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Abstract 
   In this paper, we present an algorithm for approximating numerical solution of singularly perturbed    

boundary value problems by means of homotopy analysis and tau Bernestein polynomial method. The 

method is tested for several problems and the results demonstrate reliability and efficiency of the method.  

Keywords:  Singularly perturbed problems; Boundary value problems; Homotopy analysis method; 

Galerkin’s method; Bernstein polynomials. 

1. Introduction 

       We consider a class of singularly perturbed two-point singular boundary value problem of the form  

 𝜀𝑦 ′′(𝑥) + 𝑓(𝑥, 𝑦, 𝑦 ′) = 0,    𝑥 ∈ [0,1], (1) 

 subject to the boundary conditions  

 𝑦(0) = 𝛼,    𝑦(1) = 𝛽,    𝛼, 𝛽 ∈ ℜ (2) 

 where 𝜀 is a small positive parameter. 
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In general, as 𝜀 tends to zero, the solution 𝑦(𝑥) may exhibit exponential boundary layers at left-end of 
the interval [0,1]. 

    These problems arise frequently in many areas of science and engineering such as heat transfer 
problem with large Peclet numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor 
theory, aerodynamics, reaction-diffusion process, quantum mechanics, optimal control etc [6]. Due to 
the variation in the width of the layer with respect to the small perturbation parameter 𝜀. Several 
difficulties are experienced in solving the singular perturbation problems using standard numerical 
methods. 

      Several numerical methods have been developed for the numerical solution of singularly perturbed 
boundary value problems, in particular to the problems having the boundary layers at one or both ends 
of the interval. Boglaev [4], Schatz and Wahlbin [24] used the finite element technique to solve such 
types of problems. Miller [14] gave sufficient conditions for the first-order uniform convergence of 
three-point difference scheme. Cen et al. [5] presented hybrid finite difference scheme with Shishkin 
mesh for solving a system of singularly perturbed initial value problems. While Stojanovic [25] gave an 
optimal difference scheme by considering the quadratic interpolating splines instead of piecewise 
constants on each subinterval [𝑥𝑖−1,𝑥𝑖] as an approximation for the coefficient 𝑓(𝑥). Surla and Jerkovic 
[26] considered the spline collocation method for the solution of singularly perturbed boundary value 
problems. Rao and Kumar [17] gave an optimal B-spline collocation method for solving singularly 
perturbed boundary value problems. Loghmani and Ahmadinia [16] develop a numerical technique for 
singularly perturbed boundary value problems using B-spline functions and least square method. Dua 
and Kong [6] used the new Liouville-Green transform to solve a singularly perturbed second-order 
ordinary differential equation. Attili [2] used Pade approximation to obtain the solution of singularly 
perturbed two point boundary value problems. 

        The concept of replacing singularly perturbed two-point boundary value problem by an initial value 
problem is presented by Reddy et al. [12], [21], [22]. Reddy and Chakravarthy [20] have extended 
boundary value technique to solve general singularly perturbed two-point boundary value problems 
using trapezoidal formula integration in the forward direction with left-layer boundary problems and in 
backward direction with right-layer boundary problems, and both formulas for interior or two boundary 
layers, where, their method is iterative on the deviating argument. 

 

2. Bernestein homotopy method 

2.1  Bernstein polynomials 

The Bernstein polynomials of degree 𝐾 are defined on the interval [0,1] as [29]  

 𝐵𝑖 ,𝐾(𝑥) =  𝐾
𝑖
 𝑥𝑖(1 − 𝑥)𝐾−𝑖 , 0 ≤ 𝑖 ≤ 𝑛, (3) 

 where the binomial coefficients are given by  

  𝐾
𝑖
 =

𝐾!

𝑖!(𝐾−𝑖)!
. (4) 
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  These Bernstein polynomials form a basis on [0,1]. There are 𝐾 + 1, 𝐾th-degree polynomials. For 

convenience, we set 𝐵𝑖 ,𝐾(𝑥) = 0 if 𝑖 < 0 or 𝑖 > 𝐾. Moreover, the recursive definition for the Bernstein 

polynomials over the interval [0,1] is as follows:  

 𝐵𝑖 ,𝐾(𝑥) = (𝑥 − 1)𝐵𝑖,𝐾−1(𝑥) + 𝑥𝐵𝑖−1,𝐾−1(𝑥). (5) 

   It can be readily shown that the sum of all Bernstein polynomials of degree 𝐾 is the constant 1, that is, 

  𝐾
𝑖=0 𝐵𝑖 ,𝐾(𝑥) = 1, and for all 𝑖 = 0,1,⋯ , 𝐾 and all 𝑥 in [0,1], we have 𝐵𝑖 ,𝐾(𝑥) ≥ 0. Also, we have  

 𝐵𝑖 ,𝐾(0) =  
1 𝑖 = 0
0 𝑖 ≠ 0

,   (6) 

 and  

 𝐵𝑖 ,𝐾(1) =  
1 𝑖 = 𝐾
0 𝑖 ≠ 𝐾

 . (7) 

 The Bernstein polynomials are widely used for numerical solutions of differential, integral, and integro-

differential equations [27]-[39]. 

2.2  Homotopy analysis method 

In 1992 Liao [40], used the basic idea of homotopy in topology to proposed an analytical technique for 

solving non-linear problems. This technique, namely homotopy analysis method [41]. The homotopy 

analysis method and its modifications have been efficiently employed to solve a wide range of non-

linear problems in applied sciences [41]-[62]. 

  In this section, the homotopy analysis method is used to give series solution of the (1) with boundary 

conditions (2). We define an auxiliary linear operator 𝐿 by  

 𝐿[𝜙(𝑥, 𝜆;𝑞)] = 𝜀𝜙′′(𝑥;𝑞) + 𝜙′(𝑥; 𝑞), (8) 

 with the property  

 𝐿[𝐶1 + 𝐶2𝑒
−

𝑥

𝜀 ] = 0, (9) 

 where 𝐶1 and 𝐶2 are constants. 

We define a nonlinear operator in the form:  

 𝑁[𝜙(𝑥;𝑞)] = 𝜀𝜙′′(𝑥;𝑞) + 𝑓 𝑥, 𝜙(𝑥;𝑞), 𝜙′(𝑥;𝑞) . (10) 

 Using this operator, we can construct the zeroth-order deformation equation as  

 (1 − 𝑞)𝐿[𝜙(𝑥; 𝑞) − 𝑦0(𝑥)] = 𝑞ℏ𝑁[𝜙(𝑥;𝑞)], (11) 

 where ℏ ≠ 0 is an auxiliary parameter and 𝑞 ∈ [0,1] is an embedding parameter. The boundary 

conditions for Eq. (11) are  
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 𝜙(0;𝑞) = 𝛼,    𝜙(1;𝑞) = 𝛽. (12) 

 When the parameter 𝑞 increases from 0 to 1, the solution 𝜙(𝑥; 𝑞) varies from 𝑦0(𝑥) to 𝑦(𝑥). If this 

continuous variation is smooth enough, the Maclaurin series with respect to 𝑞 can be constructed for 

𝜙(𝑥; 𝑞), and further, if this series is convergent at 𝑞 = 1, we have  

 𝑦(𝑥) = 𝑦0(𝑥) +   ∞
𝑖=1 𝑦𝑖(𝑥) =   ∞

𝑖=0 𝜑𝑖(𝑥, ℏ), (13) 

 where  

 𝑦𝑖(𝑥) =
1

𝑖!

∂𝑖𝜙(𝑥 ;𝑞)

∂𝑞 𝑖 |𝑞=0. (14) 

 For the 𝑚th-order deformation equation, we differentiate Eqs. (11)-(12) 𝑚 times with respect to 𝑞, 

divide by 𝑚! and then set 𝑞 = 0. The resulting 𝑚th-order deformation equation is  

 𝐿[𝑦𝑚 (𝑥) − 𝜒𝑚𝑦𝑚−1(𝑥)] = ℏ𝑅𝑚 (𝑥), (15) 

 where  

 𝜒𝑚 =  
0, 𝑚 ≤ 1,
1, 𝑚 > 1.

  (16) 

 and  

 𝑅𝑚 =
1

𝑚 !

∂𝑚𝑁 𝜙(𝑥 ;𝑞) 

∂𝑞𝑚 |𝑞=0 (17) 

 with the following boundary conditions  

𝑦𝑚 (0) = 𝑦𝑚 (1) = 0. 

2.3  Tau Bernestein homotopy method 

 In this subsection, we use the tau Bernestein method to obtain the solution of the first several Eq. (15) 

with boundary condition (18) and find that the 𝑀th-order approximation of the numerical solution (1). 

The tau approach is a modification of the Galerkin method that is applicable to problems with non 

periodic boundary conditions [63, 64]. For each 𝑚 = 1,2, ⋯ , 𝑀 and an arbitrary natural number K, we 

suppose that the approximate solution 𝑦𝑚 (𝑥) is as follows:  

 𝑦𝑚 (𝑥) =   𝐾
𝑖=0 𝑦𝑚 ,𝑖𝐵𝑖 ,𝐾(𝑥), (19) 

 and the residual function associated to the 𝑚th-order deformation equation (15) is  

 𝑅𝐸𝑆𝑦𝑚 (𝑥) = 𝐿[𝑦𝑚 (𝑥)] − 𝜒𝑚𝐿[𝑦𝑚−1(𝑥)] − ℏ𝑅𝑚 (𝑥). (20) 

 By imposing the boundary conditions (18), we have  

   𝐾
𝑖=0 𝑦𝑚 ,𝑖𝐵𝑖,𝐾(0) = 0,  𝐾

𝑖=0 𝑦𝑚 ,𝑖𝐵𝑖 ,𝐾(1) = 0. (21) 

 By using (6) and (7), we obtain  



    S.Gh. Hosseini,  S.M. Hosseini,  M. Heydari, M. Amini/ J. Math. Computer Sci.     ( ), -  

  

11 
 

 𝑦𝑚 ,0 = 0,𝑦𝑚 ,𝐾 = 0. (22) 

 In tau method we get the inner product of Eq. (20) with 𝐵𝑠,𝐾(𝑥):  

 〈𝑅𝐸𝑆𝑦𝑚 (𝑥), 𝐵𝑠,𝐾(𝑥)〉 = 0, 𝑠 = 0,1,⋯ , 𝐾 − 2, (23) 

 where 〈𝑓, 𝑔〉 =   
1

0
𝑓(𝑥)𝑔(𝑥)𝑑𝑥. From the above equations, a linear system 𝐴𝑌𝑚 = 𝜒𝑚𝐴𝑌𝑚−1 + 𝑏𝑚  is 

resulted, where  

 𝑎𝑖 ,𝑗 = 〈𝐿 𝐵𝑗 ,𝑘(𝑥) , 𝐵𝑖−1,𝐾(𝑥)〉 = 𝜀   
1

0
𝐵𝑗 ,𝑘

′′ (𝑥)𝐵𝑖−1,𝐾(𝑥)𝑑𝑥 

 +   
1

0
𝐵𝑗 ,𝑘

′ (𝑥)𝐵𝑖−1,𝐾(𝑥)𝑑𝑥,    𝑖, 𝑗 = 1,2,⋯ , 𝐾 − 1, (24) 

 (𝑏𝑚 )𝑖 = ℏ〈𝑅𝑚 (𝑥), 𝐵𝑖−1,𝐾(𝑥)〉 =   
1

0
𝑅𝑚 (𝑥)𝐵𝑖−1,𝐾(𝑥)𝑑𝑥,    𝑖 = 1,⋯ , 𝐾 − 1, (25) 

 𝑌𝑚 =  𝑦𝑚 ,1,𝑦𝑚 ,2, ⋯ , 𝑦𝑚 ,𝐾−1 
𝑇

.     (26) 

2.4  Algorithm of presented method  

The presented method in subsection (2.3) can be done by using the following algorithm: 

Algorithm 1: 

Step 1. Set 𝑦0(𝑥) =  𝛽 − 𝛼 𝑥 + 𝛼. 

Step 2. Calculate the matrix 𝐴, by applying the (24) and then compute 𝐴−1. 

Step 3. Compute the vector 𝑏1 by applying the (25) and set 𝑌1 = 𝐴−1𝑏1 and   𝑦1(𝑥) =

               𝑌1
𝑇𝜙(𝑥), where  

 𝜙(𝑥) =  𝐵1,𝐾(𝑥), 𝐵2,𝐾(𝑥), ⋯ , 𝐵𝐾−1,𝐾(𝑥) 
𝑇

. 

             Step 4. For 𝑚 from 2 to 𝑀 do 

Compute the vector 𝑏𝑚  by applying the (25) and set 𝑌𝑚 = 𝑌𝑚−1 + 𝐴−1𝑏𝑚  and  𝑦𝑚  𝑥 =
               𝑌𝑚

𝑇𝜙(𝑥),   

End do. 

Step 5. Set  

 Φ𝑀,𝐾(𝑥) =   𝑀
𝑖=0 𝑦𝑖(𝑥), (27) 

             as the approximate of the exact solution Eq. (1). 

2.5  Convergence of the solution 

From the section 3.3 in [41], as long as the series (27) is convergent, it should converge to a solution of 

Eq. (1). As pointed out by Liao [41], the convergence of this series and the rate of it depend upon the 

value of the auxiliary parameter ℏ. In general, the range of proper values of auxiliary parameters ℏ is 
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obtain by plotting the so called ℏ-curve. As pointed out by Liao [41], the valid region of ℏ correspond to 

the line segments nearly parallel to the horizontal axis in ℏ-curve. 

3  Test problem 

 In this section, we demonstrate the effectiveness of the presented algorithm by applied it to two 

nonlinear singular perturbed boundary value problems. The algorithm is performed by Maple 15 with 

128 digits precision. 

 

Example 3.1  Consider the following nonlinear singular perturbed boundary value problem:  

 𝜀𝑦′′ (𝑥) + 𝑦′(𝑥) − 𝑦2(𝑥) = 0 (28) 

 with boundary conditions  

 𝑦(0) = 1,    𝑦(1) = 1. (29) 

  

 Solution: The problem (3.1) solved by using algorithm 1 for 𝐾 = 50 and 𝑀 = 15. In order to find the 

range of admissible values of ℏ, ℏ − 𝑐𝑢𝑟𝑣𝑒 of 𝑦 ′(0) obtained by the Alg. 1 is plotted in Fig. (1) for 

𝜀 = 1, 2−3, 2−5. The residual error of Eq. (3.1) is plotted in Fig. (2) for different values of 𝜀.  Fig. (3) gives a 

comparison between the present method results and the numerical method. We can clearly observe 

from Fig. (3) that the solutions obtained by the proposed method are in good agreement with the 

numerical solutions. 

Example 3.2  Consider the following nonlinear singular perturbed boundary value problem:  

 𝜀𝑦 ′′(𝑥) +  1 −
𝑥

2
 𝑦 ′(𝑥) −

1

2
𝑦2(𝑥) = 0 (30) 

 with boundary conditions  

 𝑦(0) = 0,    𝑦(1) = 1. (31) 

  

 Solution: The problem (3.2) solved by using algorithm 1 for 𝐾 = 50 and 𝑀 = 10. In order to find the 

range of admissible values of ℏ, ℏ − 𝑐𝑢𝑟𝑣𝑒 of 𝑦 ′(0) obtained by the Alg. 1 is plotted in Fig. (4) for 

𝜀 = 1, 2−3, 2−5.  The residual error of Eq. (3.2) is plotted in Fig. (5) for different values of 𝜀.  Fig. (6) gives 

a comparison between the present method results and the numerical method. We can clearly observe 

from Fig. (6) that the solutions obtained by the proposed method are in good agreement with the 

numerical solutions.  
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Figure  1: The ℏ-curves of 𝒚′(𝟎) obtained by Alg. 1, when 𝑲 = 𝟓𝟎 and 𝑴 = 𝟏𝟓 for Ex. (3.1): left  𝜺 = 𝟏  , right  𝜺 = 𝟐−𝟑  

and bottom  𝜺 = 𝟐−𝟓  
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Figure  2: The residual error of Eq. (3.1) obtained by Alg. 1, when 𝑲 = 𝟓𝟎 and 𝑴 = 𝟏𝟓 for Ex. (3.1): left  𝜺 = 𝟏  , right 

 𝜺 = 𝟐−𝟑  and bottom  𝜺 = 𝟐−𝟓 . 
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Figure  3: Plots of solution Eq. (3.1) obtained by Alg. 1, when 𝑲 = 𝟓𝟎 and 𝑴 = 𝟏𝟓 for Ex. (3.1): red  𝜺 = 𝟏 , blue  𝜺 = 𝟐−𝟑  

and green  𝜺 = 𝟐−𝟓 ; Circle: numerical solutions. 

4  Conclusions 

In this paper, the singularly perturbed two-point boundary layer problems have been considered by 

means of the homotopy analysis technique and tau Bernesetin method. The success of the method has 

later been tested by applying it to several singularly perturbed cases taken from the literature. The 

presented approach has clearly shown its advantage over the recently introduced conventional 

numerical methods for the singularly perturbed boundary value problems. 
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