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Abstract 
In this paper, two kinds of Hadamard well-posedness for vector-valued optimization problems are 

introduced. By virtue of scalarization functions, the scalarization theorems of convergence for sequences 

of vector-valued functions are established. Then necessary and sufficient conditions for efficient solutions 

are given, sufficient conditions of Hadamard well-posedness for vector optimization problems are 

obtained by using the scalarization theorems. 

Keywords: Vector optimization, Variational convergence, Г𝑐-convergence, Efficient solutions, 

Hadamard well-posedness. 

1. Introduction 

For well-posed optimization problems, there are concepts of two main types: Tykhonov well-posedness 

and Hadamard well-posedness. In 1966, Tykhonov [6] first introduced a concept of well-posedness 

imposing convergence of every minimizing sequence to the unique minimum point, which is called 

Tykhonov well-posedness. The concept of Hadamard well-posedness is inspired by the classical idea of 

Hadamard, which goes back to the beginning of the last century. It requires existence and uniqueness of 

the optimal solution together with continuous dependence on the problem data. In this paper, we further 

investigate Hadamard well-posedness for vector-valued optimization problems. By using the definition of 

variational convergence for vector-valued sequences of functions introduced by Oppezzi and Rossi [5] 

very recently, we define two different notions of Hadamard well-posedness for vector-valued 

optimization problems, i.e., extended Hadamard well-posedness and generalized Hadamard well-

posedness. Finally, based on scalarization theorems we derived, we extend some basic results of 

Hadamard well-posedness of scalar optimization problems to the case of vector-valued optimization 

problems, and then get sufficient conditions for Hadamard well-posedness of vector-valued optimization 

problems. The paper is organized as follows. In Sect. 2, we present the concepts of two kinds of 

Hadamard well-posedness for vector-valued optimization problems and give examples to illustrate them. 

In Sect. 3, we present the necessary and sufficient conditions for efficient solution and εq − efficient 
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solution. In Sect. 4, we consider scalarization theorems for convergence of sequences of vector-valued 

functions. In Sect.5, we extend Hadamard well-posedness results of scalar optimization problems to those 

of vector-valued optimization problems. 

 

2. Preliminaries and notations 

Let X be a topological vector space and Y be a topological vector space ordered by a convex closed and 

pointed cone C ⊂ Y with its topological interior intC = ∅. For y, y, ∈ Y, we write 

y ≤ y,  if  y, − y ∈ C. 

Let us consider the scalar-valued functionsIn,  : X → [−∞, +∞]. 

Definition 2.1(see [1]) We say that In converges variationally to  , and write var − lim In = I , iff  xn ⟶

x  implies   liminfnIn(xn) ≥ I(x)   and for every  u ∈ X   there exists  un ∈ X  such 

that lim supnIn (un) ≤ I(u). 

Proposition 2.1(see [4]) If   In , : X → [−∞, +∞]  satisfy that for every  x ∈ X , 

 

supU∈u(x)   lim sup inf In(U) ≤ I(x) ≤ supU∈u(x)   lim sup inf In(U)                         (1) 

(Where u(x) is the system of neighborhoods of x), then  var − lim In = I. 

Definition 2.2(see [4]) Let u(x) be the family of neighborhoods of x ∈ X,  fn , f : X → Y (n ∈ N ) be 

given functions. We say that   (fn) n∈N   Гc-convergence   to f and we shall write   fn

Гc
→ f  , if for every x 

∈ X : 

(a) ∀U ∈ u(x)  , ∀q0 ∈ intC  , ∃nq0
, U ∈ N    s. t    ∀n ≥ nq0

. U   , ∃xn ∈ U     s. t     fn(xn) ≤ f(x) +  q0; 

(b)   ∀ q0 ∈ intC     , ∃Uq0
∈ u(x) , kq0

∈ N      s. t       fn(x́) ≥ f(x) − q0 ,       ∀ x ∈́ Uq0  ,      ∀n ≥ kq0
; 

Definition 2.3. We say that f : X → Y is strongly lower (upper) C-semicontinuousat the point  xo ∈ X if  

for any   q0 ∈ intC   there exists  Uxo,q0
, a neighborhood  of  xo, such that    ∀x ∈ Uxo,q0

  we have: 

f(x) ∈ f(xo) − q0  + intC   (f(xo) ∈ f(x) − q0  + intC). 

Definition 2.4. A function f: X → Y is said to be C-lower semicontinuous  iff    f −1 (Y − cl C)   is closed 

in X,   ∀y ∈ Y. 

When Y = R and C = R+, we have the usual notion of lower semicontinuity. 

Remark 2.1. In the following example, we show that strong lower C- semicontinuity is more restrictive 

than C-lower semicontinuity. 

Let X = [0, ∞ [, Y = 𝑅2 ,   C = {(x, y) ∈ 𝑅2 : x ≥ 0   , 0 ≤ y ≤ x  } ,   and let   f : X → Y  be defined by 
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              f(t) =  {
(0,0),        if  t = 0 

(t,
1

t
) ,       if   t > 0

 

It follows that 

 

 f −1((x̅, y̅) − C) =   {

∅  ,                                              if  (x̅, y̅) ∈ R2\[0, ∞[2

{0} ,                         if  (x̅, y̅) ∈ [0, ∞[2   and  x y̅̅ ̅̅ < 1

 {0} ∪ [a, b],                    if    xy̅̅ ̅ ≥ 1 , (x̅, y̅) ∈ [0, ∞[2

 

with 

b = (
1

2
) [x̅ − y̅ + √(x̅ − y̅)2 + 4] , a = 1/y̅ 

Obviously, f is not strongly lower C-semicontinuous at t = 0. 

Lemma 2.1. Letfn, f: X → Y, n ∈ N. If   fn

Гc
→ f  , then f is stronglylower C-semicontinuous. 

𝐏𝐫𝐨𝐨𝐟 . 

 By Definition  Гc − convergence  if  ε ∈ int C  there exist   kε ∈  N   ,   Uε  ∈ u(x), Uε open , such that 

f(x) − 
ε

2
< fn(y)      ∀ y ∈ Uε   ∀n ≥ kε .  If  y ∈ Uε , then Uε is a neighborhood of y , hence by Condition 

(a) of Definition  Гc − convergence there exists  ḱε,y ∈ N  such that for every n ≥ ḱε,y there exists   yn ∈

Uε with   fn(yn) < 𝑓(y) + 
ε

2
  . It follows clearly that    f(x) −  

ε

2
< 𝑓(y) +  

ε

2
    ∀y ∈ Uε.    

Consider the following vector-valued optimization problem: 

(S, f): min f (x)   

x∈S 

where f : S → Y and S is a nonempty subset of X . Let us recall that   xo   is an efficient solution (resp. 

weak efficient solution) for problem (S, f) if   (f(xo) − C \{0}) ∩ f(S) =  ∅  (resp.   (f(xo) − intC) ∩

f(S) =  ∅). 

The set of efficient solutions (resp. weak efficient solutions) to problem (S,f) is denoted by Eff(f, S,C) 

(resp. WEff( f, S, C)). If Y = R and C = R+, then(S, f) is a scalar optimization problem. We denote the 

solution set for the scalar optimization problem by Inf( f, S) and we denote the minimizing value of the 

scalar optimization problemby   val (S, f ). 

Let us consider Y = R and C = R+. It is said that xo   is an approximate solution for the scalar problem (S, 

f) if   f (xo) − ε ≤ f (x), ∀x ∈ S. The set of approximate solutions for the scalar problem (S, f) is denoted 

by Inf( f, S, ε). This notion can be extended to vector optimization problems by the following definition. 
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Definition 2.5. Let us consider q ∈ intC, ε ≥ 0. It is said that  xo is an εq- efficient solution (resp. weak εq-

efficient solution) for problem (S, f ) if 

(f (xo ) − εq − C \{0})   f (S) = ∅     ,     (resp. (f (xo ) − εq − intC)    f (S) = ∅.) 

The set of εq-efficient solutions (resp. weak εq-efficient solutions) is denoted by Eff( f, S, C, εq) (resp. 

WEff( f, S, C, εq)). It is obvious that Eff( f, S, C, 0q) = Eff( f, S, C)[resp. WEff( f, S, C, 0q) = WEff( f, S, 

C)]. 

If Y = Rp and C =R+ 
p

, then (S, f) is a Pareto optimization problem and if p = 1, then (S, f) is a scalar 

optimization problem, we denote by P1 . 

Assume that f: S → Y, q ∈ intC and for all n ∈ N, fn: S → Y .  Let {An } be a sequence of subsets of X. It 

is said that z ∈ LimsupnAn (outer limit of {An }) if, there exista subsequence {Ank
} of {An } and a 

sequence {znk
} converging to z such that znk

∈ Ank
 for each nk ∈ N. 

Now we introduce two notions of Hadamard well-posedness for vector optimization problems. 

Definition 2.6. Let fn

Гc
→ f , (S, f) is said to be generalized Hadamard well-posed with respect to {fn}, 

if  Lim supn [WEff(fn , S , C , εnq)] ⊂  WEff(f , S , C), for   εn ≥ 0 and   εn → 0. 

Definition 2.7. Let   fn

Гc
→ f   , (S, f) is said to be extended Hadamard well-posed with respect to { fn}, if 

there exists   ε0 > 0     such that     Li m supn [WEff (fn  , S , C , εq )  ]    ⊂     WEff ( f , S , C, εq), for all  

0 ≤ ε ≤ ε0. 

Remark 2.2. If   (S, f) is generalized Hadamard well-posed with respect to 

{fn}, Li m supn [WEff (fn  , S , C )] ⊂ WEff (f, S, C). 

Let us illustrate these definitions by the following examples. 

Example 2.1. Let X = R, Y =R2, C = R+   and    q = (1, 1). 

Let   S = R,   fn : S → R2    be defined for every  n ∈ N  and  x ∈ R  by 

fn(x) =  {

(x, x)                    if     x ≥ 0
1

n
(x, x)       if   0 ≥ x ≥ −n

(−1,1)         if       − n ≥ x

 

We can easily verify that   fn

Гc
→ f   with 

f(x) = {
(x, x)       if   x ≥ 0
(0,0)        if   x ≤ 0

 

Then, ∀εn → 0   ,  εn ≥ 0, WEff(fn , S , C , εnq) = (−∞, −n ( 1 − εn)]. We obtain Li m supn (WEff (fn, S, 

C, εnq)) = ∅,    which is included in WEff (f, S, C) = (−∞, 0]. 
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Moreover, WEff (fn, S, C, εq) = (−∞, −n(1 − ε)],   ∀ε < 1  , and WEff( f, S, C, εq) = (−∞, ε] ⊃ Li m supn 

(WEff(fn, S, C, εq)). Therefore, (S, f) is both extended Hadamard well-posed with respect to { fn} and 

generalized Hadamard well-posed with respect to { fn}. 

Proposition 2.2. (See [4])  Let  fn , f: S → Y, fn

Гc
→ f . If (S, f) is extended Hadamard well-posed with 

respect to { fn}, then it is generalized Hadamard well-posed with respect to { fn}. 

3.  Necessary and Sufficient conditions  

Definition 3.1.  Let us consider  ∶ Y → R  and  y0 ∈ Y . 

(a) ϕ is monotone with respect to   y0   if  y0 − y ∈ C ⇒   ϕ (y) ≤ ϕ (y0 ), 

(b) ϕ is strongly monotone with respect to   y0   if    y0 − y ∈ C\{0}   ⇒ ϕ (y) < ϕ (y0 )  , 

(c) ϕ is strictly monotone with respect to  y0  if  y0 − y ∈ int(C)    ⇒ ϕ (y) < ϕ (y0 ). 

Remark 3.1. It is clear that: 

(H1) (b) ⇒ (a) and (b) ⇒ (c). 

(H2) If   ϕ   is continuous on   y0 – C   then (c) ⇒ (a). 

Example 3.1. In Pareto problems, the function   φ(y) = max1≤i≤p{vi(yi − zi)} +  ρ ∑ yi
p
i=1   where v ∈ 

R+  
p

, z ∈ Rp  and   ρ ∈ R+  , is monotone if  ρ = 0, it is strictly monotone if v ∈ int(R+
p

) and  ρ = 0, and it is 

strongly monotone if ρ > 0. 

Definition 3.2. Assuming q ∈ int (C) , we define the functional   φ
xo,ε

: Y → R   by 

φ
xo,ε

 (y)  =  inf {s ∈ R : y ∈ sq + f (xo) − εq − cl(C)},    ∀ y ∈ Y. 

Theorem 3.1. (See [2])  Let us consider δ ≥ 0, q ∈C\ {0} and suppose that  xo ∈ Inf (ϕ o f, S, δ). 

(a) If ε > 0, ϕ is monotone at f (xo) − εq and ϕ (f (xo )) − ϕ (f (xo ) – εq) > δ, then xo ∈ Eff ( f, S, C, 

εq). 

(b) If ϕ is strongly monotone at f (xo ) − εq and   ϕ (f (xo )) − ϕ (f (xo ) – εq) ≥ δ, then xo ∈ Eff (f, S, C, 

εq). 

Lemma 3.1. (See [2]) Let us consider q ∈ C\ {0} and ϕ: Y → R such that  

{y ∈ Y : ϕ(y) < 0} = f (xo ) − εq − int(C). 

If  xo ∈ WEff ( f, S, C, εq)  ,  then      xo ∈ Inf (ϕ o f, S, δ) , ∀ δ ≥ ϕ( f (xo )). 

Lemma 3.2. (See [2])  For all   xo ∈ X, ε ≥ 0, we have: 
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(a) φ
xo,ε

 (·) is a continuous, convex and strictly monotone functional satisfying 

{y ∈ Y : φ
xo,ε

 (y) < 0} = f (xo ) − εq − intC;                    (2) 

(b) φ
xo,ε

 (f (xo ) + ρq) = ε + ρ, ∀ρ ∈ R; 

(c) φ
xo,ε

 (y) − φ
xo,ε

 (y − ρq) = ρ ,  ∀y ∈ Y, ∀ρ ∈ R. 

Theorem 3.2. If   xo  ∈ WEff ( f, S, C, εq),    then   xo  ∈ Inf (φ
xo,ε

 o f, S, δ),  ∀ δ ≥ ε. 

Proof: Let    xo ∈ WEff( f, S, C, εq).  By Lemma 3.1 and Lemma 3.2(a) it can be Deduced that  xo∈ Inf 

(φ
xo,ε

 o f, S, δ), ∀ δ ≥ φ
xo,ε

 (f (xo  )). The theorem follows since φ
xo,ε

 (f (xo  )) = ε   by Lemma 3.2 (b). 

 

4. Scalarization of variational convergence for vector-valued sequences of 
functions  

Proposition 4.1. (See [4]) Suppose that  fn , f: X → Y,  fn

Гc
→ f  , and the scalarization functional 

g : Y → [−∞, +∞]  satisfying  g(q) → 0   when q → 0. Moreover, assume that g is monotone 

(i.e.∀ y1 , y2 ∈ Y, y1 ≤ y2 implies g(y1 ) ≤ g(y2 )),   sub-additive (i.e.∀ y1 , y2  ∈Y, g(y1 + y2  ) ≤ 

g(y1) ) + g(y2  )).    Then   var-limg o fn= g o f . 

Theorem 4.1.(see [4]) Assume that   fn , f : X → Y, xn → x  ̅, fn

Гc
→ f   and  f is strongly upper 

 C-semicontinuous. Then 

(a)  ∀ε ≥ 0,          var-lim φ
xn,ε

 o fn= φ
x̅,ε

 of . 

     (b)   ∀ εn   ≥ 0, εn   → 0,      var-lim φ
xn,εn  

 o fn= φ
x̅,0

 of . 

5. Hadamard well-posedness properties of vector optimization problems 

In this section, we extend some basic results of Hadamard well-posedness of scalar optimi- zation 

problems to the cases of vector-valued optimization problems and then get sufficient conditions for 

Hadamard well-posedness of vector-valued optimization problems. 

From Theorem 5 in Chapter 4 of [1], we have the following lemma. 

Lemma 5.1. (See [4])  Assume that     var-lim In = I .  Then 

(a) lim sup val (S, In  ) ≤ val (S, I ) ; 

(b) Lim s upn [Inf (In  , S, ε)] ⊂ Inf (I, S, ε) for all sufficiently small ε ≥ 0; 

If   εn ≥ 0, εn  → 0, then   Lim s upn [Inf (In  , S , εn  )] ⊂  Inf ( I , S) 
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Lemma 5.2. (See [2, Theorem 5.2]) Assume that   f: S → Y and   ε ≥ 0. Then      

x0 ∈ WEff (f, S, C, εq)    ⇔     x0∈ Inf (φ
x0,ε

 f, S, ε) . 

Theorem 5.1. Assume that fn , f : S → Y, fn

Гc
→ f and f is strongly upper C-semicontinuous . Then 

(a) ∀xn → x̅    , ∀εn ≥ 0   , εn → 0    , Lim s upn val(S, φxn,εn   0 fn) ≤ val(S, φx̅,0 o f )   , and for 

arbitrarily chosen ε ≥ 0     , Lim s upn val(S, φxn,ε  o fn)   ≤   val(S, φx̅,ε o f ); 

(b) (S, f) is extended Hadamard well-posed with respect to { fn}. 

Proof .The proof of (a) is clear. We only need to prove (b). 

Let    x̅∈ Lim s upn [WEff (fn, S, C, εq)],     i.e. ∃ {nk } ⊂ N,      xnk
 ∈ WEff (fnk

, S, C, εq) such that   

xnk
→   x̅ .   From Lemma 5.2    , xnk

∈ Inf(φ
xnk

,ε
ofnk

, S, ε) .   Therefore,    x̅∈ Lim s upnk
 [Inf(φ

xnk
,ε
 ofnk

 

, S, ε)]. By Theorem 4.1(a), we have    var-limφ
xnk

,ε
ofnk

=φ
x̅,ε

of From Lemma 5.1, it can be deduced that 

there exists   ε0 > 0    such that 

Lim s upnk
 [Inf(φ

xnk
,ε

ofnk
, S, ε)] ⊂ Inf (φ

x̅,ε
of, S, ε),     ∀0 ≤ ε ≤ ε0 . 

It follows that      x̅ ∈ Inf(φ
x̅,ε

of,S, ε).    By Lemma 5.2,      x̅ ∈ WEff (f, S, C, εq). Therefore, there exists    

ε0 > 0    such that ∀0 ≤ ε ≤ ε0 , 

Lim s upn [WEff (fn, S, C, εq)] ⊂ WEff (f, S, C, εq). 

We conclude that (S, f) is extended Hadamard well-posed with respect to {fn}. 

Remark 5.1. From Theorem 5.1(b) and Proposition 2.2, if the conditions of Theorem 5.1 hold, the 

problem (S, f ) is generalized well-posedness with respect to {fn}. 

Example 5.1. The following example shows that without the assumption of strongly upper C-semiconti-  

nuous of f , conclusions of Theorem 5.1 may not hold. Assume that   fn, f: R → R2    defined as 

 fn = (x , nxe−2n2x2
) ,  for any   n ∈ N , and 

f(x) =  {

(x, 0 )                   if x ≠ 0 

( 0 ,
1

2
e−

1
2) ,       if x = 0 

 

respectively. Now we show that   fn

Гc
→ f , 

In fact, if x ≠ 0, we notice that     nxne−2n2xn
2

⟶ 0 , when      xn → x. Then   , we have that 

∀xn ⟶ x   , ∀ ∪∈ u(x), ∀ q0  ∈   intC     , ∃ nq0,U ∈ N      s. t      ∀ n ≥ nq0,U 

(xn , nxne−2n2xn
2

) ≤ ( x, 0 ) + q0                                            (3) 



Afsaneh Poormoezi / J. Math. Computer Sci.    9 (2014) 291 - 299 
 

298 
 

Moreover,  

    ∀q0 ∈ intC ,      ∃ Uq0
  ∈ u(x)   ,      kq0

∈ N      s. t     ∀ x́  ∈  Uq0
    ,   

∀ n ≥ kq0
 (x́ , nx́e−2n2 x́2

) ≥ (x, 0 ) − q0                                              (4) 

If x = 0   , by taking    xn =  − 
1

2n
   , we have that    ∀U ∈ u(x)     , ∀ q0  ∈ intC ,    ∃ ńq0.U

 ∈ N     

s. t     ∀ n ≥  ńq0.U
 

(xn , nxne−2n2xn
2

) = (
−1

2n
 ,

−1

2
e−

1

2)    ≤    ( 0 , −
1

2
e−

1

2) + q0                                          (5) 

And since    nxe−2n2xn
2

≥ −
1

2
e−

1

2        for all        x ∈ R, 

We have that     ∀q0  ∈ intC     , ∃ Úq0
 ∈ u( 0)    , ḱq0

∈ N         s. t       ∀ x́  ∈  Úq0
,     ∀ n ≥ ḱq0

 

(x́ , nx́e−2n2 x́2
) ≥ ( 0 , −

1

2
e−

1
2) − q0          (6) 

Therefore, it follows from (3), (4), (5), (6) and Definition 2.2   that    fn

Гc
→ f. However, because 

WEff(f , S , C) =  {( 0 , −
1

2
e−

1
2)} 

and 

WEff(fn , S , c) = {(x, nxe−2n2xn
2

)|x ≤ −
1

2n} 

We have   Lim su pn [WEff(fn , S , c)] ⊄ WEff(f , S , c) . It is said that (S, f) is not extended well-posed 

with respect to {fn }. 

Lemma 5.3. (See [2, Theorem 5.1]) Assume that f: S → Y and ε ≥ 0. 

(a)                   x0  ∈  Eff(f , S , C , εq)     ⇒     x0  ∈ Inf (φ
x0,ε

of , S , ε) 

(b)   x0  ∈ Inf (φ
x0,ε

of , S , ε) ⇒    x0  ∈  Eff(f , S , C , vq) ,   ∀ v > ε 

Theorem 5.2. Assume that   fn, f: S → Y,   fn

Гc
→ f   , and f is strongly upper C-semicontinuous. 

Then ∀εn ≥ 0   ,     εn → 0      Limsupn[Eff ( fn , S , C , εnq]  ⊂ Eff(f , S , C , vq)         ∀ v >  0. 

Proof. ∀  ε
n

→ 0        ,    ∀ ε
n

≥ 0, let x̅ ∈ Limsupn[Eff ( fn , S , C , εnq)]], i.e. ∃ {nk} ⊂ N 

xnk
∈ Eff (fn , S , C , εnk

q)  ,   such that xnk
→ x̅. From Lemma 5.3(a), xnk

∈  Inf ( φ
xnk

.εnk
ofnk

 , S , εnk
). 

Therefore  x̅  ∈ Limsupnk
[Inf ( φ

xnk
.εnk

ofnk
 , S , εnk

)]  .   By Theorem 4.1(b), we Have    var −

limφ
xnk

.εnk
ofnk

= φ
x̅,0 

of  . It can be deduced that 
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Limsupnk [Inf (φ
xnk

.εnk
ofnk

 , S , εnk
)]  ⊂ Inf (φ

x̅,0
of , S) 

Thus   x̅  ∈  Inf (φ
x̅,0

of , S) . By Lemma 5.3 (b), we have    x̅  ∈ Eff(f , S , C , vq),     ∀ v > 0 . 

Hence    ∀εn ≥ 0 , εn → 0       Limsupn[Eff ( fn , S , C , εnq)]  ⊂ Eff(f , S , C , vq),       ∀ v >  0.  
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