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Abstract 
   In this paper we consider equilibrium problem and introduce minimization problem such as equilibrium 

problem. We also investigated minimax inequalitiy of Ky Fan and we proved a minimax inequality of 

mapping with non-compact domain by using the coincidence theorem, then given a minimax inequality 

for mappings with noncompact domain. As its direct consequences some minimax inequalities and 

minimax theorems are obtained. 
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1. Introduction 

Let X be a real topological vector space with topological dual X* denote the duality pairing between X 

and X* by 〈· , ·〉; Let K be a nonempty subset of X. 

If f is a real bifunction defined on K K, the equilibrium problem is denoted: 

)EP)  find y̅ ∈K such that f (x, y̅) ≤0  , for each x∈K 

 Dual of equilibrium problem is:              

(EṔ)  find x̅ ∈K such that f (x̅, ) ≥0, for each y ∈ K. 

In this paper we present some examples of equilibrium and minimization problems. By using Fan lemma 

we study theorems about existence solution of equilibrium problem, then investigate some minimax 

theorems and minimax inequality. In 1986, by using Browder's selection theorem [2] for the multivalued 

mapping with open inverse values, Komiya [4] gave the Coincidence theorem. Tarafdar and Watson [7] 

gave a minimax inequality for mapping with non-compact domain by using the Coincidence theorem. 
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Recently Zhang proof a minimax inequality for mappings with noncompact domain .In Sect. 2, we 

present some examples of equilibrium problem and study theorem about existence solution of 

equilibrium problem. In Sect. 3 we prove minimax theorem and minimax inequality of KyFan. In Sect. 4 

we present Coincidence theorem and with using that prove minimax inequality for non-compact 

domain. In Sect. 5 we present a new minimax inequality for non-compact domain.   

2. Existence solution of equilibrium problem 

(1) Minimization. Let  ψ: k  R and consider the minimization problem  

(M) find  x̅ ∈ K such that ∀y ∈ K  ψ(x̅) ≤ ψ(y) .                                                                                            .

Problems (M) and (EP) ′ are equivalent then we see that If we set f(x, y) = ψ(y) − ψ(x̅)   ∀x, y ∈ k    

(2) Saddle Point. Let F: U V→ R be a real bifunction, and consider the saddle-point problem                  

 (SP)find  (u̅, v̅) ∈ U × V ∶    F(u̅, v) ≤ F(u̅, v̅) ≤ F(u, v̅)   ∀(u, v) ∈ U × V.                                                 

(3) Vibrational Inequalities. Let T: K →X* be an operator, and let us consider the following vibrational   

inequality problem:   

(VIP) find   x̅ ∈ K   such that   ∀ y ∈ K  , 〈T(x̅), y − x̅〉 ≥ 0;     

Let   f(x, y) = 〈T(x), y − x〉 then we see that problems (VIP) and (EP) ′ are equivalent.                                 

For the existence of solutions of equilibrium problems, we shall need the following Fan lemma.                    

Lemma 2.1. (Fan) Let X be a Hausdorff topological vector space, and let B be a nonempty subset. 

Consider a set-valued operat T: B→2X such that:                                                                                                  

(1) for every x∈B, T(x) is closed and nonempty in X;                                                                                   

 (2)  there exists x0 ∈B such that T(x,.)  is compact ; 

 )3)  for every finite subset A of B  , conv(A) ⊂∪xϵA T(x);  

Then ∩x∈B T(x) ≠ ∅  .                                                                                 

Our first main existence theorem is the following.  

Theorem 2.1.(see [2]) Let X be a Hausdorff topological vector space, let K be a nonempty closed convex 

subset Consider two real bifunctions ϕ and ψ Consider two real bifunctions ϕ and ψ defined on K K 

such that: 

H1.  For each x, y∈K, if ψ )x, y) ≤0, then   ϕ(x, y) ≤0 . 

H2.   For each fixed x∈X, the function ϕ(x, ·) is lower semicontinu ous on every compact subset of K. 

supy∈conv(A ) minx ∈A Ψ(x, y ) ≤ 0    : H3. For each finite subset A of K, one has                                              

H4. Compactness Assumption. 
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 There exists a compact convex sub set C of K such that either (1) or (2) below holds: 

(1) for all y∈K\C , there exists x∈C such that ϕ(x, y) > 0;        

(2) for all y∈K\C there exists  x0 ∈C , such that ψ ) x0 , y) > 0;    

Then there exists an equilibrium point  y̅ ∈C   (i.e ϕ(x, y̅) ≤0 for each x∈ K). 

Furthermore, the set of solutions is compact.                                                                                              

Theorem 2.2. Let K be a convex compact subset of a Hausdorff topological vector space and let,     

f:K ×K→R be a real bifunction such that:   

(1) for each x∈K, f (x,·) is lower semicontinuous;  

 (2) for each y∈K, f (·,y) is quasiconcave;                                                                                                               

Then, there exists y̅∈K such that:                                                                                                                          

sup x∈k f (x , y̅) ≤ sup x∈k f (x , x).   

Proof. We introduce the bifunctions ϕ and ψ defined on K K by                                                           

Φ(x, y ) =  Ψ(x, y) = f(x , y ) −  sup x∈K f (x , x) 
Theorem 2.1 implies that there exists  y̅ ∈K such that ϕ(x, y) ≤0 for each x∈K. 

3. Minimax Inequalities of Ky Fan  

Definition 3.1. Mapping set-valued T defined on X with values in Y called upper semicontinuous if for 

each open subset G of Y the set {x  X: T (x)  G} is open in X. 

Lemma 3.1. (See [3]) Let E be a Hausdorff topological vector space and K E be a compact convex 

subset. Let Z be a n-simplex. If q is a upper  Semicontinuous set-valued mapping defined on Z such that  

q(x) is a nonempty closed convex subset of  K for each x∈ Z , and if P:K →Z is a (single-valued) valued 

continous mapping, then there exists x0 ∈ Z such that  x0 ∈ P ( q (x0)). 

Theorem 3.2. (See [7]) Let E and F be Hausdorff topological vector spaces, let X E and Y F be 

nonempty convex subsets, and let A  X  Y be a subset such that: 

a. for each x∈ X, the set  {y ∈ Y: (x, y) ∉ A } is convex, or empty;   

b. for each y ∈Y, there  exists a closed subset  Xy ⊂ X such that {x ∈ X ∶ (x, y) ∈ A} ⊂ Xy;                    

Suppose that there exists a subset B of A and a compact convex subset K of X such that B is closed in X Y 

and  

c. for each y Y, the set {x ∈ K ∶ (x, y) ∈ B } is nonempty and convex ; 

 Then     ∩y∈Y Xy  ∩ K ≠  ∅ .                                                                                                         
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Theorem 3.3. Let E and F be Hausdorff Hausdorff topological vector spaces and let X E and Y F be 

nonempty convex subsets. if   f, g ,h ∶ X × Y →  R   are function such that: 

(1) ∀(x , y) ∈ X × Y    f (x , y) ≤ g (x , y) ≤ h (x , y); 

(2) f(x,y) is lower semicontinuous on X, for each y Y; 

(3) g(x,y) is quasiconcave on Y,for each x X; 

(4) h(x,y) is lower semicontinuous on X×Y and h(x,y) is quasiconvex on X, for each y Y; 

Then 

            infx∈k sup  y ∈Y  f (x , y)  ≤ infk∈k̅ sup   y ∈Y  minx∈k h (x , y)                                        (i) 

Where K̅ =  {K ⊂  X|K is convect compact subset of X} .                                                                                     

In addition, if X compact then minx ∈X sup  y ∈Y f (x , y) ≤ sup  y ∈Y minx∈X h (x , y). 

Proof. We can assume that the right-hand side of (i) is not+ ∞. Choose a real number t such that                            

t > infk ∈k̅ sup     y ∈Y minx∈K  h (x , y) .                   

B = {(x , y) ∈ X × Y:h(x , y) ≤ t }  , A =  {(x , y) ∈ X × Y ∶ g (x , y) ≤ t}  . Then Let  

  (a)  ∀ x ∈ X, by (3), set {y ∈ Y ∶ ( x , y ) ∉ A } is convex or empty and satisfies condition (a) of theorem 

(3.1) ; 

 (b)   for each y ∈ Y, by (1) :   {x ∈ X ∶ (x , y) ∈ A }  ⊆ {x ∈ X ∶ f (x , y) ≤ t } = XY  ;    

By (2) XY is closed and satisfies condition (b) of theorem (3.1). It is easy to verify that B is closed in X Y, B 

 A, and for any y  Y, set {x ∈ X , (x, y) ∈ B } is convex. 

of X such that:  t > supy∈Y  minx∈K h ( x , y ), subset convex Let K be a compact theorem (3.1)  Then for 

any y  Y the set {x ∈ K ∶ h ( x , y )  ≤ t }  is nonempty and convex. Thus by 

 ,∩y∈Y Xy ∩ K ≠  ∅.     

That is there exists x0  K such that  f(x0 , y ) ≤ t , ∀y ∈ Y    this shows that infx∈X sup  y∈Y f( x, y ) ≤ t  

and hence, (3.2) is proved.  

Corollary .3.1. 

(a) Let E be a Hausdorff   topological vector spaceconvex subsets Y ⊂  E ,X ⊂ Y be nonempty convex 

subset and X be compact. Let f, g: X × Y →  R be two real-valued function   satisfyin 

(1)  ∀(x, y) ∈ X × Y     , f (x , y) ≤ g (x, y) ; 

(2)  f(x, y) is quasiconvex on X, for each y  Y; 
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(3)  g (x, y) is upper continuous on Y, for each x  X; 

 Then infx∈X f (x, y) ≤ supy∈Y inf x∈X g (x , y) .    

 (b) Let E be a Hausdorff topological vector space, X  Y, Y  E be nonempty convex subset and X be 

compact. Let  f ∶ X × Y → R be a real-valued function such that 

(1) f(x, y) is quasiconvex   on X, for each y  Y; 

(2) f (z, y) is upper continuous  on Y, for each x  X; 

Then   infx∈X f ( x, y ) ≤ supy∈Y inf x∈X f ( x , y )                                                                    

4. Coincidence theorem and related theorems with them  

Definition 4.1. A topological space is said to be contractible if the identity mapping is homotopic to a 

constant function. 

Theorem4.1.(see [4]) Let X be a nonempty convex subset of a linear topological space E and let Y be a 

nonempty compact convex subset of a linear topological space F Let A be an upper semicontinuous and 

closed convex-valued mapping of X into Y Let B be a convex-valued mapping of Y into X such that 

 B−1 (x) is open in Y for each x in X . 

 Then there exist (x0, y0) ∈ X × Y such that y0 ∈ A (x0), x0 ∈ B (y0).    

Theorem 4.2. (See [6]) Let X be a contractible space and Y a Hausdorff compact space. Let A ∶ X → 2Ybe 

upper semicontinuous with non-empty compact contractible values. Suppose that B ∶ Y → 2X is such 

that: 

 a.   B−1 (x)  , ∀ x ∈ X is open;  

 b. for each open set S in Y, the set ∩y∈S B ( y ) is empty or contractible,  

Then there exist  z0 ∈ A (w0),w0  ∈ B (z0). 

Theorem4.3.(see[5]) Let X be a complete convex subset of a locally convex Hausdorff topological vector 

space E, and Y be convex set in Hausdorff topological vector space H. Let  g ∶ Y → 2X upper 

semicontinuous with nonempty compact convex values and f ∶ X → 2Y have nonempty convex values 

such that: 

 (1) f−1(y) , ∀ y ∈ Y contains an open set Oy  ⊂  X; 

 (2) ∪y∈Y Oy = X;  

 (3) There exists a compact convex set Y0 ⊂ Y1 , Y1 ⊂Y such that D = ∩y∈Y0 Oy
c ; is compact or empty 

(here Oy
c  denotes the complement of Oy) . 
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Then there exists an x0 ∈ Xsuch that   g−1(x0) ∩ f (x0) ≠ ∅   .      

Theorem4.4. Let X and Y be as above. Let  f ∶ Y → 2X be upper semicontinuous with compact convex 

values and  g ∶ Y × X →  R such that:   

(1)   x ↦ g(y , x), ∀ y ∈ Y is lower semicontinuous; 

(2)  y ↦ g(y , x), ∀ x ∈ X is quasi-concave; and 

(3) There exists a nonempty compact convex set Y0  ⊂  Y1  ,Y1 ⊂ Y such that for all z ∈ X \ f (Y1) there 

exists a  w ∈ Y0 such thatg (w , z) > sup y∈Y  

 u∈f(y)

  g (y ,u). Then 

  infx∈X sup  y∈Y(y)  g ( y , x )  ≤  supy∈Y   u∈f(y)  g ( y ,u ) 

 Proof. We begin by noting that Condition (3) makes no sense when    sup y∈Y  

 u∈f(y)

g ( y ,u ) = ∞            

though then the conclusion is trivially satisfied. Without loss of generality, we may assume 

r ∶=  sup y∈Y

   u∈f(y)

  g ( y , u ) < ∞  

Suppose, for a contradiction, that   r < infx∈Xsup   y∈Y  g ( y , x ). Then the set-valued mapping   h ∶ X 

→ 2Y  defined by  h(x) = {y ∈ Y ∶ g ( y , x) > 𝑟}  is nonempty with convex values.  

Furthermore  h−1( y ) =  {x ∈ X ∶ g ( y , x ) > 𝑟 } =  Oy  is open as g(y, .) is lower semicontinuous.  

It is easily seen that  ∪y ∈Y Oy = X . Finally, we show ∩ Oy∈Y
c  is compact or empty. For   z ∈ X  f (Y1) 

employing (3), we have the existence of a w ∈ Y0 such that g ( w , z ) > r .  

we get    {z ∈ X  f (Y1)  ∶ g (w , z ) >  𝑟 } =  OW                                                                                                                                       

that is, there is a w ∈ Y0  such that   z ∉ Ow
c  .  This implies  z ∉ Ow

c  and so ∩y ∈Y0 Oy
c ⊂  f (Y1)  .      

Theorem (4.3) implies the existence of a  y0 ∈ Y  such t h a t f(y0) ∩ h−1(y0) ≠ ∅ Let  w0 be a member   

of this intersection. Then  w0 ∈  h−1(y0)  so  g(y0,w0) >  𝑟. contradiction to the definition of  r . The 

proof is complete. 

5. Minimax Inequalities for Mappings with Noncompact Domain   

Theorem 5.1. Let E , F be Hausdorff topological vector spaces, X  E , Y  F be nonempty convex subsets. 

Let  f, g ∶ X × Y →  R be two reaI-vaIued functions, such that 

 (1)   ∀(x , y) ∈ X × Y     , f (x , y) ≤ g (x , y); 

 (2)  f (x , y) is quasiconvex on X , for each y  Y; 

 (3)  g(x, y) is upper semicontinuous on Y , for each x  X;  
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  If T is an upper semicontinuous set-valued mapping defined on X, such that 

 (4)  T x is a compact convex subset of Y, for each x  X;  

 (5) for each x X , there exists a subset Vx ⊂ Y, such that K = ∪x∈X Vx ⊂ Y ,  Vx ∩ Tx ≠  ∅ is compact 

convex subset .  

Then   infy∈Tx f ( x , y ) ≤  sup y∈yinfx∈X g ( x , y ) .   (ii) 

Proof: First, we can assume that the left-hand side of (ii) is not - ∞ choose a real number t such that 

  infy∈Tx f (x , y) > 𝑡 ,  

Let  

Yx = {y ∈ Y ∶ g (x , y) ≥ t },                                

B =  {(x , y) ∈ X × Y ∶ y ∈ Tx }, 

A =  {(x , y) ∈ X × Y ∶ f (x , y) ≥ t }, 

for each x ∈ X. Then, using (ii), for each y  Y, the set  

{x ∈ X ∶ f (x , y) < 𝑡} =  {x ∈ X ∶ (x , y) ∉ A }  is convex, or empty as f ( x , y ) is quasiconvex on X for 

each y ∈ Y so A satisfies condition (a) of Theorem (3.1). By Assumptions (1) and (3), for each x ∈ X , Yx =

 {y ∈ Y ∶ g (x , y) ≥ t } ⊃ {y ∈ Y ∶ f (x , y) > 𝑡 } = {y ∈ Y ∶ (x , y) ∈ A} , ∀x ∈ X    

Condition (b) of Theorem (3.1). 

  Next, we show that B is closed in  X  Y . To see this, let  y∝ → y0  ,  y∝ ∈ T (x∝) ,  x∝ → x0 , we claimy0 ∈

T(x0). Indeed if this is not the case, that is, y0 ∉ T (x0). Then  ∀y ∈ T ( x0) 

there exist an open subset Wy ⊂ Y which contains y and an open subset Uy ⊂  Y which contains 

 y0 such that  Wy ∩ Uy = ∅  Note that  T(x0)  ⊂ ∪y∈T(x0) Wy since T(x0) is compact, so there exists 

finite subset  {y1 … yn} ,  

 such that  T ( x0)  ⊂ ∪i=1
n Wyi

= W . Let  U = ∩i=1
n Uyi this implies     y0 ∈ U and  W ∩ V = ∅ .  

 As T is an upper semicontinuous, and so there exists an open subset D which contains x0, such t h a t for 

each ∀x∝  ∈ D ,T (x∝) ⊂  W. Thus, T (x∝)  ∩ U =  ∅   but this contradicts y∝ → y0. It follows that B is 

closed in X  Y Finally, using (5), for each x  X, the set {y ∈ K ∶ (x , y) ∈ B} = ∪x∈X Vx ∩ Tx , ∀ x ∈ X}  

convex. So K and B satisfy Condition(c) of Theorem (3.1) thus, by Theorem (3.1), ∩x∈X Yx ∩ K ≠ ∅ that is, 

there exists y0 ∈ K, such that   g(x, y0) ≥ t , for all x ∈  X .This show that     supy∈Y infx∈X g(x , y) ≥

t   and hence, (ii)holds .      

This completes the proof. 
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Theorem 5.2.  Let E be a Hausdorff topological vector space, X  K ,  K  Y , and Y  E be nonempty 

convex subsets and K be compact. Let f, g ∶ X × Y → R  be two real-valued functions satisfying Conditions 

(1)-(3),  

(1)∀(x , y) ∈ X × Y , f(x , y) ≤ g(x , y);  

(2)  f (x , y) is lower semicontinuous on Y, for each x  X;  

(3)  g (x, y) is quasiconcave on X , ∀y ∈ Y ;  

then infy∈Y sup x ∈X 
f(x, y) ≤ supx∈X g ( x , x ). 

Theorem 5.3.  Let X, Y , and K be as in Theorem 5.2. Let  f ∶ X × Y → R be a real-valued function 

satisfying Conditions (1)-(2),                                                                                  

(1) f (x ,y) is lower semicontinuous on Y , for each x  X;                                                                                     

(2) f(x,y) is quasiconcave on X , for each y  Y; 

Then     infy∈Y sup x ∈X 
f(x, y) ≤ supx∈Xf(x , x).    
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