

As n — oo, we have

2 ey~ 1) 0 Gramay — 1) < Grgmes — Y
tmin{(Grams ~ Y Grams ~ 1)) 2 9 Grams — 1)

= (a+b){m—l}2q(m—l)

= (@+b)> q ,which is a contradiction
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Therefore Au = u, Similarly, using R-weakly commutatively of pair {B, S} and from (3.3),
we can easily get Su=uand Bu = u. Thus u is a common fixed point of A, B, Sand T.

Uniqueness: Let u and v be two fixed points. Putting x =uandy =vand z=v in (3.3), we
have

2 (s~ U+ Gramss U < Grmmms — 1)+
min{(m—l)'(m‘l)}z Q(m—l)
= a(M(ui/,u,t) N 1) + b(m_ 1) + C(M(vi/,v,t) - 1) +

min {(M(u.lv.v,t) - 1) ’ (M(v,lu,v,t) N 1)} =q (M(u,lv,v,t) B 1)

1 1
= (a +b+ 1) (J\/[(u,v,u,t) N 1) 2 q (M(u,v,v,t) B 1)
= @+b+1) >q.
= (a+b) >q—1, which s a contradiction .

Hence A, B, S and T have a unique common fixed point.
Taking A = B, we get the following corollary.

Corollary 3.2: Let S and T be two continuous self-mappings of a complete M -fuzzy metric
space (X, M,*) , when * is a continuous t-norm. Let A be a self mapping on X satisfying:

3:6) A(X) = S(X) NT(X);

(3.7 {A,T}and{B,S} are R-weakly commuting pairs ;

8 a(smmmn ~ Y+t Grmomss Y < Grmmms Y+

min{(smsss Y Ganss V) 2 Gramsms 1)

forall x,y,zeX ,where a, b, ¢ €[0,1], g >2 withgq>a+b+c. Then, A, Sand T have a unique
common fixed point.

Taking T = S we can get another corollary of Theorem 3.1 as mentioned below.

Corollary 3.3: Let T be continuous self-mappings of a complete M-fuzzy metric space
(X, M,*) , when * is a continuous t-norm. Let A and B be two self mapping of X satisfying:

(3.9) A(X) < T(X) and B(X) < T(X)
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(3.10) {A, T} and{B, T} are R-weakly commuting pairs

411 a(semayms ~ U+ P e~ )+ Gemmmn U+

min {(M(AX,:I[:Z,Ty,t) N 1) ! (M(Ay,i‘x,Ty,t) - 1)} = q (m B 1)

for all x,y, zeX , where a, b, ¢ €[0,1], g > 2 withqg>a+ b + c. Then, A, B and S have a
unique common fixed point.

Remark 3.4: The conclusions of Theorem 3.1 remain true if we replace condition (3.3) by any
of the following conditions:

(3.12)a (m - 1) +b (m N 1) te (M(Sy,;z,By,t) N 1)

>q forall x,y, zeX , where a, b, ¢ €[0,1], g >2withg>a+b +¢;

Gemsmn Y
(3.13) aM(Tx, Ty, Ax,t) + bM(Tx, Ax, Tz t) + cM (Ty, Az, Ay, t) +
min{M (Ax, Tz, Ty, t), M (Ay, Tx, Ty, t)} < qM (Ax, Tz, Ay, t)
forall x,y, zeX ,where a, b, ¢ €[0,1], g >0withg<a+b+c+1.

Remark 3.5: From Theorem 3.1 and Remark 3.4, it is clear that above results generalizing the
earlier results of Som [14] in fuzzy metric spaces.

Example 3.3: Let X =[0,o0)and D* is the standard D* -metric on X. Denote a *b = a.b for all
a, b €[0, 1]. For each t € (0,»), define M (X, y, z,t) = m forall x,y, zin X. LetA, B,
Sand T be self maps on X defined as:

AXx=Bx = %X and Sx = Tx = 2x for all x in X. Clearly,

(i) SandT be two continuous self-mappings on X;

(i) X be a complete M'-fuzzy metric space (X, M,*) , when * is a continuous t-norm;

(ii)) A(X) < S(X) and B(X) = T(X);

(iv) {A, T} and{B, S} are R-weakly commuting pairs as both pairs commute at coincidence

points;
(v) {A, T}and {B, S} satisfies inequality (3.3) for all x, y, ze X,
where azl,bzi,c:l, q>2withg>a+b+c.
4 4 2

Hence, all conditions of Theorem 3.1 are satisfied and x = 0 is a unique common fixed point of
A, B,Sand T.
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