STARLIKENESS AND SHARPNESS RESULTS OF SPECIAL SUBCLASS OF ANALYTIC FUNCTIONS

P. ARJOMANDINIA, A. EBADIAN AND R. AGHALARY
Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran
p.arjomandinia@urmia.ac.ir
a.ebadian@urmia.ac.ir r.aghalary@urmia.ac.ir

Article history:

Received October 2013
Accepted December 2013
Available online December 2013

Abstract

In the present paper, we investigate starlikeness of certain operators which are defined here by means of convolution. Also, by using the technique of finite Blaschke product (see [3,8]), we prove the sharpness of those results which were obtained earlier by authors in [1].

Keywords and phrases: Starlike function, sharpness, Blaschke product.

1. Introduction

Let $H=H(\mathbb{D})$ be the class of all analytic functions in the unit disk $\mathbb{D}=\{\mathrm{z} \in \mathbb{C}:|z|<l\}$. For $n \in \mathbb{N}$ let \mathcal{A}_{n} denote the subclass of H containing the functions $f(z)$ of the form

$$
f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots ;(z \in \mathbb{D})
$$

with $\mathcal{A}_{l}=\mathcal{A}$. A function $f \in \mathcal{A}$ is said to be starlike if it is univalent and $f(\mathbb{D})$ is starlike domain (withrespect to the origin). The class of starlike functions is denoted by S^{*}. A special subclass of S^{*} is the class of starlike functions of order γ with $0 \leq \gamma<1$, given by

$$
S^{*}(\gamma)=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\gamma, z \in \mathbb{D}\right\} .
$$

It is well known that $S^{*}(0)=S^{*}$,(see [2]).
For functions $f, g \in H$ given by

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}
$$

the Hadamard product (or convolution)of f, g in \mathbb{D} is defined by

$$
(f * g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z)
$$

For $n \in \mathbb{N}, 0<\alpha \leq 1,0 \leq \mu<\alpha n$ and $\lambda>0$ let $U_{n}(\alpha, \mu, \lambda)$ be defined as follows

$$
U_{n}(\alpha, \mu, \lambda)=\left\{f \in \mathcal{A}_{n}:\left|(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)-1\right|<\lambda, z \in \mathbb{D}\right\}
$$

with $U_{l}(\alpha, \mu, \lambda)=U(\alpha, \mu, \lambda)$. The special case of this class has been studied in [5].
For $f \in U_{n}(\alpha, \mu, \lambda)$ we define the operator $G(z)$ by

$$
G(z)=z\left(\frac{1}{\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z)}\right)^{\frac{1}{\mu}}
$$

where $a, c \in \mathbb{C}, c \neq 0,-1,-2, \cdots,\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z) \neq 0$ and

$$
\begin{equation*}
\Phi(a ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k},(z \in \mathbb{D}) \tag{2}
\end{equation*}
$$

with $(a)_{k}=a(a+1)(a+2) \cdots(a+k-1)$ and $(a)_{0}=1$. Also, let

$$
\begin{equation*}
H(z)=z\left(\frac{1}{\left(\frac{z}{f(z)}\right)^{\mu} * \Psi(m, \gamma, z)}\right)^{\frac{l}{\mu}},\left(f \in U_{n}(\alpha, \mu, \lambda)\right) \tag{3}
\end{equation*}
$$

where $m<1, \gamma \neq 0$, Re $\gamma \geq 0,\left(\frac{z}{f(z)}\right)^{\mu} * \Psi(m, \gamma, z) \neq 0$ and

$$
\begin{equation*}
\Psi(m, \gamma, z)=1+(1-m) \sum_{k=1}^{\infty} \frac{z^{k}}{k \gamma+1},(z \in \mathbb{D}) \tag{4}
\end{equation*}
$$

In [1] certain sufficient conditions in terms of $\alpha, \mu, \lambda, \gamma$ and n were obtained, so that functions in $U_{n}(\alpha, \mu, \lambda)$ belong to $S^{*}(\gamma)$. Similarly, other conditions for these parameters were obtained such that the analytic functions $G(z)$ and $H(z)$ be in S^{*}. In all these cases, the sharpness part was not proved. In this paper, by using the same techniques as in [8] we prove the sharpness part. Also, we give another proof for the starlikeness of $G(z)$ and $H(z)$.In order to prove our results we need the following lemmas.

Lemma 1.1. ([3])Let $\varphi, \psi \in \mathbb{R}$. There exists a sequence $\left\{b_{n}\right\}$ of finite Blaschke products such that $b_{n}(0)=0, b_{n}(1)=e^{i \varphi}$ and $b_{n}(z) \longrightarrow e^{i \psi} z$ uniformly on compact subsets of \mathbb{D}.

Here a finite Blaschke product is a function as the type

$$
b(z)=e^{i \gamma} \prod_{k=1}^{n} \frac{z-a_{k}}{l-\overline{a_{k}} z},\left(\left\{a_{k}\right\} \subseteq \mathbb{D}, \gamma \in \mathbb{R}\right)
$$

Lemma 1.2. ([7]) If f and g are analytic and F and G are convex (univalent) such that $f<F$ and $g \prec G$, then $f * g \prec F * G$, where $<$ denotes the usual subordination, (see [2]).

Lemma 1.3. ([6]) Let $c \in \mathbb{C}$ with $\operatorname{Re} c<1$ and $F_{c}(z)=\sum_{n=1}^{\infty} \frac{1-c}{n-c} z^{n-1} \in H$. Then

$$
\sup _{z \in \mathbb{D}}\left|f(z) * F_{c}(z)\right| \leq \sup _{z \in \mathbb{D}}|f(z)|,(f \in H) .
$$

2.Main Results

We begin with the following lemma that will be used in the next theorems.
Lemma 2.1. For fixed real numbers $n \in \mathbb{N}, 0<\alpha \leq 1,0<\mu<\alpha n$ and $\lambda>0$ let $f \in U_{n}(\alpha, \mu, \lambda)$. There exists an analytic function $w(z)$ in \mathbb{D} where $|w(z)|<1$ and $w(0)=w^{\prime}(0)=\cdots=$ $w^{(n-1)}(0)=0$, such that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{\alpha}\left(\frac{1+\lambda w(z)}{1-\frac{\lambda \mu}{\alpha} \int_{0}^{l} \frac{w(t z)}{t^{\frac{\mu}{\alpha}+1}} d t}+\alpha-1\right),(z \in \mathbb{D})
$$

Proof. For $f(z)=z+a_{n+1} z^{n+1}+\cdots \in \mathcal{A}_{n}$, we can write

$$
\left(\frac{z}{f(z)}\right)^{\mu+1}=\frac{1}{1+(\mu+l) a_{n+1} z^{n}+\cdots}=1-(\mu+1) a_{n+1} z^{n}+\cdots
$$

So, we obtain

$$
\begin{gathered}
(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z) \\
=\left(1-(\mu+1) a_{n+1} z^{n}+\cdots\right)\left(1+(1+\alpha n) a_{n+1} z^{n}+\cdots\right) \\
=1+(\alpha n-\mu) a_{n+1} z^{n}+\cdots \\
=1+\lambda\left(\frac{\alpha n-\mu}{\lambda} a_{n+1} z^{n}+\cdots\right)
\end{gathered}
$$

Therefore, there exists an analytic function $w(z)$ in \mathbb{D} with $|w(z)|<1$ and $w(0)=w^{\prime}(0)=\cdots=$ $w^{(n-1)}(0)=0$, such that

$$
\begin{equation*}
(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)=1+\lambda w(z) \tag{5}
\end{equation*}
$$

Let $p(z)=\left(\frac{z}{f(z)}\right)^{\mu}$. Then $p(z)$ is analytic in \mathbb{D} and $p(0)=1$. Differentiating $p(z)$ we obtain

$$
\begin{equation*}
p(z)-\frac{\alpha}{\mu} z p^{\prime}(z)=1+\lambda w(z) \tag{6}
\end{equation*}
$$

Solving the first order differential equation (6) we conclude that

$$
p(z)=1-\frac{\lambda \mu}{\alpha} \int_{0}^{l} \frac{w(t z)}{t^{\frac{\mu}{\alpha}+1}} d t
$$

or equally

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{\mu}=\frac{1}{1-\frac{\lambda \mu}{\alpha} \int_{O}^{l w(t z)}} \frac{{ }_{t}^{\frac{\mu}{\alpha}+l}}{} d t . \tag{7}
\end{equation*}
$$

Using (5) and (7) we obtain the required result. This completes the proof.
Now, we restate the sharp version ofTheorem 2.1 in [1] and prove the sharpness part.

Theorem 2.2 [1. Theorem 2.1]. Let $n \in \mathbb{N}, n \geq 2, \frac{n+1}{2 n}<\alpha \leq 1$ and $n(1-\alpha)<\mu<\alpha n$. If $f \in$ $U_{n}(\alpha, \mu, \lambda)$, then $f \in S^{*}(\gamma)$ for $0<\lambda \leq \lambda(\alpha, \mu, n, \gamma)$, where

$$
\lambda(\alpha, \mu, n, \gamma)= \begin{cases}\frac{(\alpha n-\mu) \sqrt{2 \alpha(1-\gamma)-1}}{\sqrt{(\alpha n-\mu)^{2}+\mu^{2}(2 \alpha(1-\gamma)-1)}} ; & 0 \leq \gamma \leq \frac{\mu-n(1-\alpha)}{\mu(1+n)} \\ \frac{(\alpha n-\mu)(1-\gamma)}{n+\mu(\gamma-1)} ; & \frac{\mu-n(1-\alpha)}{\mu(1+n)}<\gamma<1\end{cases}
$$

also, all bounds for λ are the best possible.
Proof. Suppose that $f(z)=z+a_{n+1} z^{n+1}+\cdots \in U_{n}(\alpha, \mu, \lambda)$. By Lemma 2.1 there exists an analytic function $w(z)$ in \mathbb{D} with $|w(z)|<1$ and $w(0)=w^{\prime}(0)=\cdots=w^{(n-1)}(0)=0$ such that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{\alpha}\left(\frac{1+\lambda w(z)}{1-\frac{\lambda \mu}{\alpha} \int_{0}^{l} \frac{1(t z)}{t^{\frac{\alpha}{\alpha}+l}} d t}+\alpha-1\right)
$$

and therefore

$$
\frac{1}{l-\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-\gamma\right)=\frac{((\alpha-l)-\alpha \gamma)\left(\alpha-\lambda \mu \int_{0}^{l} \frac{w(t z)}{t^{\frac{\mu}{\alpha}+l}} d t\right)+\alpha(l+\lambda w(z))}{\alpha(l-\gamma)\left(\alpha-\lambda \mu \int_{0}^{1} \frac{w(t z)}{t^{\frac{\mu}{\alpha}+l}} d t\right)}
$$

Now, we have to show that $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\gamma$. To do this, according to a well-known result in [6]and the last equation, it is sufficient to show that

$$
\frac{((\alpha-l)-\alpha \gamma)\left(\alpha-\lambda \mu \int_{0}^{l} \frac{w(t z)}{t^{\frac{\alpha}{\alpha}}+1} d t\right)+\alpha(l+\lambda w(z))}{\alpha(l-\gamma)\left(\alpha-\lambda \mu \int_{0}^{l} \frac{w(t z)}{t^{\alpha}+l} d t\right)} \neq-i T,(T \in \mathbb{R})
$$

which is equivalent to

$$
\lambda\left(\frac{w(z)+\mu\left(\frac{\alpha \gamma+l-\alpha}{\alpha}-T(l-\gamma) i\right) \int_{0}^{l} \frac{w(t z)}{t^{\frac{1}{\alpha}+l}} d t}{\alpha(l-\gamma)(l+T i)}\right) \neq-1,(T \in \mathbb{R}) .
$$

Let

$$
M=\sup _{z \in \mathbb{D}, w \in B_{n}, T \in \mathbb{R}}\left|\frac{w(z)+\mu\left(\frac{\alpha \gamma+l-\alpha}{\alpha}-T(l-\gamma) i\right) \int_{0}^{l} \frac{w(t z)}{\frac{\underline{\alpha}}{\alpha}+l} d t}{\alpha(l-\gamma)(l+T i)}\right|,
$$

with

$$
B_{n}=\left\{w \in H(\mathbb{D}):|w(z)|<1 \text { and } w^{(k)}(0)=0, k=0,1,2, \cdots, n-1\right\} .
$$

Then $f \in S^{*}(\gamma)$ if $\lambda M \leq 1$. This shows that it is sufficient to find M. By the general Schwarz lemma we have $|w(z)| \leq|z|^{n}$, so we see that

$$
\begin{equation*}
M \leq \sup _{T \in \mathbb{R}}\left\{\frac{1+\frac{\mu \alpha}{n \alpha-\mu} \sqrt{\left(\frac{\alpha \gamma+1-\alpha}{\alpha}\right)^{2}+(1-\gamma)^{2} T^{2}}}{\alpha(1-\gamma) \sqrt{1+T^{2}}}\right\} \tag{8}
\end{equation*}
$$

In fact, in the sequel, we prove that equality holds in the above relation, hence the sharpness is established. By Lemma 1.1 given $\psi, \varphi \in \mathbb{R}$ there exists a sequence of finite Blaschke products $\left\{w_{k}(z)\right\}$ such that $w_{k}(1)=e^{i \psi}$ and $w_{k}(z) \longrightarrow e^{i \varphi} z^{n}$ uniformly on compact subsets of \mathbb{D}. Therefore, we have the following relation for each $T \in \mathbb{R}$:

$$
\begin{aligned}
& \sup _{z \in \mathbb{D}, w \in B_{n}}\left|\frac{\left\lvert\, w(z)+\mu\left(\frac{\alpha \gamma+1-\alpha}{\alpha}-T(1-\gamma) i\right) \int_{0}^{l} \frac{w(t z)}{t^{\frac{\mu}{\alpha}+1}} d t\right.}{\alpha(1-\gamma)(1+T i)}\right| \\
& \leq \sup _{\psi, \varphi \in \mathbb{R}} \frac{\left|e^{i \psi}+\frac{\mu \alpha}{n \alpha-\mu} \sqrt{\left(\frac{\alpha \gamma+1-\alpha}{\alpha}\right)^{2}+(1-\gamma)^{2} T^{2}} e^{i\left(\varphi+\theta_{l}\right)}\right|}{\alpha(1-\gamma) \sqrt{1+T^{2}}}
\end{aligned}
$$

where $\theta_{l}=\operatorname{Arg}\left(\frac{\alpha \gamma+1-\alpha}{\alpha}-T(1-\gamma) i\right)$. Fixing φ and choosing $\psi=\varphi+\theta_{l}$, we get the required equality in (8). Thus the bound for M is sharp as a function of T.

By taking $\gamma=0$ in Theorem 2.2 we obtain the following sharp result.
Corollary 2.3. Let $n \in \mathbb{N}, n \geq 2, \frac{n+1}{2 n}<\alpha \leq 1$ and $n(1-\alpha)<\mu<\alpha n$. If $f \in U_{n}(\alpha, \mu, \lambda)$, then $f \in S^{*}$ for $0<\lambda \leq \frac{(\alpha n-\mu) \sqrt{2 \alpha-1}}{\sqrt{(\alpha n-\mu)^{2}+\mu^{2}(2 \alpha-1)}}$, and the bound for λ is sharp.

Theorem 2.4.Let $n \in \mathbb{N}, n \geq 2, \frac{n+1}{2 n}<\alpha \leq 1$ and $n(1-\alpha)<\mu<\alpha n$. Also, let $\varphi(z)=1+b_{1} z+$ $b_{2} z^{2}+\cdots$ with $b_{n} \neq 0$ be convex (univalent) in \mathbb{D}. If $f(z)=z+a_{n+1} z^{n+1}+\cdots \in U_{n}(\alpha, \mu, \lambda)$ and $\Phi(a ; c ; z)$ defined by (2) satisfy the conditions

$$
\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z) \neq 0, \Phi(a ; c ; z) \prec \varphi(z),(z \in \mathbb{D})
$$

then the function $G(z)$ defined by (1) has the following properties:

- $G \in U_{n}\left(\alpha, \mu, \lambda\left|b_{n}\right|\right)$,
- $G \in S^{*}$ for $0<\lambda \leq \frac{(\alpha n-\mu) \sqrt{2 \alpha-1}}{\left|b_{n}\right| \sqrt{(\alpha n-\mu)^{2}+\mu^{2}(2 \alpha-1)}}$.

In the case 2 the bound for λ is sharp.
Proof. The definition of G shows that

$$
\left(\frac{z}{G(z)}\right)^{\mu}=\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z)
$$

Also, a simple calculation gives

$$
\frac{z}{\mu}\left(\left(\frac{z}{G(z)}\right)^{\mu}\right)^{\prime}=\left(\frac{z}{G(z)}\right)^{\mu}-\left(\frac{z}{G(z)}\right)^{\mu+1} G^{\prime}(z)
$$

Therefore, we obtain

$$
\begin{gathered}
(l-\alpha)\left(\frac{z}{G(z)}\right)^{\mu}+\alpha\left(\frac{z}{G(z)}\right)^{\mu+1} G^{\prime}(z)=\left(\frac{z}{G(z)}\right)^{\mu}-\frac{\alpha z}{\mu}\left(\left(\frac{z}{G(z)}\right)^{\mu}\right)^{\prime} \\
=\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z)-\frac{\alpha}{\mu}\left(\left\{z\left(\left(\frac{z}{f(z)}\right)^{\mu}\right)\right\} * \Phi(a ; c ; z)\right) \\
=\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z)-\alpha\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z)+\alpha\left(\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right) * \Phi(a ; c ; z) \\
=\left((1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right) * \Phi(a ; c ; z) .
\end{gathered}
$$

Since $1+\lambda z^{n}$ and $\varphi(z)$ are convex in \mathbb{D} and by the assumption (also, see relation (5))

$$
(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z) \prec 1+\lambda z^{n}, \Phi(a ; c ; z) \prec \varphi(z)
$$

so, by Lemma 1.2, we deduce that

$$
(1-\alpha)\left(\frac{z}{G(z)}\right)^{\mu}+\alpha\left(\frac{z}{G(z)}\right)^{\mu+1} G^{\prime}(z) \prec 1+\lambda b_{n} z^{n}
$$

Case 1 now follows from the last subordination, while 2 is a simple consequence of Corollary 2.3.

It is well-known that if $a>0$ and $c \geq \max \{2, a\}$, then $\Phi(a ; c ; z)$ defined by (2) is convex in \mathbb{D}, (see [4]). So, if we take $\varphi(z)=\Phi(a ; c ; z)$ in Theorem 2.4, we obtain the following sharp result.

Corollary 2.5.Let $n \in \mathbb{N}, n \geq 2, a>0$ and $c \geq \max \{2, a\}$. Also, let $\frac{n+1}{2 n}<\alpha \leq 1$ and $n(1-\alpha)<$ $\mu<\alpha n$.If $f \in U_{n}(\alpha, \mu, \lambda)$ and $\Phi(a ; c ; z)$ defined by (2) satisfy the condition $\left(\frac{z}{f(z)}\right)^{\mu} * \Phi(a ; c ; z) \neq 0$ for all $z \in \mathbb{D}$, then the function $G(z)$ defined by (1) has the following properties:

- $G \in U_{n}\left(\alpha, \mu, \frac{\lambda\left|(a)_{n}\right|}{\left|(c)_{n}\right|}\right)$,
- $G \in S^{*}$ where $0<\lambda \leq \frac{\left|(c)_{n}\right|(\alpha n-\mu) \sqrt{2 \alpha-1}}{\left|(a)_{n}\right| \sqrt{(\alpha n-\mu)^{2}+\mu^{2}(2 \alpha-1)}}$.

Also, the bound for λ is sharp.
Theorem 2.6. For $n \in \mathbb{N}, n \geq 2, \frac{n+1}{2 n}<\alpha \leq 1$ and $n(1-\alpha)<\mu<\alpha n \quad \operatorname{let} f \in U_{n}(\alpha, \mu, \lambda)$. If $m<1$, Re $\gamma>0$ and $\Psi(m, \gamma, z)$ defined by (4) satisfy the condition $\left(\frac{z}{f(z)}\right)^{\mu} * \Psi(m, \gamma, z) \neq 0$ for all $z \in \mathbb{D}$, then then the function $H(z)$ given by (3) has the following properties:

- $\quad H \in U_{n}(\alpha, \mu, \lambda(1-m))$,
- $H \in S^{*}$ where $0<\lambda \leq \frac{(\alpha n-\mu) \sqrt{2 \alpha-1}}{(1-m) \sqrt{(\alpha n-\mu)^{2}+\mu^{2}(2 \alpha-1)}}$.

In the case 2 the bound for λ is best possible.
Proof. Using the same steps as in the proof of Theorem 2.4 we obtain

$$
\begin{gathered}
(1-\alpha)\left(\frac{z}{H(z)}\right)^{\mu}+\alpha\left(\frac{z}{H(z)}\right)^{\mu+1} H^{\prime}(z)-1= \\
=\left((1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)\right) * \Psi(m, \gamma, z)-1 \\
=\left((1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)-1\right) *\left(1+(1-m) \sum_{k=1}^{\infty} \frac{z^{k}}{k \gamma+1}\right) \\
=(1-m)\left((1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)-1\right) *\left(\sum_{k=1}^{\infty} \frac{(1 / \gamma) z^{k-1}}{k-(1-l / \gamma)}\right) .
\end{gathered}
$$

Now, by using Lemma 1.3 with $c=1-\frac{1}{\gamma}$, we conclude that

$$
\begin{gathered}
\left|(1-\alpha)\left(\frac{z}{H(z)}\right)^{\mu}+\alpha\left(\frac{z}{H(z)}\right)^{\mu+1} H^{\prime}(z)-1\right| \\
\leq(1-m) \sup _{z \in \mathbb{D}}\left|(1-\alpha)\left(\frac{z}{f(z)}\right)^{\mu}+\alpha\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)-1\right| \\
\leq(1-m) \lambda .
\end{gathered}
$$

This proves the case 1 . Case 2 follows simply from Corollary 2.3 .

References

[1] R. Aghalary, A. Ebadian, Univalence of certain linear operators defined by Hypergeometric function, J. Ineq. Appl. (2009) 1-12.
[2] P.L. Duren, Univalent functions, Springer-Verlag, New York, (1983).
[3] R. Fournier, On integrals of bounded analytic functions in the unit disk, Complex Variables,
Theory and Applications 11 (1989) 125-133.
[4] Y. Ling, F. Liu, G. Bao, Some properties of an integral transform, Appl.Math. Letters 19 (2006) 830-833.
[5] S. Ponnusamy, P. Vasundhra, Criteria for univalence, starlikeness and convexity, Ann. Polo.
Math. 85 (2005) 121-133.
[6] St. Ruscheweyh, Convolutions in geometric function theory, Montreal Canada, (1982).
[7] St. Ruscheweyh, J. Stankiewicz, Subordination under convex univalent functions, Bull. Poli.
Acad. Sci. Math. 33 (1985) 499-502.
[8] P. Vasundhra, Sharpness results of certain class of analytic functions, Bull. Inst. Math. Acad.
Sinica 5 (2010) 11-24.

