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Abstract

With the development of large-scale data, the increasingly users need to store the data in the distributed storage system
due to the fact that the signal computer can not hold the massive data. However, the users can not control the data access
rules. So the transparent security management of Large-scale data in distributed networks is a challenge. To solve this issue,
a distributed security storage model is proposed. This security storage model can deal with the high concurrency and the
complexity of large-scale data management in the distributed environment. The detailed designed of the transparent security
storage system is provided based on the security storage model. This system allows the users manage their data and provides
confidentiality protection, integrity protection, and access permission control. Experiments exhibit that the distributed storage
model can improve the data security with I/O performance loss less than 5%. c©2017 All rights reserved.
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1. Introduction

The emergence of cloud computing technology has brought many new developments for storage sys-
tem; many companies began to build their own cloud storage platforms. At present the main cloud
storage platforms used widely are Amazon Simple Storage Service, RackSpace Openstack and Microsoft
Azure. Cloud storage platform has spawned many cloud storage application systems [20]. At the same
time, the relevant new technologies and research results are also emerging [15–17]. With the development
of cloud storage technology, more and more users or services started to use cloud storage environment
to store data. Cloud storage environment is generally used by payment and bring a lot of convenience to
users: no first-phase investment, saving management cost, good scalability and higher storage resource
utilization rate. However, cloud storage environment makes data owner lose complete control on data,
data security facing a series of threats [8]. For example, in cloud storage environment data is usually
stored in plain text, lacking of integrity protection, reliable user authentication and access control mech-
anism. If important sensitive data is stored in the cloud storage environment, with the increase of users,
the problem will become more serious.
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Currently data encryption is the mainstream method for protecting data privacy [9, 13]. Most of the
cloud storage service providers require users to trust their storage servers and system administrators, part
of service providers claim that they provide good security mechanism to ensure the security of user data.
However, in 2010 data leak investigation report, Verizon pointed out that 49% of data leakage is caused
by internal staff and privilege abuse accounted for a large part of data leakage, 48% of data leakage is
caused due to users’ malicious abusing the privilege of accessing information. Therefore, it is difficult for
cloud storage users to fully trust service providers.

In some storage systems data access control is performed by data owner. If other users want to
access data, they should contact with data owner. This reduces security threats in a certain extent. But
this scheme brings new problems: firstly, data owners need to provide more complex data management
services, and even online services; secondly, when the number of users is large, and there are many
co-sharing users, the management is more difficult.

To solve above problems, this paper proposes a multi-user shared cloud storage system. In this
system, data owners store their data in untrusted cloud storage service providers; other users access
the data in untrusted network environment according to their assigned permissions. It is supposed that
during data storage and access cloud storage service providers and malicious network users may probe or
even tamper with it, users may try to operate it beyond their legal privileges. Based on this assumption,
this paper presents a transparent secure cloud storage system framework. It allows users to protect data
security and data access control to be efficient and reliable in untrusted cloud storage service provider and
unreliable network environment, meanwhile ensuring that users cannot access beyond their privileges.
According to this framework, this paper implements a secure cloud storage system prototype–TSCSS.
TSCSS is a transparent secure cloud storage system with stacked encryption file system, which can be
transparently deployed on file systems with POSIX standard interface, and it is not required to make
changes to existing file systems. TSCSS is independent of cloud storage service providers, exists with the
identity of third party, provides data confidentiality, integrity protection and access control service for
users, and eliminates users’ worry on data security.

Section 2 of this paper introduces system design principle and target; Section 3 introduces key tech-
nologies and system design and implementation scheme; Section 4 describes system performance test
results and analysis; Section 5 analyzes and compares related works and Section 6 makes summary.

2. Design principles and objectives

(1) Independent of underlying file system. TSCSS is designed to provide security mechanism for existing
cloud storage systems. It is independent of underlying file system to ensure that any changes to
underlying file system are not required in using TSCSS.

(2) File sharing and access control. TSCSS provides secure and easy-to-use file level sharing and access
control mechanism for users. File owner can specify who and how to access a data file.

(3) End-to-end confidentiality and integrity protection. TSCSS ensures that only authorized users can
access data plaintext, illegal users and administrators of underlying file system are unable to obtain
data plaintext. Malicious tampering with data can be found to ensure that the information gotten by
users is correct.

(4) Key management. Users do not need to store any key locally in using TSCSS. That is to say, the
TSCSS key management mechanism is transparent to users to increase the ease of use and security of
the system.

(5) Key distribution. TSCSS needs a reasonable and efficient key distribution mechanism to ensure that
legal users can obtain the key of the files they want to access.

(6) Lazy revocation. In TSCSS lazy revocation mechanism [5] is introduced to reduce the performance
overhead caused by security mechanism. When privilege revocation occurs, TSCSS does not re-
encrypt file immediately, but re-encrypt the modified content until the file is modified.



M. Zhang, W. Chen, Y. Cao, J. Math. Computer Sci., 17 (2017), 488–505 490

(7) Performance. Apart from PKI identity authentication system, all the encryption and decryption in
TSCSS use symmetric keys. TSCSS also needs to use caching mechanism to avoid reduplicative com-
putational and I/O overhead. In addition, TSCSS minimizes the consumption of disk space and
network bandwidth caused by security mechanisms.

3. System design and implementation

3.1. Architecture design
There are many terms in this paper. For convenience of narration, the English abbreviations and

meanings of used terms are sorted, as shown in Table 1.

Table 1: Glossary of terms.
Abbreviations Meanings
SS Storage Server
CS Control Server
CSEK Control Server Encryption Key
CSSK Control Server Signature Key
ACL Access Control List
EA Encryption Algorithm
EM Encryption Mode
KL Key Lock
SL Signature Lock
ACB Access Control Block
ACB-HMAC ACB Hash-based Message Authentication Code
RHi ith Root Hash in root hash list

TSCSS consists of three parts: SS (storage server), client (client), and CS (control server), as shown in
Figure 1.

Figure 1: TSCSS architecture.

Storage server stores data files. A file is divided into two files stored in storage server and they are
called data file (d-file) and metadata file (md-file), respectively. File cipher text is stored in data file, and
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file security information such as access control block (ACB), root hash list (RHL), SBT tree, etc. is stored
in metadata file. The specific content will be narrated later in detail.

Control server is the root trusted by the whole system. CS logic is very simple. It is responsible for
users’ identity authentication, processing users’ file access request, distributing related keys to legitimate
users and so on. CS only needs to store two symmetric keys CSEK and CSSK. The involved operation is
only a small amount of encryption and decryption, calculating MAC, etc. This simple design can bring
the following advantages.

(1) Low overhead. Because calculation is simple and there is no cost of disk I/O, CS can easily respond
to multiple requests at the same time.

(2) The system is more reliable and the availability is stronger. Apart from two symmetric keys, CS has
no other information. So if the CS crashes, another server with the same CSEK and CSSK can replace
it immediately, without complex data and state recovery to maintain consistency.

(3) The extendibility is strong. Simple logic makes CS easily be extended to CS cluster, eliminating
performance bottlenecks.

The client is responsible for handling users’ requests, performing various operations on files. At the same
time, file encryption and decryption and data integrity check are done on the client. When necessary,
the client will also need to communicate with server to get keys. All these are transparent to users. The
client only stores users’ identity certificates and does not store additional information. This increases
the usability and security of system. In technology selection, TSCSS is a user mode file system based
on FUSE, so it can be installed on any file systems which provide standard POSIX interface and provide
security functions for users. This also makes TSCSS be completely independent of underlying file system,
and the scope of application is wider.

3.2. Symmetric key hierarchy
Key management has two critical issues: how to reduce the number of keys needed to maintain and

how to handle key updating when privilege revocation occurs. In TSCSS, key is organized with three
levels: file key, metadata file and control server, as shown in Figure 2.

Figure 2: Key hierarchy management.
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The first layer is file key. In order to deal with large file more efficiently and securely, TSCSS processes
file data by block. Each file is divided into some file blocks (FB), each file block FBi uses a separate sym-
metric key FBKi for encryption and decryption, FBKi is calculated as follows: FBKi=Hash(FBi)||offseti||Ri

The symbol “||” means concatenating, Hash means calculating hash value, offseti is the offset of block
i in file, and Ri is a random number. That is to say, the file block key is produced by concatenating its
plaintext hash value, its offset and a random number. This method can bring the following benefits: (1)
To protect data integrity, it is necessary to calculate hash. Using plaintext hash value as key can make
this information to be reused, greatly saving key storage space; (2) Concatenating hash value, offset and
random number as the key can make file blocks with same content generate different cipher text, so the
confidentiality is enhanced; (3) When file block content changes, the key changes. This is good for system
security and privilege revocation (to be narrated later in detail).

The second layer of key hierarchy is metadata fie (md-file). In the access control block ACB of md-file,
there is a key lock KL. All the file block key FBKi are encrypted with KL, and stored in the form of SBT
Tree in metadata file. Only users getting KL can decrypt to get file block key and then decrypt data file
to get plaintext. There is a signature key SL in ACB. Only users getting SL have the ability to modify file
legally, i.e., have write privilege. This part of content will be narrated in detail in Section 3.3.

The third layer of key hierarchy is control server (CS). Two keys are stored in CS: CS encryption
key (CSEK) and CS signature key (CSSK). These two keys are known by CS only. In the access control
block ACB of md-file, key lock Kl and signature key SL are all encrypted with CSEK by CS. Only by
communicating with CS users can get KL or SL. CSSK is used to calculate the HMAC value of ACB.
Using HMAC value, CS can determine whether the integrity of ACB is destroyed. Other entities do not
have the ability to modify ACB, because they cannot obtain CSSK.

Through such three-layer key management structure, numerous keys can be organized efficiently,
while ensuring data privacy and integrity, improving the efficiency of key management, and are good
for user identity authentication, access authorization and privilege revocation. This will be described in
detail in Section 3.5.

3.3. Integrity protection
The main idea of data integrity verification in cloud storage is to store users’ data by using tree or tree-

like data structure, and combine this data structure with appropriate cryptography technology to make it
have authentication ability, and form authentication dictionary. In this paper authentication dictionary is
constructed based on size balanced tree (SBT), and data integrity verification scheme is designed on this
authentication dictionary. Data integrity verification scheme based on SBT structure can better support
the integrity verification of dynamic data set, avoiding periodic reconstruction caused by data update.
Compared with the authentication structure based on AVL tree and Treap, the authentication dictionary
based on SBT structure has better balance and higher data efficiency [22].

3.3.1. Node size balanced tree SBT
SBT is a kind of binary search tree, with the following properties:

(1) if left sub-tree is not empty, the values of all nodes on left sub-tree are less than the value of root node;
(2) if right sub-tree is not empty, the values of all nodes on right sub-tree are greater than the value of

root node;
(3) Left and right sub-trees are binary search trees, respectively.

SBT maintains balance by sub-tree size (number of nodes). This design structure can effectively and
dynamically maintain the binary search tree, and even in worst case good running speed can be kept.
When tree nodes become unbalanced, rotation operation is needed to maintain balance. For each node t
in SBT, it must meet the following natures:

(1) s[right[t]]> s[left[left[t]]], s[right[left[t]]];
(2) s[left[t]]> s[right[right[t]]], s[left[right[t]]].
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Among them, left[t] denotes t’s left child node; right[t] denotes t’s right child node; s[t] is the size of the
sub-tree whose root is t, i.e., the number of nodes in this tree.

3.3.2. Data operation on SBT
In cloud storage system, data is searched, inserted, updated and deleted frequently. Search is the most

essential operation. Whether it is inserted, updated or deleted, search is needed first to locate target node.
The search process of SBT tree is as follows:

(1) if the tree is an empty tree, then search fails;
(2) if the target value is equal to the value of root node, search is successful;
(3) if the target value is less than the value of root node, search left sub-tree recursively;
(4) if the target value is greater than the value of root node, search right sub-tree recursively.

Size balance tree is implemented with linked list. During insertion and removal, it is not necessary to
move node location; it is enough to change the pointer to node. So it’s time complexity is consistent with
that of search operation.

When inserting a data element into the authentication data structure based on SBT, first find the
location of the inserted node, then execute insert. Because the inserted node is inevitable the leaf node
of SBT, if the insert operation does not cause rotation and adjustment operation, only the hash values of
all the nodes in the paths from root node to new leaf node are needed to be recalculated; if the insert
operation causes rotation and adjustment operation, the hash values of all the nodes affected after rotation
and adjustment are needed to be recalculated. The affected nodes include all nodes in the rotated sub-tree
and all the nodes on the paths from the sub-tree root node to the root node of SBT.

When removing a data element in a SBT based on authentication data structure, there are three cases:

(1) if x, the node to be deleted is a leaf node, it can be deleted directly. The nodes whose information
needs to be modified are all the nodes on the path from root node to the parent node of x;

(2) if x, the node to be deleted is a single branch node, i.e., it only has a left sub-tree or a right sub-tree,
connect the parent node of x with the child node of x, and then delete x. The nodes whose information
needs to be modified are all the nodes on the path from root node to the parent node of x;

(3) if x, the node to be deleted has left sub-tree and right sub-tree, then it is needed to change the tree
structure. Delete can be completed by two ways: 1© replace x with y, the node which has maximum
value in the left sub-tree of x, and then delete y; 2© replace x with z, the node which has minimum
value in the right sub-tree of x, and then delete z. The nodes whose information needs to be modified
are all the nodes on the path from root node to the parent node of y or z.

In above three cases, only the hash values of the nodes on the path from the root node of SBT to
deleted node (or its child nodes) need to be calculated. If rotation and adjustment are caused, the update
procedure of node’s hash value is consistent with insertion procedure.

3.3.3. SBT analysis
(1) For query and verification operations, SBT authentication dictionary has the same algorithm complex-

ity as Merkle tree authentication dictionary, they are all O(log(n)). They all use hash functions instead
of other complex operations, so the calculation is simpler.

(2) SBT has good balance, and can better control tree height, so that it tends to be close to complete binary
tree. The time complexity of data update and query on binary tree is related to tree height. SBT
tree has higher efficiency than non-balanced tree, and data operation time can be kept in O(log(n)).
SBT authentication dictionary can also completely avoid periodic reconstruction of authentication
structure.

Therefore, for data set which has large number of members and needs to be updated frequently, the
scheme based on SBT has obvious advantages [22].
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3.3.4. The implementation of TSCSS integrity protection
By calculating the plaintext hash value of each file block, TSCSS ensures its integrity (as stated above,

the hash value is also part of the encryption and decryption key FBK). Furthermore, these hash values
are organized to form one or many SBT trees. File block hash value and joint hash value are stored in
SBT tree nodes to ensure the integrity of nodes. Every node v of T, storage tree of all nodes based on SBT
must store two entities:

(1) the Hash value Hv=Hash(FB), block offset, random number, block number, etc. of the corresponding
file block of the node;

(2) joint hash value Hsum(v). Its calculation method is as follows:

• if node v is leaf node, then Hsum(v)= Hv;

• if node v is not leaf node, and only has left child node, then Hsum(v)=Hash(Hv, Hsum(left[v])),
where Hsum(left[v]) represents the joint hash value of the left child node left[v] of node V;

• if node v is not leaf node, and only has right child node, then Hsum(v)=Hash(Hv, Hsum(right[v])),
where Hsum(right[v]) represents the joint hash value of the right child node right[v] of node V;

• if node v is not leaf node, and has both left and right node, then Hsum(v)=Hash(Hv, Hsum(left[v]),
Hsum(right[v])).

Global hash value Hash(T) is the joint hash value of the root node of T, storage tree of full nodes. Its
structure is shown as Figure 3.

Figure 3: SBT Tree in TSCSS.

The content of each node in Figure 3 is H ||Hsum(v). The content of H is shown in Table 2.

Table 2: The content of H.
File block Hash: Block Random Block serial Block Node
Hv=Hash(FB) offset number number existence tag existence tag
20 Bytes 8 Bytes 4 Bytes 2 Bytes 1 Byte 1 Byte

In SBT Tree of TSCSS, Hv of node i is actually the hash value of file block i. Hsum(v) is the hash
value calculated after concatenating the content of node i and all its child nodes. Moreover, “block
existence tag” is also used to identify whether file block i exists (there may be empty holes in file) and
“node existence tag” is used to identify whether node i in SBT tree exists (if Hv or Hsum(v) exists, it is
considered that node i exists). These two tags can help to identify file holes and improve the efficiency of
integrity verification (nonexistent SBT tree node does not participate in calculation).

Finally, SBT Tree’s root is encrypted with signature lock SL and stored in the root hash linked list in
md-file. In order to provide possibility of concurrent writing, the integrity of a file is ensured with many
SBT trees and a linked list linking the root hashes of these SBT trees.

In TSCSS, the integrity of file block i is ensured with Hv, the integrity of the sub-tree whose root is
node i is ensured with Hsum(v), so the root of SBT tree ensures the integrity of whole SBT tree. Because
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only legitimate users with file write privilege can obtain signature lock SL (this will be described in detail
in Section 3.5, so the root hash stored in md-file ensures that once an illegal user tampers with file content,
he/she can be found. In general, the root hash encrypted with SL ensures the integrity of SBT tree, and
SBT tree stores the plaintext hash of all file blocks, and then the integrity of the entire file data is protected.

The benefit of using SBT tree to protect file integrity is obvious. When the content of one or some
blocks of the file is legally modified, only the Hv of these blocks and Hsum(v) of the nodes passed along
the paths from these blocks to root nodes needed to be recalculated. Finally the updated root hash is
reencrypted with SL and stored in md-file. The time complexity is O(log(n)). If SBT is not used, a hash
value is calculated by concatenating all FBKs together to guarantee the integrity of all FBKs, then even if
only a block is modified, it is required to concatenate all FBKs and calculate hash value again, and such
cost is difficult to accept for large files.

In addition, using the hash value of file block plaintext instead of cipher text for integrity check, firstly,
the plaintext hash value is reused as key to save space; secondly, this can ensure that the information users
get is indeed what they want (because only guaranteeing the cipher text integrity is not enough. If the
integrity protection mechanism is not perfect, the key may be tampered with, the decrypted plaintext is
wrong).

In TSCSS, before every read or write to file, the integrity of the accessed content is checked first.
Firstly, the integrity of root hash of SBT tree is checked, then the integrity of SBT tree nodes involved in
access and the nodes on the paths from these nodes to root node is checked, this can ensure the integrity
of Hv, i.e., FBKs of these nodes. Checking the integrity of SBT tree node is recalculating its Hsum(v) value
according to its child nodes, comparing with the Hsum(v) value stored in md-file, and finally, checking
the integrity of each file block (calculating the hash value of decrypted plaintext, and comparing with the
plaintext hash in FBK).

3.4. Lazy privilege revocation
In cloud storage system with large number of users, permission revocation often occurs [9]. Most

cloud storage systems mainly rely on storage server to manage file access privileges; the overhead of
privilege revocation is little. But this requires users to completely trust storage server; it is not safe for
users’ data. Relatively, in encrypted storage system, the performance overhead caused by permission
revocation is much greater, because in order to avoid users whose privileges are revoked from continuing
to access files, it is needed to regenerate related keys, re-encrypt and distribute new keys to users who
still have access privileges. File re-encryption will seriously affect system performance, and cause that the
file cannot be accessed in this process.

In order to reduce the extra cost caused by privilege revocation, TSCSS uses lazy revocation technology
[5]. For each file block, after privilege revocation, only when its content is changed, it is re-encrypted. This
largely reduces the effect of privilege revocation on performance. For md-file, once privilege revocation
occurs, it is required to regenerate the key lock KL and signature lock SL for the file, and then use the new
KL to encrypt all file block key FBK, and use new SL to encrypt all the root hash RH. Since TSCSS only
re-encrypts all the FBK and RH, and does not re-encrypt file block, the data volume is reduced much,
the performance overhead is also greatly reduced. This also reflects the superiority of the key hierarchy
management mechanism. In addition, when the content of file block is modified, its hash value will be
changed, so the file block key FBK will be changed automatically. So TSCSS is not required to use a
complex method and additional space to record information such as the file’s history keys and history
states etc. as in existing lazy privilege revocation mechanisms [3, 9]. This further saves the time and
space. In addition, some existing lazy privilege revocation mechanisms need to re-encrypt the entire file,
but TSCSS is accurate to file block level. This also improves performance to some extent.

3.5. Access protocol and process
In TSCSS file access protocol, the communication between client and control server uses SSL encryp-

tion, this can effectively solve the problem that network is not reliable. In addition, control server CS
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only needs to maintain two symmetric keys, the client only needs to maintain user’s identity certificate
and does not need to maintain any key. This is not only simple and efficient, but also reduces the risk of
key leakage, and it is much safer. TSCSS can do this, thanks to its simple, safe, and efficient file access
protocol. The protocol is described in detail below.

Identity authentication. TSCSS uses x509 standard to realize identity authentication. Each user must
apply for a certificate from CA to identify his/her identity. When client communicates with control server
CS, it will try to establish a SSL connection with CS. When establishing connection, the client will send
user’s identity certificate to CS. After the certificate passes CS verification, CS will also send its own
certificate to the client. Then the SSL connection is confirmed. That is to say, in control server CS, each
connection is bounded with user certificate, i.e., every communication can be identified by its identity.

The process of creating a file is as follows:

(1) Client initializes a file creating request including file name, encryption algorithm, encryption mode,
access control list, and other informations, then sends the request to control server CS.

(2) After receiving the request, CS generates key lock KL and signature lock SL for the file, uses control
server encryption key CSEK to encrypt them, creates ACB, then uses control server signature key
CSSK to calculate the HMAC value of ACB, and finally initializes root hash linked list and returns the
generated ACB to client.

(3) Client creates two files on storage server according to ACB returned by CS: data file d-file and meta-
data file md-file.

The process of reading a file is as follows:

(1) Client finds metadata file md-file from storage server, reads the content of ACB from it, and sends the
read request and ACB to control server CS.

(2) CS first checks the integrity of ACB, then determines whether the user has read permissions according
to ACL access control list, then uses CSEK to decrypt KL and SL and uses SL to decrypt the root hash
linked list (to verify the integrity of SBT tree), and finally returns KL and root hash linked list to client.

(3) Client uses KL to decrypt the block key FBK of file blocks to be accessed, verifies the integrity of SBT
tree and its root hash, then reads out the relevant file blocks from d-file and uses corresponding FBK
to decrypt to obtain plaintext, and verifies the integrity of file block by calculating plaintext hash.

The process of writing file is as follows:

(1) Client finds metadata file md-file from storage server, reads out the content of ACB, and sends the
write request and ACB to control server CS.

(2) CS first checks the integrity of ACB, then determines whether the user has write permissions according
ACL access control list, then uses CSEK to decrypt KL and SL and uses SL to decrypt root hash linked
list, and finally returns KL, SL, and root hash linked list to client.

(3) Client uses KL to decrypt the block key FBK of file blocks to be accessed, verifies the integrity of SBT
tree and its root hash, then calculates hash and new FBK for the data to be written at the file block
granularity, uses the new FBK to encrypt data, writes them to d-file. Meanwhile it is also needed to
update SBT tree, recalculate root hash and encrypt with SL, write them to md-file.

The process of sharing files is as follows:

(1) File owner finds md-file from storage server, reads out ACB, sends file sharing request and ACB to
CS. The file sharing request includes which users will be added into the access control list (ACL),
what permissions each user has and other information.

(2) CS first checks the integrity of ACB, and checks whether the user is file owner, and then inserts the
access control entries in the client request into ACL, and recalculates the HMAC value of ACB with
CSSK, finally returns the updated ACB to client.

(3) Client writes new ACB to md-file.
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The process of privilege revocation is as follows:

(1) Client finds md-file from storage server, reads out ACB and sends the privilege revocation request
and ACB to CS. Privilege revocation request includes which users permissions will be revoked from,
which permissions each user should have after privilege revocation (e.g. downgraded from read-write
to read-only permission) and other information.

(2) CS first checks the integrity of ACB, and checks whether the user is file owner, then updates access
control list (ACL) according to the client request and regenerates key lock KL and signature lock SL,
and encrypts new KL and SL with CSEK, writes into ACB. Finally recalculates the HMAC value of
ACB with control server signature key CSSK, and returns updated ACB, old KL and SL and new KL
and SL to client.

(3) Client decrypts all file block key FBKs with old KL, encrypts them with new KL and writes into
md-file; then decrypts all root hashes with old SL, encrypts them with new SL and writes to md-file.
Finally, the updated ACB is written into md-file.

3.6. Ensuring correctness and performance tuning
TSCSS uses lock mechanism (including file read/write lock and thread mutual exclusion lock) to

achieve read/write mutual exclusion and ensure file data consistency. TSCSS supports multi-threaded
concurrent reading same file.

In order to improve the performance of TSCSS, this paper uses caching mechanism to reduce the
overhead of encryption, decryption, and integrity check. For example, the accessed plaintext of first
twelve layers of nodes of SBT tree is cached in memory, they are not re-encrypted and written back to
md-file until it is necessary (e.g. when file is closed). This can reduce the overhead caused by multiple
I/O accesses and encryption and decryption on the first twelve layers of nodes of tree SBT in the process
of integrity verification. Accordingly, a “whether the integrity is checked” tag can be set for cached SBT
tree nodes to avoid duplicated integrity verification on cached SBT tree nodes.

If a user reads or writes a section of data repeatedly, each time of read or write operation, correspond-
ing content is needed to be read out from encrypted data file, integrity check is performed, then reads the
related file data encryption key (cipher text form) from metadata, then uses key lock KL to decrypt these
keys, and uses these keys to decrypt data file to get plaintext data. Write operation is similar. To improve
performance, by using a cache system in TSCSS, recently accessed plaintext of file blocks is cached. This
can omit above steps, reducing the overhead of unnecessary I/O operations, integrity verification and
encryption and decryption.

In concrete implementation, this paper uses RadixTree [3] to organize file block cache. This can
efficiently search, insert, and delete cached blocks. At the same time, LRU linked list is used to manage
buffer pool, improving the cache hit rate. Perfect lock mechanism is also used to ensure the correctness
of cache system.

4. Function and performance test

In this paper a series of tests were done on TSCSS functions and performance, including verifying
the secure functions TSCSS can provide in untrusted network and storage environment, measuring the
overhead of encryption and decryption, integrity check, file sharing and privilege revocation etc., and
using Bonnie++ and IOzone to test the overall performance of TSCSS.

4.1. Function test
Three servers were used to test TSCSS on functions. One server was used as the CS of TSCSS and the

server of NFSv4, the other two were used as the clients of NFSv4 and TSCSS. TSCSS was mounted on
NFSv4 with the identity of users A and B, respectively. The content of test is shown as Table 3.
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Table 3: TSCSS function test.
Test content Test results
Data privacy protection: File content is garbled code after encryption,
bypass TSCSS to view user’s file content. file plaintext cannot be obtained.

Data integrity protection: bypass TSCSS TSCSS reports the warning that
to tamper with data files or metadata files. the file integrity has been damaged.

Permission management: test the results of Read/write operation on file fails
read/write operation performed by file accessor before being granted read/write permission
before being granted read/write permission, and after being revoked permission; the
after being granted read/write permission read/write operation on file is successful
and after being revoked permissions. after read/write permission is granted.

4.2. Performance test environment and parameter selection
The hardware environment of performance test is two servers with same configuration. The server is

Lenovo Erazer x700, Intel Core i7-3930k CPU, 3.2GHz, 16GB memory. The two servers are connected with
LAN, one is used as CS, the other is used as client. The software environment is Ubuntu Linux 14.04 LTS,
fuse2.8.5, openssl1.0.1h.

In the selection of security mechanism, SHA-1 function is used to calculate hash. HMAC, the MAC
algorithm based on SHA-1 is used to calculate MAC, AES-256 series function is the default encryption
and decryption function, cfb is the default encryption mode (user can choose encryption algorithm and
encryption mode by configuration file), x509 series function is used to realize identity verification.

TSCSS file block size is set to 64KB, because the test scene mainly faces large file application. If TSCSS
is needed to be used in cloud storage environment of small file, it can be easy to adjust the size of file
block.

In the structure of SBT tree, the height of SBT tree is not more than 16 layers. This selection is to
reduce the number of I/O operations at integrity check of SBT tree. The less the layers of SBT tree is, the
less the number of needed disk I/O operations is. In fact, specific implementation cache mechanism is
used to ensure that each time SBT tree integrity is checked there is no more than one I/O operation. In
addition, a single file supports up to 1024 SBT trees, so the size of a file TSCSS can support is up to about
4TB.

4.3. Encryption and decryption overhead
First create a file, then open the file with read/write mode, each time write 500MB content with the

granularity of 64KB, and then read out the 500MB content, finally close the file. Table 4 lists the encryption
and decryption overhead of various file operations in test.

From Table 4 we can see that the majority of overhead of encryption and decryption is in the data
file encryption and decryption. In addition, “calculating SBT tree node value” in write operation and
“verifying file block hash” in read operation also consume a part of time. These are two parts belonging
to overhead of integrity check. Above overhead is proportional to the size of the read/written content.
It also can be seen that because the operation that control server CS participates in is simple in logic,
time-consuming is very short.

In order to test the overhead of file sharing and privilege revocation, the following tests are carried
out: the owner of file A first gives 500 different users read-only privilege to file A, then upgrades the 500
users’ privilege to read/write permission, and finally revokes all their privilege. The time cost of each
step (the consumed time from user’s beginning operation to the completion of operation) is recorded, as
shown in Table 5.
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Table 4: Encryption and decryption overhead of file operations.
File Encryption and Total Executor Operation
operation decryption operation overhead/ms Executor frequency

Generate FSK, LBK 0. 009 CS File level
Create Encrypt FSK, LBK 0. 006 CS File level

Calculate ACB HMAC 0.034 CS File level
Verify ACB HMAC 0. 035 CS File level

Open Decrypt FSK, LBK 0. 009 CS File level
Decrypt root hash linked list 0.009 CS File level

Close
Encrypt SBT tree 1.717 Writer File level
Encrypt root hash linked list 0. 004 Writer File level
Verify SBT tree node value 0. 220 Writer File block level
Verify SBT tree root hash 0. 463 Writer SBT tree level

Write Calculate SBT tree node value 1789.539 Writer File block level
Calculate SBT tree root hash 11.617 Writer SBT tree level
Encrypt file block 6997.840 Writer File block level

Read

Verify SBT tree node value 1.348 Reader File block level
Verify SBT tree root hash 1.611 Reader SBT tree level
Decrypt file block 6085.778 Reader File block level
Verify file block hash 1437.307 Reader File block level

Table 5: The time overhead of TSCSS privilege operation.
Operation description Time overhead/ms
File read only and share 2.487
Privilege upgrade 2.505
Privilege revocation 3.668

It can be seen from Table 5 that because file sharing or permission upgrade only simply modifies file
access control list ACL and recalculates the HMAC of ACB, the speed is very fast. Privilege revocation
needs to regenerate KL and SL and re-encrypt existing file block keys and root hash linked list, so time-
consuming is relatively longer, but because the content of file block is not reencrypted immediately, the
speed is still very fast.

4.4. File read and write test
4.4.1. Big file read and write test

In the same test environment as Section 4.2, Bonnie++1.03e is used to test Ext3 and TSCSS. First
Bonnie++ is run on local file system Ext3 of client to test performance, then TSCSS is deployed on Ext3
and Bonnie++ is run again to test the performance of TSCSS. The test results are shown in Figure 4.

As can be seen from Figure 4, compared with Ext3, TSCSS’s performance of read and write decreases
by 31.3% and 17.4%, respectively, the main reason is that file content encryption and decryption introduces
overhead. The read and write performance of byte granularity decreases by 53.6% and 55.6%, respectively.
The more important reason that the read and write performance of byte granularity decreases is that each
time read and write operation occurs, TSCSS needs to check integrity, including the integrity of involved
file block in access and the integrity of SBT tree. Because in implementation TSCSS selects 64KB as the
file block size, even if accessing a byte in file block, it is required to calculate the hash of entire file block
to check integrity, so read and write of byte granularity will introduce more overhead of integrity check.

Then TSCSS is tested in NFSv4 environment, the same test environment is still used, Bonnie++ is used
to test. There are two servers. One is used as control server CS and also as NFSv4 server to provide
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storage service, the other is NFSv4 client and also TSCSS client (TSCSS is mounted on NFSv4). Bonnie++
is run to test on TSCSS mount point and NFSv4 mount point successively; the test result is as shown in
Figure 5.
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Figure 4: Bonnie++ single test TSCSS vs Ext3.
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Figure 5: Bonnie++ single test TSCSS vs NFSv4.

By contrasting Figure 4 and Figure 5, it can be found that, compared with Ext3, the write performance
of NFSv4 slightly drops by about 10%, but read performance drops by more than 40%. This is mainly
caused by NFSv4’s introducing network overhead and protocol overhead. The performance change of
TSCSS is very small, and is only a slight decline, this is because that TSCSS’s introducing the overhead of
file content encryption and decryption, and integrity verification, etc. is the main reason of performance
decline. Because these operations are computationally intensive, the performance of CPU will become
bottleneck. So although NFSv4 has weakened the underlying storage I/O capabilities, but does not
weaken to the extent to make it become bottleneck. That is to say, the performance of CPU is still the
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bottleneck. So the performance of TSCSS only drops slightly. Thus, in cloud storage environment, with
the increase of the number of users, it means the increase of the number of clients and the enhancement
of computing capability, computing part will not be the bottleneck, the performance overhead of TSCSS
will become slighter and slighter. In order to verify this idea, TSCSS is tested on cluster.

In cluster test, the hardware environment uses 5 servers of same configuration; the model is Lenovo
Erazer x700, Intel Core i7-3930k CPU, 3.2GHz, 16GB memory. The software environment and configura-
tion are the same as prior test. 16GB is selected as the size of tested file. Among the 5 servers, one is
used as the NFSv4 server and an EXT3 partition of the local disk is exported to provide external storage
service, one is used as control server and the rest 3 are used as clients. NFSv4 is mounted on them all
and TSCSS is mounted on NFSv4.

This time IOzone3.347 is used to perform test, because IOzone has cluster test function. Firstly 3
clients perform IOzone cluster test on native NFSv4 mount points, then change to perform test on TSCSS
mount points similarly. The obtained result is shown as in Figure 6.
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Figure 6: IOzone cluster test TSCSS vs NFSv4.

As can be seen from Figure 6, the aggregation access speed of TSCSS being mounted on NFSv4 reaches
more than 95% of NFSv4, and reaches the limit of the performance of a single disk. This shows that when
the number of clients increases, storage service becomes the bottleneck. The calculation cost introduced
by TSCSS is not obvious. Experimental results show that in cloud storage environment TSCSS can be
applied well.

4.4.2. Read and write test of massive small files
Aiming at existing operation needs for massive small files in actual environment, the performance

comparison of operations under network environment for massive small files of TSCSS and NFS are
tested respectively. The test selects 3 servers as file server of cloud storage, control server, and client,
respectively, its hardware and software environment configuration is the same as above servers testing
IOzone. In the process of testing NFS and TSCSS, the client performs create, write, and read operation
for 1000 small files under corresponding mount points respectively, the size of each file is set to 512KB.
The test result is shown as Figure 7.
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Figure 7: Test of massive small files TSCSS vs NFSv4.

As seen from Figure 7, compared with NFSv4, the read and write operation performance of small
file of TSCSS system decreases by 50.7% and 43.1%, respectively. This is because while TSCSS accesses
data file each time, it needs to access metadata file. When dealing with small files, the proportion of
the time occupied by handling metadata is larger than that of dealing with large files, so the processing
performance of small file in TSCSS is not as good as that of large file.

In addition, in this read and write test, the number of I/O is also compared. The test result is shown
in Figure 8.
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Figure 8: I/O number TSCSS vs NFSv4.

From Figure 8 it can be seen that the number of I/O increases by 22.2% and 12.5% respectively
at two situations of sequential write and sequential read. Compared with the results in Figure 7, it
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can be seen that the decline in performance is more serious than the increase of the number of I/O,
because the decline of performance is not all caused by the rise of I/O number, the reason resulting in
performance degradation also includes network transmission overhead, encryption and decryption, data
integrity verification, etc..

In actual access, in order to optimize performance, TSCSS provides caching mechanism to reduce the
number of I/O. This can improve the performance of small file read and write to a large extent. For
example, when TSCSS system accesses a file once again, its contents have been in memory, so access
speed will improve greatly.

5. Analysis and comparison between TSCSS and related works

CFS [2] is one of the earliest encrypted file systems. It is a virtual encrypted file system. Before data
is written to disk, file name and file data are encrypted. CFS encrypts and decrypts files in the entire
directory with one key. Its access control rule is sharing keys to other users. This determines that CFS
only permits coarse granularity share on a machine, and does not distinguish between read permission
and read/ write permission.

Cryptfs [21], Cepheus [5] and TCFS [4] are famous varieties of CFS. Cryptfs gives file group symmetric
key to allow group file sharing. Cepheus introduces lock box to realize sharing management between
user groups, relies on a trusted key server to store user group member information to realize identity
authentication, also depends on storage server to realize access control. It is the first secure file system
which proposed lazy privilege revocation. Cepheus has realized integrity protection. TCFS awards each
user a master key to protect user’s file key. The three file systems are all unable to distinguish between
read sharing and read-write sharing.

Tahoe [18] is a distributed secure file system, including access control, encryption, integrity check
and other functions. And it uses erasure code to achieve fault tolerance. It is deployed in a commercial
backup service. Round-Trip Privacy with NFSv4 [14] is an improvement on NFSv4 which has modified the
RPCSEC-GSS protocol in NFSv4 and made files on file server to be stored in cipher text. But RTP-NFSv4
does not perform integrity protection for files and its key mechanism is too simple. Farsite [1] is a secure
file system, providing a centralized file server function, but in fact it is composed of multiple distributed
untrusted computers. Farsite provides file availability and reliability by multi-copy mechanism, ensures
the confidentiality of file contents by encryption, and ensures the integrity of file and directory data by a
protocol which can prevent Byzantine mistake. The support of access permission control mechanism of
Tahoe, RTP-NFSv4 and Farsite for frequent file share and permission revocation of large number of users
is not good.

CryptosFS [12] and SNAD [11] use public and private key encryption system to achieve access control,
and verify user’s access permissions by file server, therefore they need to fully trust file server. CryptosFS
users need to use asymmetric key to decrypt corresponding symmetric key from metadata file, and then
use symmetric key to decrypt data file, so its key management mechanism is out of band.

NCryptfs [19] is a secure file system implemented in kernel state, it can support multi-user file sharing
on a machine, but cannot support large-scale file sharing.

SiRiUS [7] is a stacked file system providing security mechanism for existing file systems. It uses a
large number of asymmetric keys to perform permission control, and a specialized public and private
key server is also needed. In SiRiUS, the file is encrypted entirely, integrity check is calculating hash for
the entire file, when revoking privileges re-encryption is performed immediately, performance overhead
is larger. Plutus [9] also uses public and private key encryption system, providing group share and
lazy revocation, random access, file name encryption and other functions. It uses the key management
mechanism of sharing file keys between users. When other users want to access files, they need to ask file
owner for key. This mechanism requires file owner to be online in real time. Like SiRiUS, CRUST [6] is also
a stacked file system, but it does not use public and private key encryption system, and symmetric key
is used for all encryption and decryption. It relies on some public data structures to achieve distributed
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key management, key rollback, permission revocation and so on. So with the increase of user number,
information to be maintained will increase by square order, it is not suitable in the environment of large
number of users. CRUST and Plutus all use Merkle tree [10] to ensure file integrity.

Compared with above works, TSCSS has obvious advantages. TSCSS is a secure cloud storage system
with stacked encryption file system; it can be mounted on existing file systems. TSCSS has a set of its own
permission control mechanisms; it does not depend on cloud storage server. Apart from x509 identity
authentication, all the encryption and decryption use symmetric keys. Compared with public and private
key encryption system, the overhead is less. TSCSS encrypts file by block, uses a hierarchical key manage-
ment mechanism and in-band key distribution mechanism, users do not maintain any key information.
This makes the key management safer and more efficient. TSCSS uses lazy permission revocation mech-
anism which is more efficient than existing implementations, without storing key historical information,
saving time and space. TSCSS adopts improved SBT Hash tree and cache mechanism, making integrity
check quicker and providing probability for concurrent write.

6. Conclusion

The secure cloud storage system architecture proposed in this paper makes users ensure data security
in untrusted network environment and cloud storage environment. By introducing trusted control server,
the dependence on cloud storage server is eliminated; it is suitable for more and more popular cloud
storage application scenes. At the same time, because the logic is simple, the control server has higher
performance, flexibility, and extendibility.

The specific realization of the secure cloud storage system architecture proposed in this paper-TSCSS
provides security protection for the users of existing cloud storage systems, including privacy protection,
integrity protection, file access control and so on. At the same time, TSCSS supports random access and
concurrent access better. The results of TSCSS performance test show that the performance degradation
caused by mounting TSCSS on NFSv4 cluster is less than 5%. Thus, TSCSS achieves powerful and easy-
to-use data security protection with smaller and acceptable additional performance overhead.
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