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Abstract
In this paper, we investigate regularization method via a proximal point algorithm for solving treating sum of two accretive

operators and fixed point problems. Strong convergence theorems are established in the framework of Banach spaces. Also
we apply our result to variational inequalities and equilibrium problems. Furthermore, an illustrative numerical example is
presented. c©2017 All rights reserved.
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1. Introduction

Many important problems have reformulation which require finding common zero points of nonlinear
operators, for instance, inverse problems, variational inequality, optimization problems and fixed point
problems. In this paper, we use A−1(0) to denote the set of zeros point of A, where A is a maximal
monotone operator. A well-known method for solving zero points of maximal monotone operators is the
proximal point algorithm (PPA). First, Martinet [13] introduced the PPA in a Hilbert space H, that is, for
starting x0 ∈ H, a sequence {xn} generated by

xn+1 = JArn(xn), ∀n ∈N, (1.1)

where A is a maximal monotone operator, JArn = (I+ rnA)
−1 is the resolvent operator of A and {rn} ⊂
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(0,∞) is a regularization sequence. An iterative sequence (1.1) is equivalent to

xn ∈ xn+1 + rnAxn+1, ∀n ∈N.

If φ : H→ R∪ {∞} is a proper convex and lower semicontinuous function, then JArn is reduced to

xn+1 = argmin
{
φ(y) +

1
2rn
‖xn − y‖2, y ∈ H

}
, ∀n ∈N.

Later, Rockafellar [16] studied the proximal point algorithm in framework of a Hilbert space and he
also proved that if lim infn→∞ rn > 0 and A−1(0) 6= ∅, then the sequence {xn} converges weakly to a
solution of a zero point of A. Rockafellar [16] has given a more practical method which is an inexact
variant of the method as follows

xn+1 = JArnxn + en, ∀n ∈N,

where {en} is an error sequence. It was shown that if en → 0 quickly enough such that
∑∞
n=1 ‖en‖ <∞,

then xn ⇀ z ∈ H, with 0 ∈ A(z).
On the other hand, the Tikhonov method which generates a sequence {x̃n} defined by

x̃n = JArnu, ∀n ∈N,

where u ∈ H and rn > 0 such that rn → ∞ is studied by several authors (see, e.g., Takahashi [20]). The
details of Tikhonov Regularization can be found in [23–25].

In 1996, Lehdili and Moudafi [9] combined the technique of the proximal map and the Tikhonov
regularization to introduce the prox-Tikhonov method which generates the sequence {xn} by the algorithm

xn+1 = JAnλn xn, ∀n ∈N, (1.2)

where An = rnI + A, rn > 0 is viewed as a Tikhonov regularization of A. Using the technique of
variational distance, Lehdili and Moudafi [9] were able to prove strong convergence of the algorithm (1.2)
for solving the variational inclusion problem when A is maximal monotone operator on H under certain
conditions imposed upon the sequences {λn} and {rn}.

In 2011, Sahu and Yao [17] also extended PPA for the zero of an accretive operator in a Banach space
which has a uniformly Gâteaux differentiable norm by combining the prox-Tikhonov method and the
viscosity approximation method. They introduced the iterative method to define the sequence {xn} as
follows:

xn+1 = JArn((1 −αn)xn +αnf(xn)), ∀n ∈N,

zn+1 = JArn((1 −αn)zn +αnf(zn) + en), ∀n ∈N,

where A is an accretive operator such that A−1(0) 6= ∅ and f is a contractive mapping on C and {en} is an
error sequence. Strong convergence results were established in both algorithms. This is a source of idea
about resolvent operator can be approximated by contractions.

In the same year, PPA extended to the case of sum of two monotone operators A and B by using the
technique of forward-backward splitting method. Manaka and Takahashi [12] introduced the following
iterative scheme in a Hilbert space:{

x1 ∈ C,
xn+1 = αnxn + (1 −αn)SJ

A
λn

(I− λnB)xn, ∀n > 1,

where {αn} is a sequence in (0,1), {λn} is a positive sequence, S : C→ C is a nonexpansive mapping, A is
a maximal monotone operator, B is an inverse strongly monotone mapping, and JAλn = (I+ λnA)

−1 is the
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resolvent ofA. They proved that a sequence {xn} converges weakly to some point z ∈ Fix(S)∩ (A+B)−1(0)
provided that the control sequence satisfies some conditions.

In 2012, López et al. [11] used the technique of forward-backward splitting methods for accretive
operators in Banach spaces. They considered the following algorithms with errors:

xn+1 = (1 −αn)xn +αnJ
A
rn
(xn − rn(Bxn + an)) + bn, (1.3)

xn+1 = αnu+ (1 −αn)J
A
rn
(xn − rn(Bxn + an)) + bn, (1.4)

where u ∈ E, {an}, {bn} ⊂ E and JAλn = (I+ λnA)
−1 is the resolvent of A. An operator A is a maximal

accretive operator and B is an inverse strongly accretive. They proved that the sequences {xn} in equations
(1.3) and (1.4) is weakly and strongly convergence, respectively.

In 2014, Cho et al. [5] introduced the following iterative scheme in a Hilbert space:
x1 ∈ C,
zn = αnf(xn) + (1 −αn)xn,
yn = JArn(zn − rnBzn + en),
xn+1 = βnxn + (1 −βn)(γnyn + (1 − γn)Syn) for all n ∈N,

where {αn}, {βn}, {γn} are sequences in (0, 1), {rn} is a positive sequence, A : C→ H is an inverse strongly
monotone mapping, B is a maximal monotone operator, and JAλn = (I + λnA)

−1 is the resolvent of A.
Let S : C → C be a strictly pseudo-contractive mapping with k ∈ [0, 1), and f : C → C be a contractive
mapping. They proved that a sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩ (A+B)−1(0) if the
control sequence satisfies some restrictions.

Motivated by [5, 11, 12, 17], we are interested in the problems for finding a common element of fixed
point of nonexpansive S and element of the (quasi) variational inclusion problem as follows:

Find x ∈ C such that x ∈ Fix(S)∩ (A+B)−1(0),

where A is a single-valued nonlinear mapping and B is a multi-valued mapping.
The purpose of this paper is to introduce an iterative algorithm which is modify regularization method

and uses technique of forward-backward splitting methods for finding a common element of the set
solution of nonexpansive S and the set solution of fixed point of the variational inclusion problems,
where A is an m-accretive operator and B is an inverse-strongly accretive operator in the framework of
Banach space with a uniformly convex and 2-uniformly smooth. Furthermore, an illustrative numerical
example is presented.

2. Preliminaries

Let E be a Banach space and let E∗ be its dual. Let 〈·, ·〉 be the pairing between E and E∗. For all x ∈ E
and x∗ ∈ E∗, the value of x∗ at x be denoted by 〈x, x∗〉. The normalized duality mapping J : E → 2E

∗
is

defined by J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x‖ = ‖x∗‖}, for all x ∈ E. A single-value normalized duality
mapping is denoted by j, which means a mapping j : E→ E∗ such that, for all u ∈ E, j(u) ∈ E∗ satisfying
the following:

〈u, j(u)〉 = ‖u‖‖j(u)‖, ‖j(u)‖ = ‖u‖.

If E = H is a Hilbert space, then J = I, where I is the identity mapping. If E is smooth Banach space, then J
is single-valued j.

A Banach space E is called an Opial’s space if for each sequence {xn}
∞
n=0 in E such that {xn} converges

weakly to some x in E, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖
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holds for all y ∈ E with y 6= x. In fact, for any normed linear space X admits the weakly sequentially
continuous duality mapping implies X is Opial space. So, a Banach space with a weakly sequentially
continuous duality mapping has the Opial’s property; see [7].

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δ(ε) := inf{1 −

∥∥∥∥x+ y2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1; ‖x− y‖ > ε}.

E is said to be uniformly convex if and only if δ(ε) > 0, for each ε ∈ (0, 2]. It is known that a uniformly
convex Banach space is reflexive and strictly convex.

Let S(E) be the unit sphere defined by S(E) = {x ∈ E : ‖x‖ = 1}. Then the norm ‖ · ‖ of E is said to be
Gâteaux differentiable norm, if

lim
t→0

‖x+ ty‖− ‖x‖
t

(2.1)

exists for all x,y ∈ S(E). In this case, space E is called smooth. A spaces E is said to have a uniformly
Gâteaux differentiable norm if for each y ∈ S(E), the limit (2.1) exist uniformly for all x ∈ S(E). The norm of
E is said to be uniformly smooth if the limit (2.1) is attained uniformly for all x,y ∈ S(E). It is known that
if the norm of E is smooth, then the duality mapping J is single-valued and norm to weak∗ uniformly
continuous on each bounded subset of E.

On the other hand, the modulus of smoothness of E is the function ρ : [0,∞)→ [0,∞) defined by

ρ(t) = sup{
1
2
(‖x+ y‖+ ‖x− y‖) − 1 : x,y ∈ S(E), ‖x‖ = 1, ‖y‖ 6 t}.

A Banach space E is smooth if ρE(t) > 0 for all t > 0. A Banach space E is uniformly smooth if and only
if limt→0

ρ(t)
t = 0. A Banach space E is said to be q-uniformly smooth, if for fixed real number 1 < q 6 2,

there exists a constant c > 0 such that ρ(t) 6 ctq for all t > 0. It is known that every q-uniformly
smooth space is smooth. In the case ρ(t) 6 ct2 for t > 0, these are 2-uniformly smooth. The examples of
uniformly convex and 2-uniformly smooth Banach spaces are Lp, lp or Sobolev spaces Wp

m, where p > 2.
It is well-known that, Hilbert spaces are 2-uniformly convex and 2-uniformly smooth. We know that if
E is a reflexive Banach space, then every bounded sequence in E has a weakly convergent subsequence.
Note that all uniformly convex and 2-uniformly smooth Banach spaces are reflexive.

Next, we recall the definitions of some operators as follows.
1. Let f : E → E be an operator. Then f is called k-contraction if there exists a coefficient k (0 < k < 1)

such that
‖fx− fy‖ 6 k‖x− y‖, ∀x,y ∈ E.

2. Let S : E→ E be an operator. Then S is called nonexpansive if

‖Sx− Sy‖ 6 ‖x− y‖, ∀x,y ∈ E.

3. A set-valued operator A : D(A) ⊆ E → 2E is called accretive if there exists j(x− y) ∈ J(x− y) such
that u ∈ A(x), v ∈ A(y) and

〈u− v, j(x− y)〉 > 0, ∀x,y ∈ D(A).

4. Let A : D(A) ⊆ E → E be an operator. Then A is called α-inverse-strongly accretive if there exists a
constant α > 0 and j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 > α‖Ax− ay‖2, ∀x,y ∈ D(A).

5. A set-valued operator A : D(A) ⊆ E→ 2E is called m-accretive if A is accretive and R(I+ rA) = E for
some r > 0, where I is the identity mapping.

Let C and D be nonempty subsets of a Banach space E such that C is a nonempty closed convex
and D ⊂ C, then a mapping Q : C → D is said to be sunny if Q(x + t(x −Q(x))) = Q(x) whenever
x+ t(x−Q(x)) ∈ C for all x ∈ C and t > 0.
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A mapping Q : C → C is called a retraction if Q2 = Q. Also, if a mapping Q is a retraction, then we
have Qz = z for all z in the range of Q.

Lemma 2.1 ([15]). Let E be a smooth Banach space and let C be a nonempty subset of E. Let Q : E → C be a
retraction and let J be the normalized duality mapping on E. Then the following statements are equivalent:

(i) Q is sunny and nonexpansive;
(ii) ‖Qx−Qy‖2 6 〈x− y, J(Qx−Qy)〉,∀x,y ∈ E;

(iii) ‖(x− y) − (Qx−Qy)‖2 6 ‖x− y‖2 − ‖Qx−Qy‖2;
(iv) 〈x−Qx, J(y−Qx)〉 6 0,∀x ∈ E,y ∈ C.

Lemma 2.2 ([8]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach
space E and let S be a nonexpansive mapping of C into itself with Fix(S) 6= ∅. Then, the set Fix(S) is a sunny
nonexpansive retract of C.

It is well-known that if E = H is a Hilbert space, then a sunny nonexpansive retractionQC is coincident
with the metric projection PC from E onto C, that is QC = PC. Let C be a nonempty closed convex subset
of E.

In the sequel for the proof of our main results, we also need the following lemmas.

Lemma 2.3 ([18]). Let E be a Banach space and J be a normal duality mapping. Then there exists j(x+y) ∈ J(x+y)
such that

‖x+ y‖2 6 ‖x‖2 + 2〈y, j(x+ y)〉, j(x+ y) ∈ J(x+ y)

for any given x,y ∈ E.

Lemma 2.4 ([11]). Let E be a real Banach space and let C be a nonempty closed and convex subset of E. Let
B : C → E be a single-valued operator and α-inverse strongly accretive operator and let A be an m-accretive
operator in E with D(A) ⊃ C and D(B) ⊃ C. Then

Fix
(
JAr (I− rB)

)
= (A+B)−1(0),

where JAr = (I+ rA)−1 is a resolvent of A for all r > 0.

Lemma 2.5 (The resolvent identity, [2]). Let E be a Banach space and A be an m-accretive operator. Then

JAr x = J
A
s

(
s

r
x+

(
1 −

s

r

)
JAr x

)
for all r > 0, s > 0 and x ∈ E.

Lemma 2.6 ([1]). Let C be a nonempty closed convex subset of a 2-uniformly smooth Banach space E with the
2-uniformly smooth constant K and the mapping B : C → E be an α-inverse strongly accretive operator. Then, we
have

‖(I− rB)x− (I− rB)y‖2 6 ‖x− y‖2 − 2r(α−K2r)‖Bx−By‖2,

where I is the identity mapping. In particular, if r ∈ (0, α
K2 ), then (I− rB) is nonexpansive.

Lemma 2.7 (Demiclosed principle, [4]). Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space E and S : C→ E be a nonexpansive mapping with Fix(S) 6= ∅. Then I− S is demiclosed at zero, i.e.,
xn ⇀ x and xn − Sxn → 0 imply x = Sx.

Lemma 2.8 ([19]). Let {xn} and {zn} be two bounded sequences in Banach space E and let {βn} be a sequence in
[0, 1] with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)zn + βnxn for all integers
n > 0 and lim supn→∞(‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0. Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.9 ([10]). Assume that {an} is a sequence of nonnegative real numbers satisfying the condition

an+1 6 (1 − tn)an + tnbn + cn,∀n > 0,

where {tn} is a number sequence in (0, 1) with limn→∞ tn = 0 and
∑∞
n→∞ tn =∞, {bn} is a sequence such that

lim supn→∞ bn 6 0 and {cn} is a positive number sequence with
∑∞
n=0 cn <∞. Then, limn→∞ an = 0.
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3. Main results

Before proving our main result, we need the following lemma.

Lemma 3.1. Let E be a uniformly convex and uniformly smooth Banach space. Let C be a nonempty closed convex
subset of E. Let A : D(A) ⊆ C → 2E be an m-accretive operator and B : C → E be an α-inverse strongly
accretive operator. Let S : C→ C be a nonexpansive mapping and let f : C→ C be a contraction mapping with the
constant k ∈ (0, 1). Let JArn = (I+ rnA)

−1 be a resolvent of A for rn > 0 such that Fix(S) ∩ (A+ B)−1(0) 6= ∅.
If we define operator Wn : C → C by Wn(x) := SJArn ((I− rnB)[αnfx+ (1 −αn)x] + en) for all x ∈ C, where
αn ∈ (0, 1), rn > 0, then Wn is a contraction operator and has a unique fixed point.

Proof. Since S, JArn , and (I− rnB) are nonexpansive, then we know that Wn is nonexpansive. Since f is a
contraction mapping with coefficient k ∈ (0, 1) we have

‖Wnx−Wny‖ = ‖SJArn ((I− rnB)[αnf(x) + (1 −αn)x] + en) − SJ
A
rn

((I− rnB)[αnf(y) + (1 −αn)y] + en) ‖
6 ‖ ((I− rnB)[αnf(x) + (1 −αn)x] + en) − ((I− rnB)[αnf(y) + (1 −αn)y] + en) ‖
6 ‖[αnf(x) + (1 −αn)x] − [αnf(y) + (1 −αn)y]‖
= ‖αn(f(x) − f(y)) + (1 −αn)(x− y)‖
6 αn‖f(x) − f(y)‖+ (1 −αn)‖x− y‖
6 αnk‖x− y‖+ (1 −αn)‖x− y‖
= (αnk+ (1 −αn))‖x− y‖.

Since 0 < (αnk+ (1 − αn)) < 1, it follows that Wn is a contraction mapping of C into itself. By Banach
contraction principle, then there exists a unique fixed point, i.e., we say x̄ = Wnx̄. Moreover, using
Lemma 2.2, the set Fix(Wn) is sunny nonexpansive retraction of C. Hence there exists a unique fixed
point x̄ ∈ Fix(Wn) = Fix(S)∩ (A+B)−1(0) := Ω, namely QΩf(x̄) = x̄ =Wnx̄.

Theorem 3.2. Let E be a uniformly convex and 2-uniformly smooth Banach space with weakly sequentially contin-
uous duality mapping. Let C be a nonempty closed convex subset of E. Let A : D(A) ⊆ C→ 2E be an m-accretive
operator and B : C→ E be an α-inverse strongly accretive operator. Let S : C→ C be a nonexpansive mapping and
let f : C→ C be a contraction mapping with the constant k ∈ (0, 1). Let JArn = (I+ rnA)

−1 be a resolvent of A for
rn > 0. Assume that Fix(S)∩ (A+B)−1(0) 6= ∅.

For given x0 ∈ C, let {xn} be a sequence defined by the following:{
yn = αnf(xn) + (1 −αn)xn,
xn+1 = βnxn + (1 −βn)SJ

A
rn
(yn − rnByn + en), ∀n > 0,

(3.1)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, α
K2 ), K > 0 is the 2-

uniformly smooth constant of E and {en} is a sequence in E. Assume that the control sequences satisfy the following
conditions:

(a) limn→∞ αn = 0, and
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;

(c) limn→∞ rn = r, and r ∈ (0, α
K2 );

(d)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩ (A+B)−1(0), where x̄ = QΩf(x̄) and QΩf is
a sunny nonexpansive retraction from E onto Ω.

Proof.

Step 1. We want to show that {xn} is bounded.
Fix p ∈ Fix(S) ∩ (A+ B)−1(0) 6= ∅. So, we have p ∈ Fix(S) and p ∈ (A+ B)−1(0) = Fix(JArn(I− rnB))
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(see Lemma 2.4). Observe that, we consider

‖yn − p‖ = ‖αnf(xn) + (1 −αn)xn − p‖
6 αn‖f(xn) − p‖+ (1 −αn)‖xn − p‖
6 αn (‖f(xn) − f(p)‖+ ‖f(p) − p‖) + (1 −αn)‖xn − p‖
6 αnk‖xn − p‖+αn‖f(p) − p‖+ (1 −αn)‖xn − p‖
= [αnk+ (1 −αn)]‖xn − p‖+αn‖f(p) − p‖
= [1 −αn(1 − k)]‖xn − p‖+αn‖f(p) − p‖.

(3.2)

We set zn := SJArn(yn − rnByn + en+1). Since JArn and I− rnB are nonexpansive mappings, and from
(3.2), it follows that

‖xn+1 − p‖ = ‖βnxn + (1 −βn)zn − p‖
6 βn‖xn − p‖+ (1 −βn)‖zn − p‖
= βn‖xn − p‖+ (1 −βn)‖SJArn(yn − rnByn + en) − Sp‖
6 βn‖xn − p‖+ (1 −βn)‖JArn(yn − rnByn + en) − p‖
= βn‖xn − p‖+ (1 −βn)‖JArn(yn − rnByn + en) − J

A
rn
(I− rnB)p‖

6 βn‖xn − p‖+ (1 −βn)‖(yn − rnByn + en) − (I− rnB)p‖
= βn‖xn − p‖+ (1 −βn)‖(I− rnB)yn − (I− rnB)p+ en‖
6 βn‖xn − p‖+ (1 −βn) (‖(I− rnB)yn − (I− rnB)p‖+ ‖en‖)
6 βn‖xn − p‖+ (1 −βn) [‖yn − p‖+ ‖en‖]
6 βn‖xn − p‖+ (1 −βn) [(1 −αn(1 − k))‖xn − p‖+αn‖f(p) − p‖] + (1 −βn)‖en‖
= βn‖xn − p‖+ [(1 −βn)(1 −αn(1 − k))]‖xn − p‖+ (1 −βn)αn‖f(p) − p‖+ (1 −βn)‖en‖
= [βn + (1 −βn) −αn(1 − k)(1 −βn)]‖xn − p‖+ (1 −βn)αn‖f(p) − p‖+ (1 −βn)‖en‖
= [1 − (1 −βn)αn(1 − k)]‖xn − p‖+ (1 −βn)αn‖f(p) − p‖+ (1 −βn)‖en‖
= [1 − λn(1 − k)]‖xn − p‖+ λn‖f(p) − p‖+ ‖en‖,

where λn := (1 −βn)αn. Then, it follows that

‖xn+1 − p‖ 6 max
{
‖xn − p‖, ‖f(p) − p‖

1 − k

}
+ ‖en‖

6 max
{
‖xn−1 − p‖,

‖f(p) − p‖
1 − k

}
+ ‖en−1‖+ ‖en‖

6 max
{
‖xn−2 − p‖,

‖f(p) − p‖
1 − k

}
+ ‖en−2‖+ ‖en−1‖+ ‖en‖

...

6 max
{
‖x0 − p‖,

‖f(p) − p‖
1 − k

}
+

n∑
i=0

‖ei‖ <∞.

It follows by mathematical induction, we conclude that

‖xn+1 − p‖ 6 max
{
‖x0 − p‖, (1 − k)−1‖f(p) − p‖

}
+

n∑
i=0

‖ei‖, ∀n > 0.

By condition (d), we get that {xn} is bounded. Since yn = αnf(xn) + (1 −αn)xn, we obtain that

‖yn − p‖ = ‖αnf(xn) + (1 −αn)xn − p‖ 6 αn‖f(xn) − p‖+ (1 −αn)‖xn − p‖. (3.3)

By (3.3) and the boundness of {xn}, then {yn} and {zn} are also bounded.
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Step 2. We want to show that limn→∞ ‖xn+1 − xn‖ = 0.
By Lemma 2.8, we set vn := yn − rnAyn + en, then zn := SJBrnvn. It follows that

‖zn+1 − zn‖ = ‖SJArn+1
vn+1 − SJ

A
rn
vn‖

6 ‖JArn+1
vn+1 − J

A
rn
vn‖

6 ‖JArn+1
vn+1 − J

A
rn+1

vn‖+ ‖JArn+1
vn − JArnvn‖

6 ‖vn+1 − vn‖+ ‖JArn+1
vn − JArnvn‖.

(3.4)

Next, we compute ‖vn+1 − vn‖ that

‖vn+1 − vn‖ = ‖(yn+1 − rn+1Byn+1 + en+1) − (yn − rnByn + en)‖
= ‖(I− rnB)yn+1 − (I− rnB)yn + (rn − rn+1)Byn+1 + en+1 − en‖
6 ‖(I− rnB)yn+1 − (I− rnB)yn‖+ | rn − rn+1 | ‖Byn+1‖+ ‖en+1 − en‖
6 ‖yn+1 − yn‖+ | rn − rn+1 | ‖Byn+1‖+ ‖en+1‖+ ‖en‖.

Next, we compute ‖yn+1 − yn‖ that

‖yn+1 − yn‖ = ‖(αn+1f(xn+1) + (1 −αn+1)(xn+1)) − (αnf(xn) + (1 −αn)xn)‖
= ‖αn+1f(xn+1) −αnf(xn+1) +αnf(xn+1) + (1 −αn+1)xn+1 −αnf(xn) + (1 −αn+1)xn

− (1 −αn+1)xn − (1 −αn)xn‖
= ‖(αn+1 −αn)f(xn+1) +αn(f(xn+1) − f(xn)) + (1 −αn+1)(xn+1 − xn)

+ xn((1 −αn+1) − (1 −αn))‖
6 |αn+1 −αn|‖f(xn+1) − xn‖+αn‖f(xn+1) − f(xn)‖+ (1 −αn+1)‖xn+1 − xn‖
= (1 −αn+1)‖xn+1 − xn‖+ hn
6 ‖xn+1 − xn‖+ hn,

where hn = |αn+1 −αn|‖f(xn+1) − xn‖+αn‖f(xn+1) − f(xn)‖. Then,

‖vn+1 − vn‖ 6 ‖xn+1 − xn‖+ hn + gn, (3.5)

where gn =| rn − rn+1 | ‖Byn+1‖+ ‖en+1‖+ ‖en‖.
Next, we compute ‖JArn+1

vn − JArnvn‖ by the resolvent identity (see Lemma 2.5) that

‖JArn+1
vn − JArnvn‖ = ‖J

A
rn

(
rn

rn+1
vn + (1 −

rn

rn+1
)JArn+1

vn

)
− JArnvn‖

6 ‖
(
rn

rn+1
vn + (1 −

rn

rn+1
)JArn+1

vn

)
− vn‖

= ‖( rn
rn+1

− 1)vn + (1 −
rn

rn+1
)JArn+1

vn‖ (3.6)

= ‖(1 −
rn

rn+1
)JArn+1

vn − (1 −
rn

rn+1
)vn‖

= ‖rn+1 − rn
rn+1

(JArn+1
vn − vn)‖

6|
rn+1 − rn
rn+1

| ‖JArn+1
vn − vn‖.

From (3.4), (3.5), and (3.6), we obtain

‖zn+1 − zn‖ 6 ‖xn+1 − xn‖+ hn + gn+ |
rn+1 − rn
rn+1

| ‖JArn+1
vn − vn‖.
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In view of the conditions (a), (c), and (d), it follows that

‖zn+1 − zn‖− ‖xn+1 − xn‖ 6 0.

Then, we have

lim sup
n→∞ (‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0.

By Lemma 2.8, we conclude that

lim
n→∞ ‖zn − xn‖ = 0. (3.7)

This implies that limn→∞ ‖SJArn(vn) − xn‖ = 0. From (3.1), we observe that

‖xn+1 − xn‖ = ‖βnxn + (1 −βn)zn − xn‖ 6 (1 −βn)‖zn − xn‖.

By (3.7), then we conclude that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.8)

Step 3. We will show that limn→∞ ‖Byn−Bp‖ = 0, limn→∞ ‖JArn(vn)−yn‖ = 0, and limn→∞ ‖SJArn(vn)−
JArn(vn)‖ = 0.

Step 3.1. First, we show that limn→∞ ‖Byn −Bp‖ = 0. Notice that

‖xn+1 − p‖2 = ‖βnxn + (1 −βn)SJ
A
rn
vn − p‖2

6 βn‖xn − p‖2 + (1 −βn)‖SJArnvn − p‖2

= βn‖xn − p‖2 + (1 −βn)‖vn − (I− rnB)p‖2

= βn‖xn − p‖2 + (1 −βn)‖(yn − rnByn + en) − (I− rnB)p‖2

6 βn‖xn − p‖2 + (1 −βn)[‖(I− rnB)yn − (I− rnB)p‖2

+ 2‖en‖‖(I− rnB)yn − (I− rnB)p‖]
6 βn‖xn − p‖2 + (1 −βn)

(
‖yn − p‖2 − 2rn(α−K2rn)‖Byn −Bp‖2)

+ 2(1 −βn)‖en‖‖(I− rnB)yn − (I− rnB)p‖.

Set pn := (1 −βn)2‖en‖‖(I− rnB)yn − (I− rnB)p‖, we get

‖xn+1 − p‖2 6 βn‖xn − p‖2 + (1 −βn)
(
‖yn − p‖2 − 2rn(α−K2rn)‖Byn −Bp‖2)+ pn

= βn‖xn − p‖2 + (1 −βn)‖yn − p‖2 − 2rn(α−K2rn)(1 −βn)‖Byn −Bp‖2 + pn

= βn‖xn − p‖2 + (1 −βn)‖αnf(xn) + (1 −αn)xn − p‖2

− 2rn(α−K2rn)(1 −βn)‖Byn −Bp‖2 + pn.

Set qn := 2rn(α−K2rn)(1 −βn)‖Byn −Bp‖2, we get

‖xn+1 − p‖2 6 βn‖xn − p‖2 + (1 −βn)‖αnf(xn) + (1 −αn)xn − p‖2 − qn + pn

6 βn‖xn − p‖2 + (1 −βn)αn‖f(xn) − p‖2 + (1 −βn)(1 −αn)‖xn − p‖2 − qn + pn

= (1 −αn(1 −βn))‖xn − p‖2 + (1 −βn)αn‖f(xn) − p‖2 − qn + pn.

It follows that

2rn(αn −K2rn)(1 −βn)‖Byn −Bp‖2
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6 (1 −αn(1 −βn))‖xn − p‖2 − ‖xn+1 − p‖2 + (1 −βn)αn‖f(xn) − p‖2 + pn

6 ‖xn − p‖2 − ‖xn+1 − p‖2 + (1 −βn)αn‖f(xn) − p‖2 + pn

= ‖(xn − p) + (xn+1 − p)‖‖(xn − p) − (xn+1 − p)‖+ (1 −βn)αn‖f(xn) − p‖2 + pn

= ‖(xn − p) + (xn+1 − p)‖‖xn − xn+1‖+ (1 −βn)αn‖f(xn) − p‖2 + pn.

In view of the conditions (a), (c), (d), and from (3.8), we conclude that limn→∞ ‖Byn − Bp‖2 = 0. This
implies

lim
n→∞ ‖Byn −Bp‖ = 0. (3.9)

Step 3.2. Second, we will show that limn→∞ ‖JArn(vn) − yn‖ = 0.
We observe that

‖JArn(vn) − p‖
2 6 ‖JArn(vn) − p‖‖(yn − rnByn + en) − (p− rnBp)‖

=
1
2
{‖JArn(vn) − p‖

2 + ‖(yn − rnByn + en) − (p− rnBp)‖2

− ‖
(
JArn(vn) − p

)
− (yn − rnByn + en) + (p− rnBp)‖2}

=
1
2
{‖JArn(vn) − p‖

2 + ‖(I− rnB)yn − (I− rnB)p+ en‖2

− ‖JArn(vn) − yn − rnByn − en − rnBp‖2}

=
1
2
{‖JArn(vn) − p‖

2 + ‖(I− rnB)yn − (I− rnB)p‖2 + p̄n

− ‖
(
JArn(vn) − yn − en

)
− rn(Byn −Bp)‖2}

6
1
2
{
‖JArn(vn) − p‖

2 + ‖yn − p‖2 + p̄n

− (‖JArn(vn) − yn − en‖2 − 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖
+ ‖rnByn − rnBp‖2)

}
=

1
2
{
‖JArn(vn) − p‖

2 + ‖yn − p‖2 + p̄n − ‖JArn(vn) − yn − en‖2

+ 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖− ‖rnByn − rnBp‖2},

where p̄n =
pn

1 −βn
. It follows that

‖JArn(vn) − p‖
2 6 ‖yn − p‖2 + p̄n − ‖JArn(vn) − yn − en‖2

+ 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖− ‖rnByn − rnBp‖2

= ‖αnf(xn) + (1 −αn)xn − p‖2 − ‖JArn(vn) − yn − en‖2

− ‖rnByn − rnBp‖2 + 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ p̄n
6 αn‖f(xn) − p‖2 + (1 −αn)‖xn − p‖2 − ‖JArn(vn) − yn + en‖2

− rn‖Byn −Bp‖2 + 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ p̄n.

(3.10)

From (3.10), this implies that

‖xn+1 − p‖2 6 βn‖xn − p‖2 + (1 −βn)‖SJArn(vn) − p‖
2

6 βn‖xn − p‖2 + (1 −βn)‖JArn(vn) − p‖
2

6 βn‖xn − p‖2 + (1 −βn)
{
αn‖f(xn) − p‖2 + (1 −αn)‖xn − p‖2

− ‖JArn(vn) − yn + en‖2 − rn‖Byn −Bp‖2 + 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ pn
}

= βn‖xn − p‖2 + (1 −βn)αn‖f(xn) − p‖2 − (1 −βn)‖JArn(vn) − yn + en‖2
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− (1 −βn)rn‖Byn −Bp‖2 + (1 −βn)2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ (1 −βn)pn

6 ‖xn − p‖2 +αn‖f(xn) − p‖2 − (1 −βn)‖JArn(vn) − yn + en‖2

− rn‖Byn −Bp‖2 + 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ pn.

It follows that

(1 −βn)‖JArn(vn) − yn + en‖2 6 ‖xn − p‖2 − ‖xn+1 − p‖2 +αn‖f(xn) − p‖2 − rn‖Byn −Bp‖2

+ 2rn‖Byn −Bp‖‖JArn(vn) − yn − en‖+ pn.

= ‖xn − p‖2 − ‖xn+1 − p‖2 + sn

= ‖(xn − p) + (xn+1 − p)‖‖(xn − p) − (xn+1 − p)‖+ sn
= ‖(xn − p) + (xn+1 − p)‖‖xn − xn+1‖+ sn,

(3.11)

where we set sn := αn‖f(xn) − p‖2 − rn‖Byn − Bp‖2 + 2rn‖Byn − Bp‖‖JArn(vn) − yn − en‖+ pn. From
(3.11), in view of the conditions (a), (c), (d), and equations (3.8) and (3.9), we conclude that

lim
n→∞ ‖JArn(vn) − yn − en‖ = 0.

This in turn implies that

lim
n→∞ ‖JArn(vn) − yn‖ = 0. (3.12)

Step 3.3. Lastly, we will show that limn→∞ ‖SJArn(vn) − JArn(vn)‖ = 0.
We see that

‖yn − xn‖ = ‖αnf(xn) + (1 −αn)xn − xn‖ = αn‖f(xn) − xn‖. (3.13)

By condition (a), then

lim
n→∞ ‖yn − xn‖ = 0. (3.14)

Next, from (3.12) and equation (3.14), then we see that

‖JArn(vn) − yn‖ 6 ‖J
A
rn
(vn) − yn‖+ ‖yn − xn‖.

That is,

lim
n→∞ ‖JArn(vn) − xn‖ = 0. (3.15)

From equations (3.7) and (3.15), then we see that

‖SJArn(vn) − J
A
rn
(vn)‖ 6 ‖SJArn(vn) − xn‖+ ‖xn − JArn(vn)‖.

That is,

lim
n→∞ ‖SJArn(vn) − JArn(vn)‖ = 0. (3.16)

Step 4. Since E is a uniformly convex and 2-uniformly smooth Banach space, then E is reflexive Banach
space. By reflexive Banach space and from {xn}, {yn} being bounded, then it has a weakly convergence
subsequence. We may assume that xni ⇀ x̂. In view of limn→∞ ‖yn − xn‖ = 0, then there exists a
subsequence {yni} of {yn} which converges weakly to x̂. We can say that {yni} also converges weakly to x̂,
i.e, yni ⇀ x̂, without loss of generality. We will show that x̂ ∈ Fix(S)∩ (A+B)−1(0) = Ω.

(i) First, we want to show that x̂ ∈ Fix(S). Now, we have yni ⇀ x̂. Since we know that {JArn(vn)} is
bounded and from limn→∞ ‖JArn(vn) − yn‖ = 0, then we say that {JArni (vni)} ⇀ x̂.

From (3.16), we have limn→∞ ‖SJArni (vni) − JArni (vni)‖ = 0. By demiclosed principle, this implies
Sx̂ = x̂, namely we prove that x̂ ∈ Fix(S).
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(ii) Next, we show that JAr (I− rB)x̂ = x̂. From a Banach space with weakly continuous duality mapping
has the Opial’s condition, see [7]. Suppose x̂ 6= JAr (I− rB)x̂. By the Opial’s condition and conditions (c),
(d), then we have

lim inf
i→∞ ‖yni − x̂‖ < lim inf

i→∞ ‖yni − JAr (I− rB)x̂‖
6 lim inf

i→∞ {‖yni − J
A
rni

(vni)‖+ ‖J
A
rni

(vni) − J
A
rn
(I− rnB)x̂‖}

= lim inf
i→∞ {‖yni − J

A
rni

(vni)‖+ ‖J
A
r (vni) − J

A
r (I− rB)x̂‖}

6 lim inf
i→∞ {‖yni − J

A
rni

(vni)‖+ ‖vni − (I− rB)x̂‖}

= lim inf
i→∞ {‖yni − J

A
rni

(vni)‖+ ‖(I− rB)yni − (I− rB)x̂‖+ ‖eni‖}

6 lim inf
i→∞ {‖yni − J

A
rni

(vni)‖+ ‖yni − x̂‖+ ‖eni‖}.

By (3.12) and condition (d), hence

lim inf
i→∞ ‖yni − x̄‖ < lim inf

i→∞ ‖yni − x̂‖.
This is contradiction. Therefore, JAr (I− rB)x̂ = x̂. This completes the proof that x̂ ∈ Fix(S)∩ (A+B)−1(0) =
Ω.

Step 5. We define operator Wn : C → C by Wnx := SJArn ((I− rnB)[αnfx+ (1 −αn)x] + en) for all x ∈
C, where αn ∈ (0, 1), rn > 0. From Lemma 3.1, the operator Wn is a contraction operator and has a
unique fixed point. Moreover, using Lemma 2.2, we know that x̄ ∈ Fix(Wn) = Fix(S)∩ (A+B)−1(0) := Ω,
namely QΩf(x̄) = x̄ =Wnx̄ (that is x̂ = x̄).

Next, we will show that lim supn→∞〈f(x̄) − x̄, j(yn − x̄)〉 6 0, where limt→0 xt = x̄ = QΩf(x̄) and xt
solves equation xt = SJArn(I− rnB)(tf(xt) + (1 − t)xt) for all t ∈ (0, 1).

Consider

‖Wnxn − yn‖ 6 ‖SJArn ((I− rnB)[αnf(xn) + (1 −αn)xn] + en) − xn‖+ ‖xn − yn‖
= ‖zn − xn‖+ ‖xn − yn‖.

From (3.7) and (3.13), then

lim
n→∞ ‖Wnxn − yn‖ = 0. (3.17)

We compute

‖xt − yn‖2 = ‖SJArn(I− rnB)(tf(xt) + (1 − t)xt) − yn‖2

= 〈SJArn(I− rnB)(tf(xt) + (1 − t)xt) −Wnxn +Wnxn − yn, j(xt − yn)〉
= 〈SJArn(I− rnB)(tf(xt) + (1 − t)xt) −Wnxn, j(xt − yn)〉+ 〈Wnxn − yn, j(xt − yn)〉
= 〈SJArn(I− rnB)(tf(xt) + (1 − t)xt) − SJ

A
rn
((I− rnB)yn + en), j(xt − yn)〉

+ 〈Wnxn − yn, j(xt − yn)〉
6 〈(I− rnB)(tf(xt) + (1 − t)xt) − (I− rnB)yn − en, j(xt − yn)〉
+ ‖Wnxn − yn‖‖xt − yn‖

= 〈(I− rnB)(tf(xt) + (1 − t)xt) − (I− rnB)yn, j(xt − yn)〉+ 〈en, j(xt − yn)〉
+ ‖Wnxn − yn‖‖xt − yn‖

6 〈(tf(xt) + (1 − t)xt) − xt + xt − yn, j(xt − yn)〉
+ ‖en‖‖xt − yn‖+ ‖Wnxn − yn‖‖xt − yn‖
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6 〈t(f(xt) − xt), j(xt − yn)〉+ 〈xt − yn, j(xt − yn)〉+ ‖en‖‖xt − yn‖
+ ‖Wnxn − yn‖‖xt − yn‖

6 t〈f(xt) − xt, j(xt − yn)〉+ ‖xt − yn‖2 + ‖en‖‖xt − yn‖+ ‖Wnxn − yn‖‖xt − yn‖
6 −t〈f(xt) − xt, j(yn − xt)〉+ ‖xt − yn‖2 + ‖en‖‖xt − yn‖+ ‖Wnxn − yn‖‖xt − yn‖.

It follows that

t〈f(xt) − xt, j(yn − xt)〉 6 ‖en‖‖xt − yn‖+ ‖Wnxn − yn‖‖xt − yn‖.

Then

〈f(xt) − xt, j(yn − xt)〉 6
1
t
{‖en‖‖xt − yn‖+ ‖Wnxn − yn‖‖xt − yn‖}.

By virtue of (3.17) and condition (d), we get that

lim sup
n→∞ 〈f(xt) − xt, j(yn − xt)〉 6 0. (3.18)

Since xt → x̄, as t → 0 and j is norm-to-weak∗ uniformly continuous on bounded subset of E, we obtain
that

|〈f(x̄) − x̄, j(yn − x̄)〉− 〈f(xt) − xt, j(yn − xt)〉|
6 |〈f(x̄) − x̄, j(yn − x̄)〉− 〈f(x̄) − x̄, j(yn − xt)〉|+ |〈f(x̄) − x̄, j(yn − xt)〉− 〈f(xt) − xt, j(yn − xt)〉|
6 |〈f(x̄) − x̄, j(yn − x̄) − j(yn − xt)〉|+ |〈f(x̄) − x̄− f(xt) + xt, j(yn − xt)〉|
6 ‖f(x̄) − x̄‖‖j(yn − x̄) − j(yn − xt)‖+ ‖f(x̄) − x̄− f(xt) + xt‖‖yn − xt‖ → 0, as t→ 0.

Hence, for any ε > 0, there exists δ > 0 with some t ∈ (0, δ) such that

〈f(x̄) − x̄, j(yn − x̄)〉 6 〈f(xt) − xt, j(yn − xt)〉+ ε.

Then, we obtain that

lim sup
n→∞ 〈f(x̄) − x̄, j(yn − x̄)〉 6 lim sup

n→∞ 〈f(xt) − xt, j(yn − xt)〉+ ε.

Since ε is arbitrary, by (3.18), we obtain that

lim sup
n→∞ 〈f(x̄) − x̄, j(yn − x̄)〉 6 0.

Step 6. Next, we will prove that {xn} converges strongly to x̄ = QΩf(x̄) by using Lemma 2.3 and Lemma
2.9. We note that

‖xn+1 − x̄‖2 = ‖βnxn + (1 −βn)SJ
A
rn
(vn) − x̄‖2

6 βn‖xn − x̄‖2 + (1 −βn)‖SJArn(vn) − x̄‖
2

= βn‖xn − x̄‖2 + (1 −βn)‖SJArn(vn) − Sx̄‖
2

6 βn‖xn − x̄‖2 + (1 −βn)‖JArn(vn) − x̄‖
2

= βn‖xn − x̄‖2 + (1 −βn)‖JArn(vn) − J
A
rn
(I− rnB)x̄‖2

6 βn‖xn − x̄‖2 + (1 −βn)‖vn − (I− rnB)x̄‖2

= βn‖xn − x̄‖2 + (1 −βn)‖(yn − rnByn + en) − (I− rnB)x̄‖2

= βn‖xn − x̄‖2 + (1 −βn)‖(I− rnB)yn − (I− rnB)x̄+ en‖2

= βn‖xn − x̄‖2 + (1 −βn)[‖(I− rnA)yn − (I− rnA)x̄‖2

+ 2〈en, j((I− rnB)yn − (I− rnB)x̄+ en)〉
6 βn‖xn − x̄‖2 + (1 −βn)

[
‖yn − x̄‖2 + 2‖en‖‖(I− rnB)yn − (I− rnB)x̄+ en‖

]
.

(3.19)
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Consider

‖yn − x̄‖2 = 〈αnf(xn) + (1 −αn)xn − x̄, j(yn − x̄)〉
= 〈αn(f(xn) − x̄) + (1 −αn)(xn − x̄), j(yn − x̄)〉
= 〈αn (f(xn) − f(x̄)) +αn (f(x̄) − x̄) + (1 −αn)(xn − x̄), j(yn − x̄)〉
= 〈αn(f(xn) − f(x̄)) + (1 −αn)(xn − x̄), j(yn − x̄)〉+ 〈αn(f(x̄) − x̄), j(yn − x̄)〉
6 ‖αn(f(xn) − f(x̄)) + (1 −αn)(xn − x̄)‖‖yn − x̄‖+αn〈f(x̄) − x̄, j(yn − x̄)〉
6 [αnk‖xn − x̄‖+ (1 −αn)‖xn − x̄‖] ‖yn − x̄‖+αn〈f(x̄) − x̄, j(yn − x̄)〉
= [1 −αn(1 − k)]‖xn − x̄‖‖yn − x̄‖+αn〈f(x̄) − x̄, j(yn − x̄)〉

= (1 −αn(1 − k))
‖xn − x̄‖2 + ‖yn − x̄‖2

2
+αn〈f(x̄) − x̄, j(yn − x̄)〉

=
1 −αn(1 − k)

2
(
‖xn − x̄‖2 + ‖yn − x̄‖2)+αn〈f(x̄) − x̄, j(yn − x̄)〉.

It follows that

2‖yn − x̄‖2 6 (1 −αn(1 − k))‖xn − x̄‖2 + (1 −αn(1 − k))‖yn − x̄‖2 + 2αn〈f(x̄) − x̄, j(yn − x̄)〉
6 (1 −αn(1 − k))‖xn − x̄‖2 + ‖yn − x̄‖2 + 2αn〈f(x̄) − x̄, j(yn − x̄)〉.

Therefore, we obtain that

‖yn − x̄‖2 6 (1 −αn(1 − k))‖xn − x̄‖2 + 2αn〈f(x̄) − x̄, j(yn − x̄)〉. (3.20)

By (3.19) and (3.20), we conclude that

‖xn+1 − x̄‖2 6 βn‖xn − x̄‖2 + (1 −βn)
[
(1 −αn(1 − k))‖xn − x̄‖2 + 2αn〈f(x̄) − x̄, j(yn − x̄)〉

]
+ (1 −βn)2‖en‖‖(I− rnB)yn − (I− rnB)x̄+ en‖

= (1 −αn(1 − k)(1 −βn))‖xn − x̄‖2 + 2αn(1 −βn)〈f(x̄) − x̄, j(yn − x̄)〉
+ 2(1 −βn)‖en‖‖(I− rnB)yn − (I− rnB)x̄+ en‖

= (1 − λn)‖xn − x̄‖2 +
2λn

(1 − k)
〈f(x̄) − x̄, j(yn − x̄)〉+ cn,

where cn := 2(1 −βn)‖en‖‖(I− rnB)yn − (I− rnB)x̄+ en‖ and λn = αn(1 − k)(1 −βn).
Setting bn = 2

(1−k)〈f(x̄) − x̄, j(yn − x̄)〉, since lim supn→∞〈f(x̄) − x̄, j(yn − x̄)〉 6 0 then we see that
lim supn→∞ bn 6 0, and also that

∑∞
n=0 cn <∞.

By Lemma 2.8 and conditions (a), (b), and (d), we conclude that ‖xn− x̄‖2 → 0, as n→∞. This implies

lim
n→∞ ‖xn − x̄‖ = 0,

i.e., xn converges strongly to x̄.

Next, we will utilize Theorem 3.2 to study some strong convergence theorem in Lp with 2 6 p < ∞.
Since Lp, where p > 2 are uniformly convex and 2-uniformly smooth Banach space with K = p− 1, then
we consider E = Lp and we derive the following theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of an Lp for 2 6 p < ∞. Let A, B, S, f, JArn be the same
as in Theorem 3.2. Let {αn}, {βn} be real number sequences in (0, 1), {rn} is a real number sequence in (0, α

(p−1)2 )

and {en} is a sequence in E. Assume that the control sequences satisfy the following (a), (b), (d) in Theorem 3.2, and
condition (c) limn→∞ rn = r, and r ∈ (0, α

(p−1)2 ). Then the sequence {xn} defined by (3.1) converges strongly to
a point x̄ ∈ Fix(S)∩ (A+B)−1(0).
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Consider a mapping S ≡ I in Theorem 3.2, we can obtain the following corollary directly.

Corollary 3.4. Let E be a uniformly convex and 2-uniformly smooth Banach space with weakly sequentially contin-
uous duality mapping. Let C be a nonempty closed convex subset of E. Let A : D(A) ⊆ E→ 2E be an m-accretive
operator such that the domain of A is included in C and B : C→ X be an α-inverse strongly accretive operator. Let
f : C → C be a contraction mapping with the constant k ∈ (0, 1). Let JArn = (I+ rnA)

−1 be a resolvent of A for
rn > 0 such that (A+B)−1(0) 6= ∅.

For given x0 ∈ C, let xn be a sequence in the following process:{
yn = αnf(xn) + (1 −αn)xn,
xn+1 = βnxn + (1 −βn)J

A
rn
(yn − rnByn + en), ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, α
K2 ), K > 0 is the 2-

uniformly smooth constant of E and {en} is a sequence in E. Assume that the control sequences satisfy the following
conditions:

(a) limn→∞ αn = 0,
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(c) limn→∞ rn = r, and r ∈ (0, α

K2 );
(d)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ (A+B)−1(0).

Consider a mapping S ≡ I and f(xn) ≡ u for all n ∈ N in Theorem 3.2, we obtain the following
corollary directly.

Corollary 3.5. Let E be a uniformly convex and 2-uniformly smooth Banach space with weakly sequentially contin-
uous duality mapping. Let C be a nonempty closed convex subset of E. Let A : D(A) ⊆ E→ 2E be an m-accretive
operator such that the domain of A is included in C and let B : C→ X be an α-inverse strongly accretive operator.
Let JBrn = (I+ rnB)

−1 be a resolvent of B for rn > 0 such that (A+B)−1(0) 6= ∅.
For given x0 ∈ C, let xn be a sequence in the following process:{

yn = αnu+ (1 −αn)xn,
xn+1 = βnxn + (1 −βn)J

A
rn
(yn − rnByn + en), ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, α
K2 ) , K > 0 is the 2-

uniformly smooth constant of E and {en} is a sequence in E. Assume that the control sequence satisfies the following
conditions:

(a) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(b) limn→∞ rn = r, and r ∈ (0, α

K2 );
(c)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ (A+B)−1(0).

Setting JArn ≡ I, B ≡ 0, f(xn) ≡ u for all n ∈N and en ≡ 0, then we have the following corollary of the
modified Mann-Halpern iteration.

Corollary 3.6. Let E be a uniformly convex and 2-uniformly smooth Banach space and let C be a nonempty closed
convex subset of E. Let S : C → C be a nonexpansive mapping such that Fix(S) 6= ∅. For given x0,u ∈ C, let xn
be a sequence in the following process:{

yn = αnu+ (1 −αn)xn,
xn+1 = βnxn + (1 −βn)Syn, ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1). Assume that the control sequence satisfies the following
conditions:
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(a) limn→∞ αn = 0, and
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S).

4. Some applications

In this section, we give two applications of our main results in the framework of Hilbert spaces. Now,
we consider Theorem 3.2, in the framework of Hilbert spaces, it is known that K =

√
2

2 . Let H be a Hilbert
space and let C be a nonempty closed convex subset of H.

Theorem 4.1 ([5, Corollary 2.2]). Let A : C → 2H be a maximal monotone operator such that the domain of B
which is included in C and B : C→ H be an α-inverse strongly monotone operator. Let S : C→ C be a nonexpansive
mapping and let f : C → C be a contraction mapping with the constant k ∈ (0, 1). Let JArn = (I+ rnA)

−1 be a
resolvent of A for rn > 0 such that Fix(S)∩ (A+B)−1(0) 6= ∅.

For given x0 ∈ C, let {xn} be a sequence defined by following:{
yn = αnf(xn) + (1 −αn)xn,
xn+1 = βnxn + (1 −βn)SJ

A
rn
(yn − rnByn + en), ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, 2α) and {en} is a sequence
in H. Assume that the control sequences satisfy the following conditions:

(a) limn→∞ αn = 0, and
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(c) limn→∞ rn = r, and r ∈ (0, α

K2 );
(d)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩ (A+ B)−1(0). Next, we will give some related
results.

4.1. Application to projection for variational inequality
Let C be a nonempty, closed, and convex subset of a Hilbert space H. The metric projection of a point

x ∈ H onto C, denoted by PC(x), is defined as the unique solution of the problem

‖x− PCx‖ 6 ‖x− y‖, ∀y ∈ C, ∀x ∈ H.

For each x ∈ H and z ∈ C, the metric projection PC satisfies

z = PC(x)⇐⇒ 〈y− z, x− z〉 6 0, ∀y ∈ C. (4.1)

Note that the metric projection is nonexpansive mapping.
Let g : H → (−∞,∞] be a proper convex lower semicontinuous function. Then the subdifferential ∂g

of g is defined as follows,

∂g(x) = {z ∈ H : g(y) − g(x) > 〈y− x, z〉, ∀y ∈ H}

for all x ∈ H. If g(x) = ∞, then ∂g(x) 6= ∅, Takahashi [21] claimed that ∂g is m-accretive operator. Since
we know that, an m-accretive operator is maximal monotone operator in a Hilbert space, then we claim
that ∂g is maximal monotone operator. Then we define the set of minimizers of g as follows:

argminy∈Hg(y) = {z ∈ H : g(z) = min
y∈H

g(y)}.
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It is easy to verify that 0 ∈ ∂g(x) if and only if g(z) = miny∈H g(y). Let iC be the indicator function of C
by

iC(x) =

{
0, x ∈ C,
+∞, x /∈ C.

Then iC is a proper lower semicontinuous convex function on H. So, we see that the subdifferential ∂iC
of iC is maximal monotone operator; see [21]. The resolvent Jr of ∂iC for r > 0, that is Jrx = (I+ r∂iC)

−1x

for all x ∈ H. Next, we recall that set NC(u) is called the normal cone of C at u defined by

NC(u) = {z ∈ H : 〈z,y− u〉 6 0, ∀y ∈ C}.

Since NC(u) = ∂iC(u). In fact, we have that for any x ∈ H and u ∈ C,

u = Jrx = (I+ r∂iC)
−1x⇐⇒ x ∈ u+ r∂iCu

⇐⇒ x ∈ u+ rNC(u)

⇐⇒ x− u ∈ rNC(u)

⇐⇒ 1
r
〈x− u,y− u〉 6 0, ∀y ∈ C

⇐⇒ 〈x− u,y− u〉 6 0, ∀y ∈ C
⇐⇒ u = PCx.

Then u = (I+ r∂iC)
−1x⇐⇒ u = PCx for all x ∈ H, u ∈ C.

Now, we consider the following variational inequality problem (VIP) for B is to find x ∈ C such that

〈Bx,y− x〉 > 0, ∀y ∈ C. (4.2)

The set of solutions of (4.2) is denoted by VI(C,B).

VI(C,B) =
{
x ∈ C : 〈Bx,y− x〉 > 0, ∀y ∈ C

}
.

Theorem 4.2. Let B : C → H be an α-inverse strongly monotone mapping. Let S : C → C be a nonexpansive
mapping and let f : C→ C be a contraction mapping with the constant k ∈ (0, 1). Assume that Fix(S)∩VI(C,B) 6=
∅. For given x0 ∈ C, let {xn} be a sequence defined by following:{

yn = αnf(xn) + (1 −αn)xn,
xn+1 = βnxn + (1 −βn)SPC(yn − rnByn + en), ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, 2α) and {en} is a sequence
in H. Assume that the control sequences satisfy the following conditions:
(a) limn→∞ αn = 0, and

∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(c) limn→∞ rn = r, and r ∈ (0, 2α);
(d)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩ VI(C,A), where x̄ = PFix(S)∩VI(C,B)f(x̄).

Proof. By Lemma 2.4 we know that Fix(JAr (I − rB)) = (A + B)−1(0). Put A = ∂iC, and we show that
VI(C,B) = (∂iC +B)−1(0). Note that

x ∈ (∂iC +B)−1(0)⇐⇒ 0 ∈ ∂iCx+Bx
⇐⇒ 0 ∈ NCx+Bx
⇐⇒ −Bx ∈ NCx
⇐⇒ 〈−Bx,y− x〉 6 0
⇐⇒ 〈Bx,y− x〉 > 0
⇐⇒ x ∈ VI(C,B).

From (4.1), therefore, we can conclude the desired conclusion immediately.
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4.2. Application for equilibrium problems
Let F be a bifunction of C×C into R, where R is the set of real numbers. The equilibrium problem is to

find x ∈ C such that
F(x,y) > 0, ∀y ∈ C. (4.3)

The set of solutions of (4.3) is denoted by EP(F).
For solving the equilibrium problem, we assume that the bifunction F satisfies the following condi-

tions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x,y) + F(y, x) 6 0 for any x,y ∈ C;
(A3) for each x,y, z ∈ C, lim supt→0+ F(tz+ (1 − t)x,y) 6 F(x,y);
(A4) for each x ∈ C, y 7→ F(x,y) is convex and lower semicontinuous.

Lemma 4.3 ([3]). Let C be a nonempty closed and convex subset of a real Hilbert space H and let F be a bifunction
of C×C into R satisfying (A1)-(A4). Let r > 0 and z ∈ H. Then, there exists x ∈ C such that

F(x,y) +
1
r
〈y− x, x− z〉 > 0, ∀y ∈ C.

Lemma 4.4 ([6]). Let C be a nonempty closed and convex subset of a real Hilbert space H and let F : C×C → R

satisfy (A1)-(A4). For r > 0 and z ∈ H, define a mapping Tr : H→ C as follows:

Tr(z) = {x ∈ C : F(x,y) +
1
r
〈y− x, x− z〉 > 0, ∀y ∈ C},∀z ∈ H. (4.4)

Then, the following hold:

(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x,y ∈ H,

‖Trx− Try‖2 6 〈Tr(x) − Tr(y), x− y〉;

(3) Fix(Tr) = EP(F);
(4) EP(F) is closed and convex.

Lemma 4.5 ([22]). Let C be a nonempty closed and convex subset of a real Hilbert space H and let F : C×C→ R

satisfy (A1)-(A4) and AF be a multi-valued mapping of H into itself defined by

AFx =

{
{z ∈ H : F(x,y) > 〈y− x, z〉, ∀y ∈ C}, x ∈ C,
∅, x /∈ C.

Then EP(F) = A−1
F (0) and AFx is a maximal monotone operator with the domain D(AF) ⊂ C. Furthermore, the

resolvent Tr of F coincides with the resolvent of AF, i.e.,

Trx = (I+ rAF)
−1(x), ∀x ∈ H, r > 0,

where Tr is defined as in (4.4).

We recall that Tr is the resolvent of AF for r > 0. Since A = AF, we will show that Jrx = Trx. Indeed,
for x ∈ H, we have

z ∈ Jrx = (I+ rAF)
−1(x)⇐⇒ x ∈ (I+ rAF)z

⇐⇒ x ∈ z+ rAFz
⇐⇒ x− z ∈ rAFz
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⇐⇒ 1
r
(x− z) ∈ AFz

⇐⇒ F(z,y) > 〈y− z, 1
r
(x− z)〉

⇐⇒ F(z,y) > 〈y− z, −1
r
(z− x)〉

⇐⇒ F(z,y) >
−1
r
〈y− z, z− x〉

⇐⇒ F(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ C

⇐⇒ z ∈ Trx.

Using Lemmas 4.3, 4.4, 4.5 and Theorem 4.1, we also obtain the following result.

Theorem 4.6. Let F : C×C → R which satisfies (A1)-(A4). Let S : C → C be a nonexpansive mapping and let
f : C → C be a contraction mapping with the constant k ∈ (0, 1). Assume that Fix(S) ∩ EP(F) 6= ∅. For given
x0 ∈ C, let {xn} be a sequence defined by following:{

yn = αnf(xn) + (1 −αn)xn,
xn+1 = βnxn + (1 −βn)STrn(yn + en), ∀n > 0,

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequence in (0, 2α) and {en} is a sequence
in H. Assume that the control sequences satisfy the following conditions:

(a) limn→∞ αn = 0, and
∑∞
n=1 αn =∞;

(b) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(c) limn→∞ rn = r, and r ∈ (0, 2α);
(d)
∑∞
n=0 ‖ en ‖<∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩ EP(F), where x̄ = PFix(S)∩EP(F)f(x̄).

Proof. Put A ≡ AF and B ≡ 0 in (A+B)−1(0) from Theorem 4.1. Furthermore, for bifunction F : C×C→
R, we define AFx as in Lemma 4.5, we have EP(F) = A−1

F (0) and let Trn be the resolvent of AF for rn > 0.
Therefore, we can conclude the desired conclusion immediately.

5. Numerical Example

In this section, we demonstrate the performance and convergence of Theorem 3.2 with the following
example.

Example 5.1. Let E = R and C = [−1, 000, 1, 000]. Define the following mappings

f(x) := 0.5x, A(x) := 2x+ 1, B(x) :=
2
3
(x− 1), and S(x) :=

1
2
x−

1
16
x.

We see that the proposed mappings satisfy the assumptions in Theorem 3.2. It is easily seen that for

r > 0, JAr (I− rB)(x) =
3x− 2rx− r

3 + 6r
. Furthermore, we have a point −

1
8

which is in the fixed point sets of S

and JAr (I− rB), that is −
1
8
∈ Fix(S)∩ (A+B)−1(0) and can be seen in Figure 1.

In this example, we set the parameters on algorithm (3.1) by αn =
1

n+ 1
, βn =

2n
3n+ 1

, rn =
n+ 1

2n
and en = 0 for all n > 0. So, {αn}, {βn}, {rn}, and {en} are real number sequences that satisfy all of the
conditions (a)-(d) in Theorem 3.2.

We tested the algorithm (3.1) for this example starting three initial points are random and the compu-
tation results are reported in Figure 2. The computations associated with example were performed using
MATLAB software.
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Figure 1: The solution point of Fix(S)∩ (A+B)−1(0).
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Figure 2: Behavior of xn for three different initial points x0 = −3, 1, 4.

6. Conclusions and remarks

Our main results extend and improve in the following:

1. Theorem 3.2 extends and improves Theorem 3.1 of Manaka and Takahashi [12, Theorem 3.1] from a
Hilbert space to a Banach space and from weak convergence to strong convergence.

2. Theorem 3.2 partially extends and improves Theorem 2.1 of Cho et al. [5, Theorem 2.1] from a
Hilbert space to a Banach space with uniformly convex and 2-uniformly smooth.

3. Theorem 3.2 extends and improves Theorem 3.1 of Qing and Cho [14, Theorem 3.1] from the problem
of finding an element of A−1(0) to the problem of finding an element of Fix(S)∩ (A+B)−1(0).

4. Theorem 3.2 extends and improves Theorem 3.7 of Sahu and Yao [17, Theorem 3.7] from the problem
of finding an element of A−1(0) to the problem of finding an element of Fix(S)∩ (A+B)−1(0).

5. Theorem 3.2 extends and improves Theorem 3.7 of López et al. [11, Theorem 3.7] from the problem
of finding an element of (A+B)−1(0) to the problem of finding an element of Fix(S)∩ (A+B)−1(0).
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