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Abstract 
In this paper, by considering distributed optimal control over a PDE, a gradient based iterative 

Algorithm is proposed for solving is proposed and analyzed. Galerkin finite element method is used 

for solving underlying PDE, then the adjoint base technique for derivative computation to 

implementation of the optimal control issue in preconditioned  Newton's conjugate gradient method 

isused.  

The interface and connection between quadratic programming extracted from discretizing the 

problem and Newton's type method, as well as the convergence rate of the algorithm in each 

iteration is established.  

Updating control values at discretization points in each iteration yields optimal control of the   

problem, where the corresponding state values at these points approximate the desired function.   

Numerical experiments are presented for illustrating the theoretical results. 

Keywords: Diffusion equation, optimal control problem, finite element method, Newton's conjugate      

gradient method. 

1 Introduction 

Optimization problems, constraints with partial differential equation (PDE), arise in many areas 

such as mathematical finance [2, 3, 4], aerodynamics [13, 15], environmental engineering [11] 

and medicine [1, 10] and generally are infinite dimensional, large and complex. In order to solve 

a PDE-constrained optimization problem, the question about should I first discretize the 

optimization problem and then solve the discretized optimization problem (DO), or should first I 

optimize the continuous problem and obtain a set of equations to discretize (OD), is not 

avoidable. An important challenge in optimization problems is that, these two steps do not 
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commute. Thus, the two different approaches could lead to two different solutions. Our intention 

is to proposean efficient DO algorithm. The advantages and disadvantages of both approaches 

are summarized by Gunzburger in [6]. With OD approach, one can obtain inconsistent gradients 

of the objective functional. In other words, unless the grid is fine enough, the approximate 

gradient obtained with OD is not a true gradient [7]. In this paper the specific DO approach is 

used as follows: At first, discretization of the underlying PDE is done via Galerkin finite 

element.Since the discretized system of equation is sparse and so large, preconditioned Newton's 

conjugate gradient approach, is a good choice to solve the governed equation efficiently. In this 

way the control vector is computed, where the corresponding solution of PDE is nearest 

approximation of desired function and has low cost in  the objective function [8]. The relation 

between quadratic programming extracted from discretizing the optimal control problem over 

PDE, and Newton's type method is established. It is shown that under certain conditions the 

algorithm is strictly convergent to its optimal vector. According to the above discussion, in 

Section 2, problem definition, derivatives computation and Newton's conjugate gradient method 

is discussed. In Section 3, distributed optimal control for elliptic equation using Galerkin finite 

element approach is proposed. Finally in Section 4, numerical results for some optimal control 

problems are presented. 

2 Problem formulation 

We consider optimal control problems of the form 

𝑚𝑖𝑛𝑦∈𝑌,𝑢∈𝑈   𝐽(𝑦, 𝑢)  subject to 𝑒 𝑦, 𝑢 = 0,      𝑦, 𝑢 ∈ 𝑊𝑎𝑑                             (1) 

where𝐽: 𝑌 × 𝑈 → 𝑅is the objective function, 𝑒: 𝑌 × 𝑈 → 𝑍is an operator between Banach spaces, 

and 𝑊𝑎𝑑 ⊂ 𝑊 ≔ 𝑌 × 𝑈  is a nonempty closed set. Existence and uniqueness of the solution to 

these problems are ensured by implicit function theorem [16].It is considered that  𝐽 and 𝑒 are 

continuously F-differentiable and for each  𝑢 𝜖 𝑈 the state equation 𝑒 (𝑦, 𝑢) = 0 possesses a 

unique corresponding solution  𝑦 𝑢  𝜖 𝑌. So, in fact we have a solution operator  𝑢 𝜖 𝑈 →

𝑦  𝑢  𝜖 𝑌. Furthermore, it is assumed that 𝑒𝑦 𝑦  𝑢 ,𝑢  𝜖  ℒ (𝑌, 𝑍)  is continuously invertible. 

Then, the continuously differentiability of 𝑦(𝑢) is ensured by implicit function theorem.  

Differentiating the equation 𝑒 𝑦(𝑢), 𝑢 = 0 with respect to 𝑢 yields an equation for the 

derivative 𝑦′(𝑢):  

𝑒𝑦 𝑦  𝑢 ,𝑢 𝑦′ 𝑢 + 𝑒𝑢 𝑦  𝑢 ,𝑢 = 0                                             (2) 

 Inserting  𝑦(𝑢)  in (1), the reduced problem becomes 

𝑚𝑖𝑛𝑢𝜖𝑈  𝐽  𝑢 ∶= 𝐽 𝑦 𝑢 ,𝑢   subject to  𝑢 𝜖  𝑈 𝑎𝑑 ∶= {𝑢 𝜖 𝑈:   𝑦 𝑢 ,𝑢  𝜖 𝑊𝑎𝑑 }          (3) 

It will be important to investigate the possibilities of computing the derivative of the reduced 

objective function𝐽 . 
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2.1 Gradient and Hessian Computation 

In order to investigate the gradient based optimization technique, computation of the derivatives 

of the reduced objective function 𝐽  is not avoidable. In whole of this paper𝑈∗, 𝑌∗and 𝑍∗ denote 

the dual space of 𝑈, 𝑌and 𝑍 respectively. For any 𝑠 ∈ 𝑈, from 

< 𝐽 ′ 𝑢 , 𝑠 >𝑈∗,𝑈  = < 𝐽𝑦 𝑦 𝑢 ,𝑢 ,𝑦′ 𝑢  𝑠 >𝑌∗,𝑌   + < 𝐽𝑢 𝑦 𝑢 ,𝑢 , 𝑠 >𝑈∗,𝑈 

=< 𝑦′(𝑢)𝑇  𝐽𝑦 𝑦 𝑢 ,𝑢 , 𝑠 >𝑈∗,𝑈  + < 𝐽𝑢 𝑦 𝑢 , 𝑢 , 𝑠 >𝑈∗,𝑈 

we see that 

𝐽 ′ 𝑢 = 𝑦′ 𝑢 𝑇𝐽𝑦 𝑦 𝑢 ,𝑢 + 𝐽𝑢 𝑦 𝑢 , 𝑢 . 

Therefore, not the operator  𝑦′ 𝑢  𝜖 ℒ 𝑈, 𝑌 ,  but only the vector 𝑦′ 𝑢 𝑇𝐽𝑦 𝑦 𝑢 , 𝑢  𝜖 𝑈∗ is ready 

required. Since by (2) 

𝑦′ 𝑢 𝑇𝐽𝑦 𝑦 𝑢 , 𝑢 = −𝑒𝑢(𝑦 𝑢 , 𝑢)𝑇𝑒𝑦(𝑦 𝑢 ,𝑢)−𝑇𝐽𝑦 𝑦 𝑢 , 𝑢 , 

it follows that 

𝑦′ 𝑢 𝑇𝐽𝑦 𝑦 𝑢 ,𝑢 = 𝑒𝑢 𝑦 𝑢 ,𝑢 𝑇  𝑝 𝑢 , 

where the adjoint state  𝑝 = 𝑝 𝑢  𝜖 𝑍∗ solves the adjoint equation: 

𝑒𝑦(𝑦(𝑢), 𝑢)𝑇  𝑝 = −𝐽𝑦 𝑦 𝑢 ,𝑢 .(4) 

We thus have  

𝐽 ′ 𝑢 = 𝑒𝑢 𝑦 𝑢 , 𝑢 𝑇  𝑝 𝑢 + 𝐽𝑢 𝑦 𝑢 ,𝑢 . 

Now, consider (1) and define the Lagrange function 𝐿: 𝑌 × 𝑈 × 𝑍∗ → 𝑅, 

𝐿 𝑦, 𝑢, 𝑝 = 𝐽 𝑦, 𝑢 +< 𝑝, 𝑒 𝑦, 𝑢 >𝑍∗,𝑍 

Inserting  𝑦 = 𝑦(𝑢)gives, for arbitrary𝑝 𝜖 𝑍∗, 

𝐽  𝑢 = 𝐽 𝑦 𝑢 ,𝑢                   

                                     = 𝐽 𝑦 𝑢 ,𝑢 + < 𝑝, 𝑒 𝑦 𝑢 ,𝑢 >𝑍∗,𝑍 

= 𝐿 𝑦 𝑢 ,𝑢, 𝑝 .  

Differentiating this in the direction 𝑆1 𝜖 𝑈 yields: 

< 𝐽 ′ 𝑢 ,𝑆1 >𝑈∗,𝑈  = < 𝐿𝑦 𝑦 𝑢 , 𝑢, 𝑝 ,𝑦′ 𝑢 𝑆1 >𝑌∗,𝑌  + < 𝐿𝑢 𝑦 𝑢 ,𝑢, 𝑝 , 𝑆1 >𝑈∗,𝑈   , 

Differentiating this once again in the direction 𝑆2 𝜖 𝑈 gives: 

< 𝑗 ′′ 𝑢 𝑆2,𝑆1 >𝑈∗,𝑈= < 𝐿𝑦 𝑦 𝑢 ,𝑢, 𝑝(𝑢)  ,𝑦′′ 𝑢  𝑆1, 𝑆2 >𝑌∗,𝑌                 
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                       +< 𝐿𝑦𝑦  𝑦 𝑢 , 𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑆2,𝑦′ 𝑢 𝑆1 >𝑌∗,𝑌 

+< 𝐿𝑦𝑢  𝑦(𝑢), 𝑢, 𝑝(𝑢) 𝑆2,𝑦′ 𝑢 𝑆1 >𝑌∗,𝑌             

+< 𝐿𝑢𝑦  𝑦 𝑢 ,𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑆2, 𝑆1 >𝑈∗,𝑈           

+< 𝐿𝑢𝑢  𝑦 𝑢 ,𝑢, 𝑝 𝑢  𝑆2,𝑆1 >𝑈∗,𝑈                      

Now we choose 𝑝 = 𝑝(𝑢), i.e., 𝐿𝑦 𝑦 𝑢 ,𝑢, 𝑝 = 0. Then, the term containing 

𝑦′′ 𝑢  drops out and we arrive at 

< 𝑗 ′′ 𝑢 𝑆2,𝑆1 >𝑈∗,𝑈=< 𝐿𝑦𝑦  𝑦 𝑢 ,𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑆2, 𝑦′ 𝑢 𝑆1 >𝑌∗,𝑌 

     +< 𝐿𝑦𝑢  𝑦(𝑢), 𝑢, 𝑝(𝑢) 𝑆2, 𝑦′ 𝑢 𝑆1 >𝑌∗,𝑌 

       +< 𝐿𝑢𝑦  𝑦 𝑢 ,𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑆2, 𝑆1 >𝑈∗,𝑈 

+< 𝐿𝑢𝑢  𝑦 𝑢 , 𝑢, 𝑝 𝑢  𝑆2, 𝑆1 >𝑈∗,𝑈     

This shows that 

𝐽 ′′ 𝑢 = 𝑦′ 𝑢 𝑇𝐿𝑦𝑦  𝑦 𝑢 ,𝑢, 𝑝 𝑢   𝑦′ 𝑢 + 𝑦′ 𝑢 𝑇𝐿𝑦𝑢 (𝑦 𝑢 ,𝑢, 𝑝 𝑢 ) 

+𝐿𝑢𝑦  𝑦 𝑢 ,𝑢, 𝑝 𝑢   𝑦′ 𝑢 + 𝐿𝑢𝑢  𝑦 𝑢 ,𝑢, 𝑝 𝑢   

= 𝑇(𝑢)𝑇𝐿𝜔𝜔  𝑦 𝑢 ,𝑢, 𝑝 𝑢   𝑇 𝑢                                                                            (5) 

with 

𝑇 𝑢 =  
𝑦′(𝑢)
𝐼𝑈

 ∈ ℒ 𝑈, 𝑌 × 𝑈  

𝐿𝜔𝜔 =  
𝐿𝑦𝑦 𝐿𝑦𝑢

𝐿𝑢𝑦 𝐿𝑢𝑢
  

Here, 𝐼𝑈 ∈ ℒ 𝑈, 𝑈  is the identity. Note that by (2), 𝑦′ 𝑢 = −𝑒𝑦(𝑦 𝑢 , 𝑢)−1𝑒𝑢 𝑦 𝑢 ,𝑢  and 

thus, 

𝑇 𝑢 =  
𝑦′(𝑢)
𝐼𝑈

 =  
−𝑒𝑦(𝑦 𝑢 ,𝑢)−1𝑒𝑢 𝑦 𝑢 ,𝑢 

𝐼𝑈
  

Usually, the Hessian representation (5) is not used to compute the whole operator 𝐽 ′′ 𝑢 . Rather, 

it is used to compute operator-vector-products 𝐽 ′′ 𝑢 𝑠 that investigates the iterative solvers 

applied to the Newton’s equation 

𝐽 ′′  𝑢𝑘 𝑠𝑘 = −𝐽 ′ 𝑢𝑘 .                                                                    (6) 

The Newton's Eq. (6) is solved approximately using the conjugate gradient (CG) method. The 

CG method is truncated if the Newton system residual is sufficiently small. In practice some 

globalization technique for Newton’s method should be employed. Line search techniques are 
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popular choices for their case of implementation and relatively low computational cost. A line 

search algorithm attempts to find an optimal step size α
k
 and generates the iterate 𝑢𝑘+1 = 𝑢𝑘 +

 𝛼𝑘𝑆𝑘 . The step size is required to satisfy the Armijo condition (or sufficient decreas condition) 

𝐽 𝑢𝑘 +  𝛼𝑘𝑆𝑘 ≤ 𝐽 𝑢𝑘 + 𝑐𝛼𝑘𝐽′ 𝑢𝑘 𝑆𝑘  

where  𝑐 𝜖 (0,1) and is typically quite small, e.g.  𝑐 = 10
−4

 [9,12]. 

Algorithm. 

1. Given𝑢0and𝑔𝑡𝑜𝑙 > 0, set𝑘 = 0 

2. Compute the adjoint state by solving the adjoint equation 

𝑒𝑦 𝑦 𝑢 ,𝑢 ∗ 𝑝 = −𝐽𝑦 𝑦 𝑢 ,𝑢 . 

3. Compute𝐽 ′ 𝑢  via 

𝐽 ′ 𝑢 = 𝑒𝑢 𝑦 𝑢 ,𝑢 ∗ 𝑝 + 𝐽𝑢 𝑦 𝑢 ,𝑢 . 

4. Compute the derivative: 

𝑦′ 𝑢 𝑠 = −𝑒𝑦(𝑦(𝑢),𝑢)−1𝑒𝑢(𝑦 𝑢 ,𝑢)𝑆 

5. Compute  

 
ℎ1

ℎ2

 =  
𝐿𝑦𝑦  𝑦 𝑢 ,𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑠 + 𝐿𝑦𝑢  𝑦(𝑢), 𝑢, 𝑝(𝑢) 𝑠

𝐿𝑢𝑦  𝑦 𝑢 ,𝑢, 𝑝(𝑢)  𝑦′ 𝑢 𝑠 + 𝐿𝑢𝑢  𝑦 𝑢 ,𝑢, 𝑝 𝑢  𝑠
 . 

6. Compute   

ℎ3 = 𝑦′ 𝑢 ∗ℎ1 = −𝑒𝑢 𝑦 𝑢 , 𝑢 ∗𝑒𝑦 𝑦 𝑢 ,𝑢 −∗ℎ1 

  This requires an adjoint equation solve. 

7. Set𝐽 ′′  𝑢 𝑠 = ℎ2 + ℎ3. 

8. If 𝛻 𝐽  𝑢𝑘  < 𝑔𝑡𝑜𝑙 stop. 

9.  Compute𝛻2𝐽  𝑢𝑘  

10.  Solve 𝐽 ′′  𝑢𝑘 𝑠𝑘 = −𝐽 ′ 𝑢𝑘 using preconditioned CG method with preconditioner 

𝑃 = 𝑑𝑖𝑎𝑔(𝐽 ′′  𝑢𝑘 ) : 

a. Set  𝑥0 = 0 and 𝐴 = 𝐽 ′′  𝑢𝑘  and 𝑏 = −𝐽 ′ 𝑢𝑘 . 

b. Set   𝑟0 ← 𝐴𝑥0 − 𝑏; 

c.  Solve 𝑃𝑦0 = 𝑟0 for 𝑦0; 

d. Set 𝑝0 = −𝑟0 , 𝑡 ← 0; 

e. While  𝑟𝑡 > 𝑔𝑡𝑜𝑙 

i. 𝛼𝑘 ←
𝑟𝑡
𝑇𝑦𝑡

𝑝𝑡
𝑇𝐴𝑝𝑡

 

ii. 𝑥𝑡+1 ← 𝑥𝑡 + 𝛼𝑡𝑝𝑡  

iii. 𝑟𝑡+1 ← 𝑟𝑡 + 𝛼𝑡𝐴𝑝𝑡; 
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iv. 𝑃𝑦𝑡+1 ← 𝑟𝑡+1; 

v. 𝛽𝑡+1 ←
𝑟𝑡+1
𝑇 𝑦𝑡+1

𝑟𝑡
𝑇𝑦𝑡

 ; 

vi. 𝑝𝑡+1 ← −𝑦𝑡+1 + 𝛽𝑡+1𝑝𝑡  ; 

vii. 𝑡 ← 𝑡 + 1; 

End (while) 

f. 𝑠𝑘 = 𝑥𝑡+1 

11. Perform Armijo line-search. 

 

a. Set𝛼𝑘 = 1andevaluate𝐽(𝑢𝑘 + 𝛼𝑘𝑆𝑘) 

b. While𝐽 𝑢𝑘 + 𝛼𝑘𝑆𝑘 > 𝐽 𝑢𝑘 + 10
−4𝛼𝑘𝑆𝑘  𝛻 𝐽  𝑢𝑘   do 

i. Set  𝛼𝑘 = 𝛼𝑘/2andevaluate𝐽 𝑢𝑘 + 𝛼𝑘𝑆𝑘 . 

12. Set𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘𝑆𝑘 ,     𝑘 ← 𝑘 + 1.   Goto  2. 

In the following, the connection between the Newton equation  𝛻2𝐽 ′′ 𝑢  𝑠 = −𝛻 𝐽 ′ 𝑢   and the 

solution of a quadratic program is established. 

Theorem 2.Let 𝑒𝑦 𝑦 𝑢 , 𝑢  be invertible and let 𝛻2𝐽  𝑢 be symmetric positive semidefinite.  

The Newton equation 𝛻2𝐽  𝑢 𝑠𝑢 = −𝛻 𝐽  𝑢  is solved by the vector𝑠𝑢  if and only if    solves the 

quadratic program: 

𝑚𝑖𝑛  
𝛻𝑦𝐽 𝑦, 𝑢 𝑇

𝛻𝑢𝐽 𝑦, 𝑢 
 

𝑇

 
𝑠𝑦
𝑠𝑢

 + 
1

2
 
𝑠𝑦
𝑠𝑢

 
𝑇

 
𝛻𝑦𝑦   𝐿 𝑦, 𝑢, 𝑝   𝛻𝑦𝑢   𝐿 𝑦, 𝑢, 𝑝 

𝛻𝑢𝑦   𝐿 𝑦, 𝑢, 𝑝 𝛻𝑢𝑢  𝐿 𝑦, 𝑢, 𝑝 
  

𝑠𝑦
𝑠𝑢

  

𝑠. 𝑡.          𝑒𝑦 𝑦, 𝑢 𝑠𝑦 + 𝑒𝑢 𝑦, 𝑢 𝑠𝑢 = 0                                                       (7) 

is solved by (𝑠𝑦 , 𝑠𝑢)with 𝑠𝑦 = 𝑒𝑦(𝑦 𝑢 ,𝑢)−1𝑒𝑢 𝑦 𝑢 ,𝑢 𝑠𝑢 , where𝑦 = 𝑦 𝑢 , 𝑝 = 𝑝 𝑢 . 

Proof: For every feasible point in (7) we have 

 
𝑠𝑦
𝑠𝑢

 =  
𝑒𝑦 𝑦 𝑢 ,𝑢 −1𝑒𝑢 𝑦 𝑢 ,𝑢 𝑠𝑢

𝑠𝑢
  

=  𝑇 𝑢 𝑇𝑠𝑢  

Since we have 

𝐽 ′ 𝑢 = −𝑒𝑢 𝑦 𝑢 ,𝑢 𝑒𝑦 𝑦 𝑢 ,𝑢 −1𝐽𝑦 𝑦 𝑢 ,𝑢 + 𝐽𝑢 𝑦 𝑢 , 𝑢 . 

So, we can write 𝐽 ′ 𝑢  as 

𝐽 ′ 𝑢 =  
𝑒𝑦 𝑦 𝑢 ,𝑢 −1𝑒𝑢 𝑦 𝑢 ,𝑢 

𝐼𝑈
  

𝐽𝑦 𝑦 𝑢 ,𝑢 

𝐽𝑢 𝑦 𝑢 ,𝑢 
  



R. Naseri, A. Malek / J. Math. Computer Sci.     ( ), - 

 

 

209 
 

= 𝑇 𝑢 𝑇  
𝐽𝑦 𝑦 𝑢 ,𝑢 

𝐽𝑢 𝑦 𝑢 ,𝑢 
                                 

Now, 

 
𝐽𝑦 𝑦 𝑢 ,𝑢 

𝐽𝑢 𝑦 𝑢 , 𝑢 
 
𝑇

 
𝑠𝑦
𝑠𝑢

 =  
𝑒𝑦 𝑦 𝑢 ,𝑢 −1𝑒𝑢 𝑦 𝑢 ,𝑢 𝑠𝑢

𝑠𝑢
  

𝐽𝑦 𝑦 𝑢 , 𝑢 

𝐽𝑢 𝑦 𝑢 , 𝑢 
  

= 𝑠𝑢
𝑇𝑇 𝑢 𝑇  

𝐽𝑦 𝑦 𝑢 , 𝑢 

𝐽𝑢 𝑦 𝑢 ,𝑢 
  

= 𝑠𝑢
𝑇𝛻 𝐽  𝑢                            

Also, using equation (5) we have, 

 
𝑠𝑦
𝑠𝑢

 
𝑇

 
𝛻𝑦𝑦   𝐿 𝑦, 𝑢, 𝑝   𝛻𝑦𝑢   𝐿 𝑦, 𝑢, 𝑝 

𝛻𝑢𝑦   𝐿 𝑦, 𝑢, 𝑝 𝛻𝑢𝑢  𝐿 𝑦, 𝑢, 𝑝 
  

𝑠𝑦
𝑠𝑢

 = 𝑇 𝑢 𝑠𝑢
𝑇𝐿𝜔𝜔 𝑠𝑢𝑇 𝑢 

𝑇 

                           = 𝑠𝑢
𝑇𝑇 𝑢 𝑇𝐿𝜔𝜔𝑇 𝑢 𝑠𝑢  

           = 𝑠𝑢
𝑇∇2𝐽  𝑢 𝑠𝑢  

Thus, the result follows from the equivalence between (7) and the following equation 

min
𝑠𝑢

𝑠𝑢
𝑇∇𝐽  𝑢 + 𝑠𝑢

𝑇∇2𝐽  𝑢 𝑠𝑢  

Theorem 2.Suppose𝐽 is twice continuously differentiable, 𝑢∗ ∈ 𝑈is a point at which the second 

order sufficiency optimality conditions are satisfied, and consider the iterates 𝑢𝑘+1 = 𝑢𝑘 +

𝑠𝑘where 𝑠𝑘  solves 𝛻2𝐽  𝑢 𝑠𝑢 = −𝛻 𝐽  𝑢 . In addition, assume that 𝐽 ′′ 𝑧  is Lipschitz with 

constant 𝐿, then  

 𝑢𝑘+1 − 𝑢∗ ≤
𝐿

2
 𝐽 ′′ 𝑢𝑘 

−1  𝑢𝑘 − 𝑢∗ 
2 

Proof.Since the second order optimality conditions are satisfied at𝑢∗ ∈ 𝑈, thus𝐽 ′ 𝑢∗ = 0. Now, 

we can write 

𝑢𝑘+1 − 𝑢∗ = 𝑢𝑘 + 𝑠𝑘 − 𝑢∗                                                                                     

= 𝑢𝑘 − 𝑢∗ + 𝐽 ′′  𝑢𝑘 
−1𝐽 ′ 𝑢𝑘                                          

                         = 𝐽 ′′  𝑢𝑘 
−1  𝐽 ′′  𝑢𝑘  𝑢𝑘 − 𝑢∗ −  𝐽 ′ 𝑢∗ − 𝐽 ′ 𝑢𝑘                           

                                        = 𝐽 ′′  𝑢𝑘 
−1  𝐽 ′′  𝑢𝑘  𝑢𝑘 − 𝑢∗ +  𝐽 ′′  𝑢𝑘 + 𝑡𝑘 𝑢𝑘 − 𝑢∗   𝑢𝑘 − 𝑢∗ 𝑑𝑡

1

0
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                    = 𝐽 ′′  𝑢𝑘    𝐽 ′′  𝑢𝑘 + 𝐽 ′′  𝑢𝑘 + 𝑡𝑘 𝑢𝑘 − 𝑢∗    𝑢𝑘 − 𝑢∗ 𝑑𝑡

1

0

  

Taking norms on both sides of the above equality and using the triangle inequality 

submultiplicativity and yields 

 𝑢𝑘+1 − 𝑢∗ =  𝐽 ′′  𝑢𝑘  +   𝐽 ′′  𝑢𝑘 + 𝐽 ′′  𝑢𝑘 + 𝑡𝑘 𝑢𝑘 − 𝑢∗    𝑢𝑘 − 𝑢∗ 𝑑𝑡

1

0

≤  𝐽 ′′  𝑢𝑘  +  𝑢𝑘 − 𝑢∗  𝐿 𝑢𝑘 + 𝑡𝑘 𝑢𝑘 − 𝑢∗  𝑑𝑡

1

0

=  𝐽 ′′  𝑢𝑘  +
𝐿

2
 𝑢𝑘 − 𝑢∗ 

2 

Thus, giving the desired inequality. 

3 Distributed Control of Elliptic Equations 

Now, we apply the result to distributed optimal control problem which consists of a cost 

functional to be minimized subject to a partial differential problem posed on a domain 𝛺 ∈ 𝑅2 or 

𝑅3 [8,14]: 

𝑚𝑖𝑛   𝐽 𝑦, 𝑢 ∶=  
1

2
 𝑦 − 𝑦𝑑 𝐿2(𝛺) 

2 + 𝛼 𝑢 
𝐿2 𝛺                                                   
2 (9) 

𝑠. 𝑡.   − ∆𝑦 = 𝑢         on   𝛺 

𝑌 = 𝑔         on   𝜕𝛺 

Since we want to use finite elements, the weak formulation of constraints in (9) is required. So, 

the problem is: find  𝑦 𝜖 𝐻1
𝑔 𝛺 =  𝑢:   𝑢 𝜖 𝐻1 𝛺 ,   𝑢 = 𝑔    𝑜𝑛   𝜕𝛺   such that  

 𝛻𝑦.  𝛻𝑣
𝛺

=   𝑣𝑢
𝛺

      ∀𝑣 𝜖  𝐻0
1 𝛺 (10) 

Let𝑉0
ℎ  𝜖 𝐻0

1be an n-dimensional vector space of test functions with   𝜙1, … , 𝜙𝑛   as a basis. Then, 

in order to satisfy the boundary condition, the basis is extendedby defining functions  

𝜙𝑛+1, … , 𝜙𝑛+𝜕𝑛   and coefficients  𝑌𝑗  so that 𝑌𝑗𝜙𝑗
𝑛+𝜕𝑛
𝜕=𝑛+1   interpolates the boundary data. Hence 

if𝑦ℎ  𝜖 𝑉𝑔
ℎ ⊂ 𝐻𝑔

1 𝛺 , then it is uniquely determined by  𝒚 = (𝑌1, …𝑌𝑛)𝑇with 

𝑦ℎ =  𝑌𝑗  𝜙𝑗

𝑛

𝐽=1

+  𝑌𝑗  𝜙𝑗

𝑛+𝜕𝑛

𝐽=𝑛+1
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Here the𝜙𝑖  , 𝑖 = 1, … , 𝑛,define a set of shape functions. Also it is assumed that this 

approximation is conforming,  i. e. 𝑉𝑔
ℎ = 𝑠𝑝𝑎𝑛  𝜙1, … , 𝜙𝑛+𝜕𝑛  ⊂ 𝐻𝑔

1 𝛺 .Thus the finite- 

dimensional analogue of (10) can be expressed as: Find𝑦ℎ  𝜖 𝑉𝑔
ℎsuch that 

 𝛻𝑦ℎ  . 𝛻𝑣ℎ
𝛺

=  𝑣ℎ𝑢
𝛺

     ∀𝑣ℎ  𝜖 𝑉0
ℎ  . 

Now the discretization of𝑢, needed as it appears in (9), is done using the same basis used for 𝑦 

𝑢ℎ =  𝑈𝑗𝜙𝑗

𝑛

𝐽=1

 

Since it is well known that without loss of generality𝑢ℎ = 0   𝑜𝑛  𝜕𝛺.  Thus the discrete analogue 

of minimization problem can be written as 

𝑚𝑖𝑛 𝑦ℎ ,𝑢ℎ

1

2
 𝑦ℎ − 𝑦  2

2 +  𝛼 𝑢ℎ 2
2                                                      (11) 

𝑠. 𝑡.       𝛻𝑦ℎ  . 𝛻𝑣ℎ =
𝛺

 𝑣ℎ𝑢ℎ𝛺
       ∀𝑣ℎ  𝜖 𝑉0

ℎ                                      (12) 

The discrete cost functional can be written as 

𝑚𝑖𝑛𝑦ℎ ,𝑢ℎ

1

2
 𝑦ℎ − 𝑦  2

2 + 𝛼 𝑢ℎ 2
2 = 𝑚𝑖𝑛𝒚,𝒖

1

2
𝒚𝑇𝑀𝒚 − 𝒚𝑇𝒃 + 𝛽 + 𝛼𝒖𝑇𝑀𝒖               (13) 

where𝒚 = (𝑌1,… , 𝑌𝑛)𝑇 ,   𝒖 = (𝑈1,… , 𝑈𝑛)𝑇 , 𝒃 =   𝑦 𝜙𝑖 𝑖=1,…,𝑛   , 𝛽 =  𝑦  2
2and𝑀 =

  𝜙𝑖𝜙𝑗  𝑖 ,𝑗=1,…,𝑛
   is a mass matrix.We now turn our attention to the constraint: (12) is equivalent 

to finding  𝒚  such that 

 𝛻( 𝑌𝑖𝜙𝑖)

𝑛

𝑖=1

. 𝛻𝜙𝑗 =  𝛻(  𝑌𝑖𝜙𝑖)

𝑛+𝜕𝑛

𝑖=𝑛+1

.
𝛺𝛺

𝛻𝜙𝑗 =  ( 𝑈𝑖𝜙𝑖)

𝑛

𝑖=1

𝜙𝑗
𝛺

 ,       𝑗 = 1, … , 𝑛 

which is 

 𝑌𝑖  𝛻𝜙𝑖  . 𝛻𝜙𝑗 =
𝛺

𝑛

𝑖=1

 𝑈𝑖  𝜙𝑖𝜙𝑗 −
𝛺

𝑛

𝑖=1

 𝑌𝑖

𝑛+𝜕𝑛

𝑖=𝑛+1

 𝛻𝜙𝑖  . 𝛻𝜙𝑗   ,        𝑗 = 1, … , 𝑛 

or  

𝐴𝒚 = 𝑀𝒖 + 𝒅                                                                                                 (14) 

where the matrix 𝐴 =   𝛻𝜙𝑖  . 𝛻𝜙𝑗  𝑖 ,𝑗=1,…,𝑛
is the discrete Laplacian (the stiffness matrix) and the 

vector 𝐝 contains the terms coming from the boundary values of 𝑦ℎ . Thus (13) and (14) together 

are aquivalent to (11) and (12). In order to solve this minimization problem, one way is 

considering the Lagrangian 
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𝐿 ∶=
1

2
𝒚𝑇𝑀𝒚 − 𝒚𝑇𝒃 + 𝛽 + 𝛼𝒖𝑇𝑀𝒖 + 𝜆𝑇 𝐴𝒚 − 𝑀𝒖 − 𝒅 .                                      (15) 

By setting the partial derivatives of the Lagrangian with respect to 𝑦𝑖 to be zero, the adjoint 

equations corresponding to (4) are obtained and are given by 

𝑀𝒚 − 𝒃 + 𝜆𝑇𝐴 = 0  ⟹   𝜆𝑇 =  𝒃 − 𝑀𝒚 𝐴−1                                                (16) 

Given the solution of (16), the gradient of the objective function  𝐽   can be obtained by 

computing the partial derivatives with respect to  𝒖  of the Lagrangian (15). The gradient and 

hessian are given by: 

𝛻𝑢𝐽  𝑢 = 2𝛼𝑀𝒖 − 𝜆𝑇𝑀 = 2𝛼𝑀𝒖 − (𝒃 − 𝑀𝒚)𝐴−1𝑀 

𝛻𝑢
2𝐽  𝑢 = 2𝛼𝑀        

Considering𝑃 = 𝑑𝑖𝑎𝑔(𝐴) as a preconditioner in the Algorithm, since 𝐴 is a block diagonal 

matrix with the blocks consisting of mass matrices, 𝑃 is guaranteed to be positive definite. So, 

the eigenvalues of 𝑃−1𝐴 satisfy  

𝑀𝑥 = 𝜆𝑑𝑖𝑎𝑔 𝑀 𝑥 

and, since 𝑀 is a mass matrix, the eigenvalues of 𝑃−1𝐴  will be bounded above and below by 

constant values, see [16].  

4 Examples 

Example 1. Let  𝛀 = [−𝟐, 𝟏]𝟐, and consider the problem 

min
𝑦 ,𝑢

1

2
 𝑦 − 𝑦𝑑 𝐿2(𝛺) 

2 + 𝛼 𝑢 
𝐿2(𝛺)
2  

𝑠. 𝑡.   − ∆𝑦 = 𝑢in   Ω 

𝑦 = 𝑦𝑑on   ∂Ω 

where 𝑦𝑑 = sin 𝜋𝑥 sin(𝜋𝑦).Taking 𝛼 = 0.001, and using 100 discretization point in each 

direction , the initial state in order to handling the Algorithm, is shown in Fig. 1. In Fig. 2, the 

desired function, the state of control problem as an approximation of desired function, the 

optimal control and its corresponding adjoint are illustrated and show the efficiency of the 

Algorithm. 
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Fig . 1. Illustration of initial state considered to handling the Algorithm, for Example 1. 

 

Fig. 2. Illustration of the solution with 𝑦𝑑 = sin 𝜋𝑥 sin(𝜋𝑦),𝛼 = 0.001 and 100 ×100 

discretization point for Example 1. 
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Example 2. In Example 1, let  𝛀 = [−𝟐, 𝟐]𝟐, and yd = 1.1sign(sin πx sin πy ). Taking𝒚 =

𝟎on 𝛛𝛀, the initial state for handling the Algorithm, is depicted in Fig. 3. Considering 𝜶 =

𝟎. 𝟎𝟎𝟎𝟓, 50 ×50discretization points and solving the optimal control problem according to the 

proposed algorithm, yields the optimal control, state and adjoint solutions of the problem. 

Comparing the desired function and its approximation namely state of the control problem, as 

well as illustration of the optimal control and adjoint are depicted in Fig. 4.  

 

Fig . 3. Illustration of initial state considered to handling the Algorithm, for Example 2. 

 

Fig. 4. Illustration of the solution with yd = 1.1sign(sin πx sin πy ),α = 0.0005 and50 

×50discretization points for Example 2. 
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5 Conclusion 

Here, a gradient based iterative algorithm for solving optimal control problem is proposed,where 

the analysis of the method in Theorem 1, shows relation between the Newton's type method used 

on the derivatives of the problem and the quadratic programming extracted from discretizing 

theproblem. As well as, Theorem 2 shows the convergence rate of control values in each 

iteration to the optimal control is proposed. In order to solve the large system of equations in 

Newton's equation, preconditioned conjugate gradient method is a good and efficient choice, 

where this fact is illustrated in some examples.  
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