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Abstract 
In this paper, we prove the Hyers-Ulam stability of functional equation 

     f x   f x 1   f x 2                                              (1.1) 

which called the Fibonacci functional equation in modular functional space. 
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1. Introduction 

In 1950 Nakano [16] introduced the theory of modular spaces  in connection with the theory of 

ordered spaces, Musielak and Orlicz [15] in 1959, redefined and generalized it to obtain a 

generalization of the classical function spaces  L^p. 

 Also the stability of functional equations originated from a question of Ulam [19] in 1940. In the next 

year, Hyers [9] proved the problem for the Cauchy functional equation. The stability problems of 

functional equations have been extensively investigated by several  mathematician (see 

[3,4,5,6,7,8,10,11,12,14,17] and  [18]). 

Recently, Jung [13] investigated the Hyers-Ulam stability of Fibonacci functional equation f(x)=f(x-

1)+f(x-2).Here  we prove the Hyers-Ulam stability of  this functional equation in modular functional 

space. By   and  we denote roots of the equation 
2 1 0x x   . 1     is   greater than one 

and   is negative root. We have 1    and 1   . 
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2. Preliminaries 

  We recall  some basic notions and facts about Modular  spaces. 

Definition2.1:  Let X  be an arbitrary vector space over a complex or real field. 
 
 

(a) A function : [0, ]X    is called a modular If  

(i) ( ) 0 0x x    , 

(ii) ( ) ( )x x    for every scaler    with 1  , 

(iii) ( ) ( ) ( )x y x y       1   , 0, 0    

for all ,x y R  . 

 (b) If (iii) is replaced by 

( ) ( ) ( )     1x y x y if            

And 0, 0   we say that   is convex modular. 

(c) A modular   defines a corresponding modular space, i.e.the vector space X    given by 

{ :  ( ) 0    0}X x X x as        

Example2.2: Let (X, . )  be a norm space, then .  is a convex modular 

on X   . But the converse is not true. 

In general the modular    does not behave as a norm or a distance because it is not sub--additive. But 

one can associate to a modular the F -norm (see [9]). 

Definition2.3: The modular space X   can be equipped with the F -norm defined by 

| | inf{ 0; ( ) }
x

x    


    

Namely, if   be convex, then the functional 

inf{ 0; ( ) 1}
x

x   


  ‖ ‖  

is a norm called the Luxemburg norm in  X  which is equivalent to  the | . |  . 

Definition2.4: Let X    be a modular space. 

(a) A sequence { }n nx   in X   is said to be: 

(i)  - convergent to x  if ( ) 0nx x   as n   ; 

(ii)  -Cauchy if ( ) 0n mx x   as  ,n m  ; 

(b) X   is  -complete if every   -Cauchy  sequence 

is  - convergent. 

(c) A subset B X    is said to be  -closed if for any sequence { }n nx B   with 

nx x , then x B . 

(d) A subset B X   is called  -bounded if 
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( ) sup{ ( ) :  , }B x y x y B      

where ( )B  is called the  -diameter of B . 

(e) We say that   has the Fatou property if 

( )   ( )n nx y lim x y     

whenever ( ) 0, ( ) 0n nx x y y     as n  . 

(f)   is said to satisfies the 2 -condition if 

(2 ) 0     nx as n    whenever    ( ) 0  nx   as   n  . 

It is easy to check that for every modular   and  ,x y X  ; 

(1)  ( ) ( )x x     for each positive numbers  with    . 

(2)  ( ) (2 ) (2 )x y x y     . 

 

3. Hyers-Ulam Stability of Fibonacci equation in modular space 

As already stated,   denotes the positive root of the equation 
2 1 0x x    and   is its negetive 

root. We can prove the Hyers-Ulam stability of the Fibonacci functional equation (1.1) as we see in the 

following theorem. 

Theorem3.1: Let  ( , )X   be a Banach modular space. If f: XR  satisfies the inequality  

( ( ) ( 1) ( 2))f x f x f x           (3.1) 

for all x R  and for some > 0  then there exists a Fibonacci function G : XR   such that 

2
( ( ) ( )) (1 ) (3.2)

5
f x G x     

 for all x R . 

Proof .We  get from (3.1): 

( ( ) ( 1) [ ( 1) ( 2)])f x f x f x f x            

 If we replace x  by x k  in the last inequality, then we have, 

( ( ) ( 1) [ ( 1) ( 2)])f x k f x k f x k f x k                

 and furthermore, 

 
1( ( ( ) ( 1) ( ( 1) ( 2))k kf x k f x k f x k f x k               

 
| | ( ( ) ( 1) [ ( 1) ( 2)])

| | (3.3)

k

k

p f x k f x k f x k f x k   

 

          


 

      for all x R   and natural number k. By (3.3), we obviously have, 

( ( ) ( 1) [ ( ) ( 1)])nf x f x f x n f x n           

1
1

0

( ( ( ) ( ( 1) ( ( 1) ( 2))
n

k k

k

f x k f x k f x k f x k    
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1

0

| | (( ( ) ( 1) ( ( 1) ( 2)))
n

k

k

f x k f x k f x k f x k    




            

 

1

0

| | (3.4)
1 | |

n
k

k








 



ò

ò  

for  all x R  and natural number n. 

      For any x R  (3.3) implies that{ ( ( ) ( 1))}n f x n f x n      is a cauchy sequence . 

Therefore, we can define a function by 

1( ) lim [ ( ) ( 1)]n

n
G x f x n f x n 


      

 since X  is complete. In view of the above definition of 1G , we obtain: 

1 1

1 1( 1) ( 2) lim [ ( ( 1)) ( ( 1) 1)]n

n
G x G x f x n f x n   


           

      
2 2lim [ ( ( 2) ( ( 2) 1)]n

n
f x n f x n   


        

1 2

1 1 1( ) ( ) ( )G x G x G x      

for all x R . Hence,  1G
 
is a Fibonacci function. If n  goes to infinity, then (3.3) yields: 

1

3 5
( ( ) ( 1) ) (3.5)

2
f x f x G  


     . 

for all x R .on the other hand, it also follows from (3.1) that 

( ( ) ( 1) [ ( 1) ( 2)])f x f x f x f x            

 Analogous to (3.3), replacing x  by  x k  in the above 

Inequality, then we have: 

( ( ) [ ( 1) ( 1) ( 2)])f x k f x k f x k f x k                

and 

1( [ ( ) ( 1)] [ ( 1) ( 2)]) | | (3.6)k k kf x k f x k f x k f x k                    

for all x R . By using (3.6), we further obtain: 

( [ ( ) ( 1)] [ ( ) ( 1)])n f x n f x n f x f x            

1

1

( [ ( ) ( 1)] [ ( 1) ( 2)])
n

k k

k

f x k f x k f x k f x k      



            

1

([ ( ) ( 1)] [ ( 1) ( 2)])
n

k

k

f x k f x k f x k f x k    



            

1

(3.7)
n

k

k

 



  

for all x R  and $n\in\BN$ .Thus
 
{ [ ( ) ( 1) }]n f x n f x n       is a cauchy sequence, 

 for any fixed x R . Hence, we can define  a function  by 

2( ) lim [ ( ) ( 1)]n

n
G x f x n f x n 


       

Using the above definition of 2G , we get: 



  M. Naderi Parizi, M. E. Gordji / J. Math. Computer Sci.     ( ), -  

 

5 
 

1 ( 1)

2 2( 1) ( 2) lim [ ( 1) ( ( 1) 1)]n

n
G x G x f x n f x n    


           

2 ( 2)lim [ ( 2) ( ( 2) 1)]n

n
f x n f x n    


      

 
1 2

2 2 2( ) ( ) ( )G x G x G x      

For any x R . So, 2G  is also a Fibonacci function. If we 

Let  n  goes to infinity, then it follows from (3.7) that  

2

5 1
( ( ) ( ) ( 1)) (3.8)

2
G x f x f x  


     

 for x R . By (3.5), (3.8)  we have, 

1 2( ( ) [ ])f x G G
 


   

 
 

2 1( ( ) ( 1) ) ( ( ) ( 1) )f x f x G f x f x G
 

   
   

       
 

2 1( ( ( ) ( 1) ) ( ( ) ( 1) ))f x f x G f x f x G
 

  
   

       
 

2
(1 )

5
  ò

 

for all x R . We now set: 

1 2( )G x G G
 

   
 

 
 

 It is easy to show that  G  is a Fibonacci function satisfying (3.2). 
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