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Abstract 

In the present paper, we  investigate starlikeness of certain operators which are defined here by means 

of convolution. Also, by using the technique of finite Blaschke product (see [3,8]), we prove the 

sharpness of those results which were obtained earlier by authors in [1]. 
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1. Introduction 

Let 𝐻 = 𝐻 𝔻 be the class of all analytic functions in the unit disk 𝔻 = {z ∊ ℂ:  𝑧 < 1}. For 𝑛 ∈ ℕlet 

𝒜𝑛  denote the subclass of 𝐻 containing the functions 𝑓(𝑧) of the form 

𝑓 𝑧 = 𝑧 + 𝑎𝑛+1𝑧
𝑛+1 + 𝑎𝑛+2𝑧

𝑛+2 + ⋯ ;  𝑧 ∈ 𝔻  

with 𝒜1 = 𝒜. A function 𝑓 ∈ 𝒜 is said to be starlike if it is univalent and 𝑓(𝔻) is starlike domain 

(withrespect to the origin). The class of starlike functions is denoted by 𝑆∗. A special subclass of 𝑆∗ is 

the class of starlike functions of order 𝛾 with 0 ≤ 𝛾 < 1, given by 

𝑆∗ 𝛾 =  𝑓 ∈ 𝒜: 𝑅𝑒 
𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
 > 𝛾, 𝑧 ∈ 𝔻 . 

It is well known that 𝑆∗ 0 = 𝑆∗,(see [2]). 

For functions 𝑓, 𝑔 ∈ 𝐻 given by 

𝑓 𝑧 =  𝑎𝑘

∞

𝑘=0

𝑧𝑘 , 𝑔 𝑧 =  𝑏𝑘

∞

𝑘=0

𝑧𝑘  

the Hadamard product (or convolution)of 𝑓, 𝑔 in 𝔻 is defined by  
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 𝑓 ∗ 𝑔  𝑧 =  𝑎𝑘

∞

𝑘=0

𝑏𝑘𝑧𝑘 =  𝑔 ∗ 𝑓  𝑧 . 

For 𝑛 ∈ ℕ, 0 < 𝛼 ≤ 1, 0 ≤ 𝜇 < 𝛼𝑛 and 𝜆 > 0 let 𝑈𝑛 𝛼, 𝜇, 𝜆  be defined as follows 

𝑈𝑛 𝛼, 𝜇, 𝜆 =  𝑓 ∈ 𝒜𝑛 :   1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 − 1 < 𝜆, 𝑧 ∈ 𝔻  

with 𝑈1 𝛼, 𝜇, 𝜆 = 𝑈 𝛼, 𝜇, 𝜆 . The special case of this class has been studied in [5]. 

For 𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆  we define the operator 𝐺(𝑧) by 

𝐺 𝑧 = 𝑧  
1

 
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ(𝑎; 𝑐; 𝑧)
 

1

𝜇

 1  

where 𝑎, 𝑐 ∈ ℂ, 𝑐 ≠ 0, −1, −2, ⋯ ,  
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ(𝑎; 𝑐; 𝑧) ≠ 0 and  

Φ 𝑎; 𝑐; 𝑧 =  
(𝑎)𝑘

(𝑐)𝑘

∞
𝑘=0 𝑧𝑘 , (𝑧 ∈ 𝔻)                                               (2) 

with (𝑎)𝑘 = 𝑎(𝑎 + 1)(𝑎 + 2) ⋯ (𝑎 + 𝑘 − 1) and (𝑎)0 = 1. Also, let 

𝐻 𝑧 = 𝑧  
1

 
𝑧

𝑓 𝑧 
 
𝜇
∗Ψ 𝑚 ,𝛾 ,𝑧 

 

1

𝜇

, (𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 )                                             (3)  

where 𝑚 < 1, 𝛾 ≠ 0, 𝑅𝑒𝛾 ≥ 0,  
𝑧

𝑓 𝑧 
 
𝜇

∗ Ψ 𝑚, 𝛾, 𝑧 ≠ 0 and 

Ψ 𝑚, 𝛾, 𝑧 = 1 +  1 − 𝑚  
𝑧𝑘

𝑘𝛾+1

∞
𝑘=1 ,  𝑧 ∈ 𝔻 .                                              (4) 

In [1] certain sufficient conditions in terms of 𝛼, 𝜇, 𝜆, 𝛾 and 𝑛 were obtained, so that functions in 

𝑈𝑛 𝛼, 𝜇, 𝜆  belong to 𝑆∗ 𝛾 . Similarly, other conditions for these parameters were obtained such that 

the analytic functions 𝐺(𝑧) and 𝐻(𝑧) be in 𝑆∗. In all these cases, the sharpness part was not proved. In 

this paper, by using the same techniques as in [8] we prove the sharpness part. Also, we give another 

proof for the starlikeness of  𝐺(𝑧) and 𝐻(𝑧).In order to prove our results we need the following 

lemmas. 

Lemma 1.1. ([3])Let 𝜑, 𝜓 ∈ ℝ. There exists a sequence {𝑏𝑛} of finite Blaschke products such that 

𝑏𝑛 0 = 0, 𝑏𝑛 1 = 𝑒𝑖𝜑  and 𝑏𝑛 𝑧 ⟶ 𝑒𝑖𝜓𝑧 uniformly on compact subsets of 𝔻. 

Here a finite Blaschke product is a function as the type 

𝑏 𝑧 = 𝑒𝑖𝛾  
𝑧 − 𝑎𝑘

1 − 𝑎𝑘   𝑧

𝑛

𝑘=1

,   𝑎𝑘 ⊆ 𝔻, 𝛾 ∈ ℝ . 

Lemma 1.2. ([7]) If 𝑓 and 𝑔 are analytic and 𝐹 and 𝐺 are convex (univalent) such that 𝑓 ≺ 𝐹 and 

𝑔 ≺ 𝐺, then 𝑓 ∗ 𝑔 ≺ 𝐹 ∗ 𝐺, where ≺ denotes the usual subordination, (see [2]). 

Lemma 1.3. ([6]) Let 𝑐 ∈ ℂ with 𝑅𝑒 𝑐 < 1 and 𝐹𝑐 𝑧 =  
1−𝑐

𝑛−𝑐

∞
𝑛=1 𝑧𝑛−1 ∈ 𝐻. Then  

𝑠𝑢𝑝
𝑧∈𝔻

|𝑓 𝑧 ∗ 𝐹𝑐(𝑧)| ≤ 𝑠𝑢𝑝
𝑧∈𝔻

 𝑓 𝑧  ,  𝑓 ∈ 𝐻 . 
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2.Main Results 

We begin with the following lemma that will be used in the next theorems. 

Lemma 2.1. For fixed real numbers 𝑛 ∈ ℕ, 0 < 𝛼 ≤ 1, 0 < 𝜇 < 𝛼𝑛 and 𝜆 > 0 let 𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 . 

There exists an analytic function 𝑤(𝑧) in 𝔻 where  𝑤 𝑧  < 1 and 𝑤 0 = 𝑤 ′ 0 = ⋯ =

𝑤 𝑛−1  0 = 0, such that  

𝑧𝑓 ′ 𝑧 

𝑓 𝑧 
=

1

𝛼
 

1 + 𝜆𝑤 𝑧 

1 −
𝜆𝜇

𝛼
 

𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

+ 𝛼 − 1 ,  𝑧 ∈ 𝔻 . 

Proof. For 𝑓 𝑧 = 𝑧 + 𝑎𝑛+1𝑧
𝑛+1 + ⋯ ∈ 𝒜𝑛 , we can write 

 
𝑧

𝑓 𝑧 
 
𝜇+1

=
1

1 + (𝜇 + 1)𝑎𝑛+1𝑧
𝑛 + ⋯

= 1 −  𝜇 + 1 𝑎𝑛+1𝑧
𝑛 + ⋯. 

So, we obtain 

 1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 

=  1 −  𝜇 + 1 𝑎𝑛+1𝑧
𝑛 + ⋯  1 + (1 + 𝛼𝑛)𝑎𝑛+1𝑧

𝑛 + ⋯  

= 1 +  𝛼𝑛 − 𝜇 𝑎𝑛+1𝑧
𝑛 + ⋯ 

=  1 + 𝜆  
𝛼𝑛 − 𝜇

𝜆
𝑎𝑛+1𝑧

𝑛 + ⋯ . 

Therefore, there exists an analytic function 𝑤(𝑧) in 𝔻 with 𝑤 𝑧  < 1 and 𝑤 0 = 𝑤 ′ 0 = ⋯ =

𝑤 𝑛−1  0 = 0, such that  

 1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 = 1 + 𝜆𝑤 𝑧 .                                (5) 

Let 𝑝 𝑧 =  
𝑧

𝑓 𝑧 
 
𝜇

. Then 𝑝(𝑧) is analytic in 𝔻 and 𝑝 0 = 1. Differentiating𝑝(𝑧) we obtain 

𝑝 𝑧 −
𝛼

𝜇
𝑧𝑝′ 𝑧 = 1 + 𝜆𝑤 𝑧 .                                                           (6) 

Solving the first order differential equation (6) we conclude that  

𝑝 𝑧 = 1 −
𝜆𝜇

𝛼
 

𝑤(𝑡𝑧)

𝑡
𝜇

𝛼
+1

 𝑑𝑡
1

0

 

or equally  

 
𝑓(𝑧)

𝑧
 
𝜇

=
1

1−
𝜆𝜇

𝛼
 

𝑤 (𝑡𝑧 )

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

.                                                                (7) 

Using (5) and (7) we obtain the required result. This completes the proof.∎ 

Now, we restate the sharp version ofTheorem 2.1 in [1] and prove the sharpness part. 
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Theorem 2.2 [1. Theorem 2.1]. Let 𝑛 ∈ ℕ, 𝑛 ≥ 2,
𝑛+1

2𝑛
< 𝛼 ≤ 1 and 𝑛 1 − 𝛼 < 𝜇 < 𝛼𝑛. If 𝑓 ∈

𝑈𝑛 𝛼, 𝜇, 𝜆 , then 𝑓 ∈ 𝑆∗ 𝛾  for 0 < 𝜆 ≤ 𝜆 𝛼, 𝜇, 𝑛, 𝛾 , where  

𝜆 𝛼, 𝜇, 𝑛, 𝛾 =

 
 
 

 
 (𝛼𝑛 − 𝜇) 2𝛼 1 − 𝛾 − 1

 (𝛼𝑛 − 𝜇)2 + 𝜇2(2𝛼 1 − 𝛾 − 1)
;      0 ≤ 𝛾 ≤

𝜇 − 𝑛(1 − 𝛼)

𝜇(1 + 𝑛)

(𝛼𝑛 − 𝜇)(1 − 𝛾)

𝑛 + 𝜇(𝛾 − 1)
;                                      

𝜇 − 𝑛(1 − 𝛼)

𝜇(1 + 𝑛)
< 𝛾 < 1,

  

also, all bounds for 𝜆 are the best possible. 

Proof. Suppose that 𝑓 𝑧 = 𝑧 + 𝑎𝑛+1𝑧
𝑛+1 + ⋯ ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 . By Lemma 2.1 there exists an analytic 

function 𝑤(𝑧) in 𝔻 with  𝑤 𝑧  < 1 and 𝑤 0 = 𝑤 ′ 0 = ⋯ = 𝑤 𝑛−1  0 = 0 such that 

𝑧𝑓′(𝑧)

𝑓(𝑧)
=

1

𝛼
 

1 + 𝜆𝑤(𝑧)

1 −
𝜆𝜇

𝛼
 

𝑤(𝑡𝑧)

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

+ 𝛼 − 1 , 

and therefore  

1

1 − 𝛾
 
𝑧𝑓′(𝑧)

𝑓(𝑧)
− 𝛾 =

  𝛼 − 1 − 𝛼𝛾  𝛼 − 𝜆𝜇  
𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0
 + 𝛼(1 + 𝜆𝑤 𝑧 )

𝛼(1 − 𝛾)  𝛼 − 𝜆𝜇  
𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0
 

. 

Now, we have to show that 𝑅𝑒  
𝑧𝑓 ′  𝑧 

𝑓 𝑧 
 > 𝛾. To do this, according to a well-known result in [6]and the 

last equation, it is sufficient to show that  

  𝛼 − 1 − 𝛼𝛾  𝛼 − 𝜆𝜇  
𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0
 + 𝛼(1 + 𝜆𝑤 𝑧 )

𝛼(1 − 𝛾)  𝛼 − 𝜆𝜇  
𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0
 

≠ −𝑖𝑇,  𝑇 ∈ ℝ , 

which is equivalent to 

𝜆  

𝑤 𝑧 + 𝜇  
𝛼𝛾 +1−𝛼

𝛼
− 𝑇(1 − 𝛾)𝑖  

𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

𝛼(1 − 𝛾)(1 + 𝑇𝑖)
 ≠ −1,  𝑇 ∈ ℝ . 

Let  

𝑀 = 𝑠𝑢𝑝
𝑧∈𝔻,𝑤∈𝐵𝑛 ,𝑇∈ℝ

 

𝑤 𝑧 + 𝜇  
𝛼𝛾 +1−𝛼

𝛼
− 𝑇(1 − 𝛾)𝑖  

𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

𝛼(1 − 𝛾)(1 + 𝑇𝑖)
 , 

with 

𝐵𝑛 =  𝑤 ∈ 𝐻 𝔻 :  𝑤 𝑧  < 1 𝑎𝑛𝑑 𝑤 𝑘  0 = 0, 𝑘 = 0,1 , 2, ⋯ , 𝑛 − 1  . 
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Then 𝑓 ∈ 𝑆∗ 𝛾 if 𝜆𝑀 ≤ 1. This shows that it is sufficient to find 𝑀. By the general Schwarz lemma 

we have |𝑤(𝑧)| ≤ |𝑧|𝑛 , so we see that  

𝑀 ≤ 𝑠𝑢𝑝
𝑇∈ℝ

 
1+

𝜇𝛼

𝑛𝛼 −𝜇
  

𝛼𝛾 +1−𝛼

𝛼
 

2
+ 1−𝛾 2𝑇2

𝛼 1−𝛾  1+𝑇2
 .                                                        (8) 

In fact, in the sequel, we prove that equality holds in the above relation, hence the sharpness is 

established. By Lemma 1.1 given 𝜓, 𝜑 ∈ ℝ there exists a sequence of finite Blaschke products 

{𝑤𝑘(𝑧)} such that 𝑤𝑘 1 = 𝑒𝑖𝜓  and 𝑤𝑘 𝑧 ⟶ 𝑒𝑖𝜑𝑧𝑛uniformly on compact subsets of 𝔻. Therefore, 

we have the following relation for each 𝑇 ∈ ℝ: 

𝑠𝑢𝑝
𝑧∈𝔻,𝑤∈𝐵𝑛

 

𝑤 𝑧 + 𝜇  
𝛼𝛾 +1−𝛼

𝛼
− 𝑇(1 − 𝛾)𝑖  

𝑤 𝑡𝑧 

𝑡
𝜇
𝛼

+1
 𝑑𝑡

1

0

𝛼(1 − 𝛾)(1 + 𝑇𝑖)
  

≤ 𝑠𝑢𝑝
𝜓 ,𝜑∈ℝ

 𝑒𝑖𝜓 +
𝜇𝛼

𝑛𝛼 −𝜇
  

𝛼𝛾 +1−𝛼

𝛼
 

2

+  1 − 𝛾 2𝑇2𝑒𝑖 𝜑+𝜃1  

𝛼 1 − 𝛾  1 + 𝑇2
, 

where 𝜃1 = 𝐴𝑟𝑔 
𝛼𝛾 +1−𝛼

𝛼
− 𝑇(1 − 𝛾)𝑖 . Fixing 𝜑 and choosing 𝜓 = 𝜑 + 𝜃1, we get the required 

equality in (8). Thus the bound for 𝑀 is sharp as a function of 𝑇. ∎ 

By taking 𝛾 = 0 in Theorem 2.2 we obtain the following sharp result.   

Corollary 2.3. Let 𝑛 ∈ ℕ, 𝑛 ≥ 2,
𝑛+1

2𝑛
< 𝛼 ≤ 1 and 𝑛 1 − 𝛼 < 𝜇 < 𝛼𝑛. If 𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 , then 

𝑓 ∈ 𝑆∗ for 0 < 𝜆 ≤
 𝛼𝑛−𝜇  2𝛼−1

  𝛼𝑛−𝜇 2+𝜇 2 2𝛼−1 
, and the bound for𝜆 is sharp. 

Theorem 2.4.Let 𝑛 ∈ ℕ, 𝑛 ≥ 2,
𝑛+1

2𝑛
< 𝛼 ≤ 1 and 𝑛 1 − 𝛼 < 𝜇 < 𝛼𝑛. Also, let 𝜑 𝑧 = 1 + 𝑏1𝑧 +

𝑏2𝑧
2 + ⋯ with 𝑏𝑛 ≠ 0 be convex (univalent) in 𝔻. If 𝑓 𝑧 = 𝑧 + 𝑎𝑛+1𝑧

𝑛+1 + ⋯ ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆  and 

Φ(𝑎; 𝑐; 𝑧) defined by (2) satisfy the conditions  

 
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 ≠ 0, Φ 𝑎; 𝑐; 𝑧 ≺  𝜑 𝑧 ,  𝑧 ∈ 𝔻  

then the function 𝐺(𝑧)defined by (1) has the following properties: 

 𝐺 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 𝑏𝑛   , 

 𝐺 ∈ 𝑆∗ for 0 < 𝜆 ≤
 𝛼𝑛−𝜇  2𝛼−1

 𝑏𝑛    𝛼𝑛−𝜇 2+𝜇2 2𝛼−1 
. 

In the case 2 the bound for 𝜆 is sharp. 

Proof. The definition of 𝐺 shows that  

 
𝑧

𝐺 𝑧 
 
𝜇

=  
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 . 

Also, a simple calculation gives  
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𝑧

𝜇
  

𝑧

𝐺 𝑧 
 
𝜇

 
′

=  
𝑧

𝐺 𝑧 
 
𝜇

−  
𝑧

𝐺 𝑧 
 
𝜇+1

𝐺 ′ 𝑧 . 

Therefore, we obtain 

 1 − 𝛼  
𝑧

𝐺 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝐺 𝑧 
 
𝜇+1

𝐺 ′ 𝑧 =  
𝑧

𝐺 𝑧 
 
𝜇

−
𝛼𝑧

𝜇
  

𝑧

𝐺 𝑧 
 
𝜇

 
′

 

=  
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 −
𝛼

𝜇
  𝑧   

𝑧

𝑓 𝑧 
 
𝜇

 
′

 ∗ Φ 𝑎; 𝑐; 𝑧   

=  
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 + 𝛼   
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧  ∗ Φ 𝑎; 𝑐; 𝑧  

=   1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧  ∗ Φ 𝑎; 𝑐; 𝑧 . 

Since 1 + 𝜆𝑧𝑛  and 𝜑(𝑧) are convex in 𝔻 and by the assumption (also, see relation (5) ) 

 1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 ≺ 1 + 𝜆𝑧𝑛 , Φ 𝑎; 𝑐; 𝑧 ≺  𝜑 𝑧  

so, by Lemma 1.2, we deduce that  

 1 − 𝛼  
𝑧

𝐺 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝐺 𝑧 
 
𝜇+1

𝐺 ′ 𝑧 ≺ 1 + 𝜆𝑏𝑛𝑧𝑛 . 

Case 1 now follows from the last subordination, while 2 is a simple consequence of Corollary 2.3.                  

∎ 

It is well-known that if 𝑎 > 0 and 𝑐 ≥ max 2, 𝑎 , thenΦ(𝑎; 𝑐; 𝑧) defined by (2) is convex in 𝔻, (see 

[4]). So, if we take 𝜑 𝑧 = Φ(𝑎; 𝑐; 𝑧) in Theorem 2.4, we obtain the following sharp result. 

Corollary 2.5.Let 𝑛 ∈ ℕ, 𝑛 ≥ 2, 𝑎 > 0 and 𝑐 ≥ max 2, 𝑎 . Also, let 
𝑛+1

2𝑛
< 𝛼 ≤ 1 and 𝑛 1 − 𝛼 <

𝜇 < 𝛼𝑛.If 𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆  and Φ(𝑎; 𝑐; 𝑧) defined by (2) satisfy the condition 
𝑧

𝑓 𝑧 
 
𝜇

∗ Φ 𝑎; 𝑐; 𝑧 ≠ 0 

for all 𝑧 ∈ 𝔻, then the function 𝐺(𝑧) defined by (1) has the following properties: 

 𝐺 ∈ 𝑈𝑛  𝛼, 𝜇,
𝜆  𝑎 𝑛  

  𝑐 𝑛  
 , 

 𝐺 ∈ 𝑆∗ where0 < 𝜆 ≤
  𝑐 𝑛   𝛼𝑛−𝜇  2𝛼−1

  𝑎 𝑛    𝛼𝑛−𝜇 2+𝜇 2 2𝛼−1 
. 

Also, the bound for 𝜆 is sharp. 

Theorem 2.6. For 𝑛 ∈ ℕ, 𝑛 ≥ 2,
𝑛+1

2𝑛
< 𝛼 ≤ 1 and 𝑛 1 − 𝛼 < 𝜇 < 𝛼𝑛 let𝑓 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆 . If 

𝑚 < 1, 𝑅𝑒𝛾 > 0 andΨ(𝑚, 𝛾, 𝑧) defined by (4) satisfy the condition  
𝑧

𝑓 𝑧 
 
𝜇

∗ Ψ 𝑚, 𝛾, 𝑧 ≠ 0 for all 

𝑧 ∈ 𝔻, then then the function 𝐻(𝑧) given by (3) has the following properties: 

 𝐻 ∈ 𝑈𝑛 𝛼, 𝜇, 𝜆(1 − 𝑚) , 

 𝐻 ∈ 𝑆∗ where 0 < 𝜆 ≤
 𝛼𝑛−𝜇  2𝛼−1

(1−𝑚)  𝛼𝑛−𝜇 2+𝜇2 2𝛼−1 
. 
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In the case 2 the bound for 𝜆 is best possible. 

Proof. Using the same steps as in the proof of Theorem 2.4 we obtain  

 1 − 𝛼  
𝑧

𝐻 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝐻 𝑧 
 
𝜇+1

𝐻′ 𝑧 − 1 = 

=   1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧  ∗ Ψ 𝑚, 𝛾, 𝑧 − 1 

=  1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 − 1 ∗  1 +  1 − 𝑚  
𝑧𝑘

𝑘𝛾 +1

∞
𝑘=1   

=  1 − 𝑚   1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 − 1 ∗   
(1 𝛾 )𝑧𝑘−1

𝑘 −  1 − 1 𝛾  

∞

𝑘=1

 . 

Now, by using Lemma 1.3 with 𝑐 = 1 −
1

𝛾
, we conclude that   

  1 − 𝛼  
𝑧

𝐻 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝐻 𝑧 
 
𝜇+1

𝐻′ 𝑧 − 1  

≤ (1 − 𝑚)𝑠𝑢𝑝
𝑧∈𝔻

  1 − 𝛼  
𝑧

𝑓 𝑧 
 
𝜇

+ 𝛼  
𝑧

𝑓 𝑧 
 
𝜇+1

𝑓 ′ 𝑧 − 1  

≤  1 − 𝑚 𝜆. 

This proves the case 1. Case 2 follows simply from Corollary 2.3.∎ 
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