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Abstract 
In this paper, we show that the standard finite difference scheme can generate numerical drawbacks such 

as spurious oscillations in the solution of the famous Black-Scholes partial differential equation, in the 

presence of discontinuities. We propose a modification of this scheme based on a nonstandard 

discretization. The proposed scheme is free of spurious oscillations and satisfies the positivity requirement, 

as is demanded for the financial solution of the Black-Scholes equation. 
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1. Introduction 
The famous Black-Scholes equation is an effective model for option pricing, i.e. to compute a fair value 
for the double barrier knock-out call option. A modified version of this model for the European option 
pricing in the form of initial value problem can be written [8, 9, 10, 11] as: 
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where V (S, t) is the price of the option and endowed with initial and boundary conditions: 
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with updating of the initial condition at the monitoring dates ti ,i=1, …, F: 
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where [L,U]l (S)  is the indicator function, i.e., 
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where the parameter 0r  is the interest rate and the reference volatility is 0  . 

To obtain the finite difference approximation for equation (1), let the computational domain 

   max0, 0,S T  is discretized by a uniform mesh with steps S , t  in order to obtain grid points 

(j S, n t)  , 1, ,j M and 0,1, ,n N so that 
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approximations n

jV of V at the grid points, we have the following explicit finite difference method: 
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This method has low accuracy and often generates numerical drawbacks such as spurious oscillations 
and negative values in the solution whenever the financial parameters of the Black-Scholes model   
and r  satisfy the relationship 2 r , see Figure 1. In the case of larger time step, we see the same 
behavior, see Figure 2. The values of the parameters used in our simulation are taken from [8]. 
 
 

 
Figure 1. Truncated call option value for explicit method with 0.01S  , 610t   . parameters: 

90L  , 100K  , 110U  , 0.05r  , 0.001  , 0.01T  , 
max 120S  . 
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Figure 2. Truncated call option value for explicit method with 0.01S  , 310t   . parameters: 

90L  , 100K  , 110U  , 0.05r  , 0.001  , 0.01T  , 
max 120S  . 

 

2. Scheme construction 
To overcome the drawbacks mentioned above, we develop an explicit nonstandard finite difference 

method [2,3,4,5,6,7] within the strategy suggested by Milev in [8]. We propose our nonstandard finite 
difference scheme as: 
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Where it can be written in the following form: 
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Theorem 1. Sufficient for scheme (5) to be positive is 
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Proof. From (5) it is enough to show that 
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From (7) we can write 

                                                               21
( ) ,

2 2

j jS rS
ra

S S


 

 
 

 

                                                          21 1
( ) ,

2 2

j jS rS
a

r S S

 
   

  

 

 

2 2 2
2

2 4 4
( ) ( ) ,

2 4 4

j jS Sr r r
a

r S S



  

 
     

  

                                              (10) 

 

                                                          
2 2

2

2 4
( ) ,

2 2 4

jS r r
a

r S



 

 
    

 

 

 

                                                          
2

2

2 2
( ) ,

2 2 8

jS r r
a

r S



 
   


 

 

now, the last inequality in (10) shows sufficiency of 
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  for (6), (as a consequence (8) holds too), 

on the other hand from (9) we have 21
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this completes the proof. 
 
Theorem 2. Under the conditions (6), the proposed scheme is stable and convergent with local 
truncation error 2( t, S )O   . 

 
Proof. Using the Fourier stability method [1] put 
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and taking the real part it is seen that the absolute value of the amplification factor 1te  . 

Therefor the scheme is stable and convergent with local truncation error: 
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by Taylor’s expansion, we have 
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substitution into the expression for n

jT  then gives 
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But V  is the solution of the Black-Scholes equation so 
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Therefor the principle part of the local truncation error is 
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3. Numerical Results 

In this section, we present the numerical results using the proposed scheme (5). Here, we 
corroborate the properties of our new scheme for Eq.(1). These numerical results are obtained with 

2 r and different values for t . (See Figure 3-4). 
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Figure 3. Truncated call option value for nonstandard explicit method with 0.01S  , 610t   . 
parameters: 90L  , 100K  , 110U  , 0.05r  , 0.001  , 0.01T  , 

max 120S  . 

 

 
Figure 4. Truncated call option value for nonstandard explicit method with 0.01S  , 310t   . 
parameters: 90L  , 100K  , 110U  , 0.05r  , 0.001  , 0.01T  , 

max 120S  . 

 
We have programed these methods in MATLAB.  
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4. Conclusions and discussion 

We constructed an explicit method based on a nonstandard discretization scheme to solve option 

valuation problem with double barrier knock-out call option. In particular, the proposed method uses a 

nonstandard discretization in reaction term and the spatial derivatives are approximated using standard 

finite difference scheme. It is shown that the proposed nonstandard numerical scheme preserve the 

positivity as well as stability and consistence. Furthermore, the proposed scheme performs well with 

larger stepsizes. Future work will include extending the method to nonlinear Black-Scholes equation.  
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