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ABSTRACT 
In this paper we prove that the local information function of a dynamical systems affine. We also introduce the 

concept of weighted information function for continuous dynamical systems on compact metric spaces, and 

prove some of its properties. At the end we prove that the weighted information function is invariant under 

isomorphism. 
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1. INTORODUCTION 

 

There is an enormous literatures on information but the 1948 paper A mathematical theory of 

communication by Clude Shannon [7] in the Bell System Technical Journal remains one of the most 

readable accounts of its properties and significance. Note that in later versions it became The 

mathematical theory of communication. 

Then, McMillan [5] found some results relating to this function. And recently I. Guney, I. Tok and M. 

Yamankaradeniz [3] investigated some basic properties of the fuzzy local information function of 

dynamical systems. 

In this study we define the weighted information function for  a continuous system𝑇:𝑋 → 𝑋on a 

compact metric space 𝑋 and prove some important ergodic properties of this function.The idea is 

based on the feeling that any ‘intelligent’ point in the space is informed about the space, as it increases 

its experience by meeting different areas of the space under the dynamic of 𝑇. As disjoint points may 

have different ‘intelligence’, we may assign a weight factor to the local loss of information caused by 

the lack of experience of any point. 

In this article, 𝑀(𝑋) denotes the set  of  all probability measures on Borel sets of 𝑋. The set of all 

probability measures on X preserving 𝑇 is denoted by 𝑀(𝑋,𝑇). We also write 𝐸(𝑋,𝑇) for the set of 

all ergodic measures of  𝑇. 

2. PRELIMINARIES AND METHODS 

 

Let (𝑋,𝛽) denotes a 𝜎–finite measure space, i.e. a set equipped with a 𝜎–algebra 𝛽 of subsets of 𝑋. 

Further let 𝜇 denote a probability measure on (𝑋,𝛽). Then  𝑋,𝛽, 𝜇  is called a probability space. Let 
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𝑇:𝑋 → 𝑋  be a measure-preserving invertible transformation of the probability space (𝑋,𝛽, 𝜇). In 

particular 𝑇 𝛽 = 𝛽 and 𝜇  𝑇−1 𝐴  = 𝜇 𝐴  for all 𝐴 ∈ 𝛽. Then  𝑋,𝛽, 𝜇,𝑇   is called a dynamical 

system. In applications one also encounters dynamical systems in which 𝑇is replaced by a measure-

preserving flow, i.e. a one parameter family of measure-preserving transformations {𝑇𝑡}𝑡∈ℝsuch that 

𝑇𝑠𝑇𝑡 = 𝑇𝑠+𝑡 ,𝑇−𝑠 = (𝑇𝑠)−1 and 𝑇0 = 𝐼 is the identity.  The flow is usually interpreted as a description 

of the change with time 𝑡 of the observables 𝐴. The single automorphism 𝑇 can be thought of as the 

change with unit time and 𝑇𝑛  is the change after 𝑛-units of time. A finite partition𝛼 ={𝐴1,𝐴2,… ,𝐴𝑛} 

of the space is the collection of a finite number of disjoint elements 𝐴𝑖  of 𝛽 such that  𝐴𝑖 = 𝑋𝑛
𝑖=1 . 

Definition 2.1 Let α={𝐴1,𝐴2,… ,𝐴𝑛} be a finite measurable partition of 𝑋and 𝜇 ∈ 𝑀 𝑋,𝑇 . Then if 

𝐴𝑖 ∈ 𝛼 , i=1,2, …,n is an observed event. The information 𝐼 𝛼, µ  carried by 𝛼 may be defined 

as;  𝐼 𝛼, µ = 

-log µ 𝐴𝑖 and the quantity 𝐼(𝑥,𝛼, µ) = − 𝜒𝐴𝑖 𝑥 log𝜇(𝐴𝑖)
𝑛
𝑖=1  for each x∈ 𝑋 is called local 

information function.  

Where 𝜒𝐴𝑖  is the characteristic function of 𝐴𝑖  defined by𝜒𝐴𝑖(𝑥)   = 
1                    𝑖𝑓 𝑥 ∈ 𝐴𝑖
0                    𝑖𝑓 𝑥 ∉ 𝐴𝑖

  

Definition 2.2 Given two partitions 𝛼, 𝛾 we define their refinement  

𝛼 ∨ 𝛾 = {𝐴𝑖 ∩ 𝐵𝑗 :𝐴𝑖 ∈ 𝛼,𝐵𝑗 ∈ 𝛾} 

Lemma 2.3 Let {𝑎𝑛}𝑛∈ℕbe a sequence of real numbers such that is positive and sub additive. Then 

lim𝑛→∞
𝑎𝑛

𝑛
  exists and is equal toinf𝑛∈ℕ

𝑎𝑛

𝑛
. 

Proof: See, the Theorem 4-9 of [8]. 

Theorem 2.4 Let 𝛼 and 𝛾 be two partitions of𝑋with  I(x, α, µ)<∞ and I(x, 𝛾, µ)<∞, for x∈ 𝑋. Then, 

for all x∈ 𝑋 

(i) I(x, α, µ)≥ 0. 
(ii) 𝐼 𝑥,𝛼  𝛾, 𝜇 ≤ I x,α, µ + I x, γ, µ . 

Proof: See, [1] and [3]. 

Theorem 2.5 If 𝛼  is a finite measurable partition of 𝑋with  𝐼(𝑥,𝛼, µ) < ∞, for each x∈ 𝑋 then, 

lim𝑛→∞
1

𝑛
𝐼(𝑥, 𝑇−𝑖𝛼𝑛−1

𝑖=0 , 𝜇), for each 𝑥 ∈ 𝑋 exists and is equal to infimum. 

Proof: Write 𝑎𝑛= 𝐼(𝑥, 𝑇−𝑖𝛼𝑛−1
𝑖=0 , 𝜇), for each 𝑥 ∈ 𝑋. Clearly, the sequence (𝑎𝑛)𝑛≥1satisfies the 

conditions of Lemma 2.3and Theorem 2.4. Thus one has only the Lemma 

2.3lim𝑛→∞
1

𝑛
𝐼(𝑥, 𝑇−𝑖𝛼𝑛−1

𝑖=0 , 𝜇), for each x∈ 𝑋 exists and is equal to the infimum. 

Definition 2.6 Let 𝛼be a finite measurable partition of the  dynamical system (𝑋,𝑇) with  I(x, α, 

µ)<∞, for each x∈ 𝑋 then the limit function 𝐼(𝑥,𝑇,𝛼, 𝜇) =  𝑙𝑖𝑚𝑛→∞
1

𝑛
𝐼(𝑥, 𝑇−𝑖𝛼𝑛−1

𝑖=0 , 𝜇), for each 

x∈ 𝑋 is called the local information function of 𝑇 with respect to finite measurable partition 𝛼. 

Definition 2.7 Let 𝛼 be a finite measurable partition of 𝑋with  I(x, α, µ)<∞, for all x∈ 𝑋, the quantity  

I(x,,𝑇, 𝜇) = sup𝛼{𝐼(𝑥,𝑇,𝛼, 𝜇) 𝛼 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋 𝑤𝑖𝑡ℎ  I(x,α, µ) < ∞  } 

is called the local information function of dynamical system (𝑋,𝑇). Where the supremum is taken 

over all finite measurable partitions of 𝑋with the finite information functions. 

Definition 2.8 Let 𝛼 be a finite measurable partition of 𝑋with  I(x, α, µ)<∞, for each x∈ 𝑋. Then, if 

 𝑇𝑖𝛼 = 𝛽∞
𝑖=−∞ , then the partition 𝛼 is called a generator of the 𝜎 −algebra 𝛽 for T. 

Theorem 2.9 Let 𝛼be a generating measurable partition of the dynamical system (𝑋,𝑇) with 

I x,α, µ < ∞, for each 𝑥 ∈ 𝑋. Then, for all 𝑥 ∈ 𝑋,  

                                                                      𝐼 𝑥,𝑇, 𝜇 = 𝐼 𝑥,𝑇,𝛼, 𝜇 . 
Proof: See, [1] and [3]. 

In the following Theorem we will prove the local information function of the dynamical system 

(𝑋,𝑇)is affine. 

Theorem 2.10 The local information function of the dynamical system (𝑋,𝑇)is affine, i.e. 

𝐼 𝑥, ,𝑇, 𝜆𝜇1 +  1− 𝜆 𝜇2 = 𝜆𝐼 𝑥,𝑇, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝑇, 𝜇2 . 
for each pair 𝜇1,𝜇2 ∈ 𝑀(𝑋,𝑇)and 𝜆 ∈  0, 1 . 
Proof: Let 𝛼 be a finite measurable partition of 𝑋,then 

                   𝐼 𝑥, ,𝛼, 𝜆𝜇1 +  1− 𝜆 𝜇2 ≥ 𝜆𝐼 𝑥,𝛼, 𝜇1 +  1 − 𝜆 𝐼 𝑥,𝛼, 𝜇2                                         (2.1) 
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The "concavity" inequality (2.1) is a direct consequence of the definition  of 𝐼 𝑥, ,𝛼, 𝜇  and the 

"concavity" of the function 𝑥 → − log𝑥. Conversly, one has inequalities  

− log(𝜆𝜇1 𝐴𝑖 +  1− 𝜆 𝜇2 𝐴𝑖 ) ≤ − log 𝜆 − log𝜇1 𝐴𝑖 , 
and 

          − log(𝜆𝜇1 𝐴𝑖 +  1− 𝜆 𝜇2 𝐴𝑖 ) ≤ − log(1 − 𝜆) − log𝜇2 𝐴𝑖 , 
because 𝑥 → − log𝑥 is decreasing. So we have, 

− 𝜒𝐴𝑖 𝑥 log(𝜆𝜇1 𝐴𝑖 +  1− 𝜆 𝜇2 𝐴𝑖 )

𝑛

𝑖=1

≤ −𝜆 log 𝜆 −  1− 𝜆 log 1− 𝜆 + 𝜆𝐼 𝑥,𝛼, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝛼, 𝜇2 . 
Therefore one obtains the "convexity" bound  

𝐼 𝑥,𝛼, 𝜆𝜇1 +  1− 𝜆 𝜇2 
≤ −𝜆 log 𝜆 −  1 − 𝜆 log 1− 𝜆 + 𝜆𝐼 𝑥,𝛼, 𝜇1 +  1 − 𝜆 𝐼 𝑥,𝛼, 𝜇2        (2.2) 

now replacing 𝛼 by  𝑇−𝑖𝛼𝑛−1
𝑖=0 in (2.1), dividing by 𝑛 and taking lim

𝑛→∞
gives  

𝐼 𝑥, ,𝑇,𝛼, 𝜆𝜇1 +  1− 𝜆 𝜇2 ≥ 𝜆𝐼 𝑥,𝑇,𝛼, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝑇,𝛼, 𝜇2 . 
Similarly from (2.2), since  

−(𝜆 log 𝜆 + (1− 𝜆) log(1− 𝜆))

𝑛
→ 0 𝑎𝑠 𝑛 → ∞, 

one deduce the converse inequality  

𝐼 𝑥, ,𝑇,𝛼, 𝜆𝜇1 +  1− 𝜆 𝜇2 ≤ 𝜆𝐼 𝑥,𝑇,𝛼, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝑇,𝛼, 𝜇2 . 
Hence one concludes that the map 𝜇 → 𝐼(𝑥,𝑇,𝛼, 𝜇) is affine, i.e.  

𝐼 𝑥, ,𝑇,𝛼, 𝜆𝜇1 +  1− 𝜆 𝜇2 = 𝜆𝐼 𝑥,𝑇,𝛼, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝑇,𝛼, 𝜇2  
For each partition 𝛼, each pair 𝜇1,𝜇2 ∈ 𝑀(𝑋,𝑇) and 𝜆 ∈  0, 1 . Finally it follows from the Theorem 

2.9 that the local information function of the dynamical system (𝑋,𝑇)is affine, 

𝐼 𝑥, ,𝑇, 𝜆𝜇1 +  1− 𝜆 𝜇2 = 𝜆𝐼 𝑥,𝑇, 𝜇1 +  1− 𝜆 𝐼 𝑥,𝑇, 𝜇2 . 
 

We recall some classical results that we need in the sequel. 

Theorem 2.11 (Choquet) Suppose that Y is a compact convex metrisable subset of a locally convex 

space 𝐸, and that 𝑥0 ∈ 𝑌. Then, there exists a probability measure 𝜏 on 𝑌  which represents 𝑥0 and is 

supported by the extreme points of Y, that is, 𝜑 𝑥0 =  𝜑 𝑑𝜏
𝑌

 for every continuous linear functional 

𝜑 on E, and 𝜏 𝑒𝑥𝑡 𝑌  = 1. 
Proof: See Phelps [6] for a proof of Choquet,s theorem. 

Let 𝜇 ∈ 𝑀(𝑋,𝑇) and 𝑓:𝑋 → ℝ be a bounded measurable function. As we know that 𝐸(𝑋,𝑇) equals 

the extreme points of 𝑀(𝑋,𝑇), applying Choquet,s Theorem for E=Ω(𝑋), the space of finite regular 

Borel measures on 𝑋, and 𝑌 = 𝑀(𝑋,𝑇), andusing the linear functional 𝜑:Ω 𝑋 → ℝ  given by 

𝜑 𝜇 =  𝑓 𝑑𝜇
𝑋

, we have the following corollary. 

Corollary2.12 Suppose that 𝑇:𝑋 → 𝑋 is a continuous map on the compact metric space 𝑋. Then, for 

each 𝜇 ∈ 𝑀(𝑋,𝑇), there is a unique measure 𝜏 on the Borel subsets of the compact metrisable space 

𝑀(𝑋,𝑇), such that 𝜏 𝐸 𝑋,𝑇  = 1 and  

 𝑓 𝑥 𝑑𝜇 𝑥 =  ( 𝑓 𝑥 𝑑𝑚(𝑥)) 𝑑𝜏(𝑚)
𝑋𝐸(𝑋,𝑇)𝑋

 

for every bounded measurable function 𝑓:𝑋 → ℝ. 

Under the assumption of Corollary 2.12, we write 𝜇 =  𝑚 𝑑𝜏(𝑚)
𝐸(𝑋,𝑇)

, called the ergodic 

decomposition of  𝜇. 
 

 3. WEIGHTED INFORMATION FUNCTION OFDYNAMICAL SYSTEMS 
 

In this section, we introduce the concept of weighted information function for a continuous map 

𝑇:𝑋 → 𝑋 on a compact metric space X with finite local information function, and state some of its 

properties.  
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Definition 3.1Suppose that 𝑇:𝑋 → 𝑋 is a continuous map on the compact topological space X, 

and𝜇 ∈ 𝑀(𝑋,𝑇) be such that I(x,,𝑇, 𝜇)< ∞, for ∈ 𝑋. The weighted information function of 𝑇 (with 

respect to 𝜇), 𝐿𝑇 . , 𝜇 :𝐶(𝑋) → ℝ, is defined as 

𝐿𝑇 𝑓, 𝜇 ≔  𝑓 𝑥    𝐼 𝑥,𝑇, 𝜇 
𝑋

𝑑𝜇(𝑥) 

for all 𝑓 ∈ 𝐶(𝑋). In other words, the weighted information function is an integral function. 

Theorem 3.2Suppose that 𝑇: 𝑋 → 𝑋is a continuous map on the compact metric space X such that 

𝐼(. ,𝑇,𝜇)<∞. Then, 

(i) Given any 𝜇 ∈ 𝑀(𝑋,𝑇 ), the weighted information  function𝑓→ 𝐿𝑇 𝑓, 𝜇 is linear. 

(ii) If 𝜇 ∈ 𝑀(𝑋,𝑇 ) and 𝜇 =  𝑚 𝑑𝜏(𝑚)
𝐸(𝑋,𝑇)

 is the ergodic decomposition of 𝜇, then, 

𝐿𝑇 𝑓, 𝜇 =  𝐿𝑇 𝑓,𝑚  𝑑𝜏(𝑚)
𝐸(𝑋,𝑇)

 

for all 𝑓 ∈ 𝐶(𝑋). 

Proof : Note that the condition 𝐼(. ,𝑇, 𝜇)<∞guarantees that 𝐿𝑇 𝑓, 𝜇 is well-defined for all 𝜇 ∈
𝑀(𝑋,𝑇). 

(i)Obvious. 

(ii) We have 

𝐿𝑇 𝑓, 𝜇 =  𝑓 𝑥 
𝑋

𝐼(𝑥,𝑇, 𝜇)𝑑𝜇 𝑥  

                                                =  ( 𝑓 𝑥 𝐼(𝑥,𝑇,𝑚)𝑑𝑚(𝑥)) 𝑑𝜏(𝑚)
𝑋𝐸 𝑋,𝑇 

 

                  =  𝐿𝑇 𝑓,𝑚 𝑑𝜏 𝑚 .
𝐸 𝑋,𝑇 

 

For 𝑓 ∈ 𝐶 𝑋 . 
Theorem 3.3 Let 𝛼 be a measurable partition of the dynamical system (𝑋,𝑇) with 𝐼 𝑥,𝑇,𝛼, 𝜇 < ∞, 

for  

𝑥 ∈ 𝑋. Then for every 𝑘 ∈ 𝑁, 

𝐼 𝑥,𝑇,𝛼, 𝜇 = 𝐼(𝑥,𝑇, 𝑇−𝑗  𝛼 ,𝜇)

𝑘

𝑗=0

 

Proof: We obtain immediately 

𝐼(𝑥,𝑇  𝑇−𝑖 𝛼 ,𝜇) =

𝑘

𝑗=0

lim
𝑛→∞

1

𝑛
𝐼(𝑥, 𝑇−𝑖(

𝑛−1

𝑖=0

 𝑇−𝑗 (𝛼))

𝑘

𝑗=0

, 𝜇) 

= lim
𝑛→∞

1

𝑛
𝐼  𝑥,  𝑇−𝑡 𝛼 

𝑛+𝑘−1

𝑡=0

, 𝜇  

 =lim𝑝→∞
𝑝

𝑝−𝑘

1

𝑝
𝐼 𝑥, 𝑇−𝑡 𝛼 

𝑝−1
𝑡=0 , 𝜇  

= 𝐼 𝑥,𝑇,𝛼, 𝜇 . 
 

Theorem 3.4 Let 𝛼 be a  measurable partition of the dynamical system (𝑋,𝑇) with 𝐼 𝑥,𝑇,𝛼, 𝜇 < ∞, 

for  

𝑥 ∈ 𝑋. Then for every 𝑘 ∈ 𝑁,  

𝐼 𝑥,𝑇𝑘 ,𝜇 = 𝑘𝐼(𝑥,𝑇, 𝜇) 

Proof:By Theorem 3.3, we have 

𝐼 𝑥,𝑇𝑘 ,𝛼, 𝜇 = 𝐼(𝑥,𝑇𝑘 , 𝑇−𝑖 𝛼 ,𝜇)

𝑛−1

𝑖=0

 



U. Mohamadi / J. Math. Computer Sci.    ( ),  

 

 

76 
 

                                                     = lim
𝑛→∞

1

𝑛
𝐼(𝑥, 𝑇−𝑗𝑘 (

𝑛−1

𝑗=0

 𝑇−𝑖(𝛼))

𝑘−1

𝑖=0

, 𝜇) 

   = lim
𝑛→∞

1

𝑛
𝐼  𝑥,  𝑇−𝑖 𝛼 

𝑛𝑘−1

𝑖=0

, 𝜇  

 =k lim𝑛→∞
1

𝑛𝑘
𝐼 𝑥, 𝑇−𝑖 𝛼 𝑛𝑘−1

𝑖=0 , 𝜇  

            = 𝑘 𝐼 𝑥,𝑇,𝛼, 𝜇 . 
 

Theorem 3.5Suppose that 𝑇 ∶  𝑋 → 𝑋is a continuous map on the compact metric space𝑋,and 𝜇 ∈
𝑀 𝑋,𝑇 . Then for every  𝑘 ∈ 𝑁,  

𝐿𝑇𝑘  𝑓, 𝜇 = 𝑘𝐿𝑇 𝑓, 𝜇 . 

Proof: By Theorem 3.4 we know that for each 𝑥 ∈ 𝑋 and 𝑘 ∈ 𝑁, 

𝐼 𝑥,𝑇𝑘 ,𝜇 = 𝑘𝐼(𝑥,𝑇, 𝜇) 

 

So, if 𝑓 ∈ 𝐶(𝑋), then, 

𝑓 𝑥 𝐼 𝑥,𝛼,𝑇𝑘 ,𝜇 = 𝑓(𝑥) 𝑘𝐼 𝑥,𝑇,𝛼, 𝜇  
Therefore, 

𝐿𝑇𝑘  𝑓, 𝜇 =  𝑓 𝑥 
𝑋

𝐼 𝑥,𝑇𝑘 ,𝜇 𝑑𝜇 𝑥  

                                                                           = 𝑘𝑓 𝑥 
𝑋

𝐼 𝑥,𝑇, 𝜇 𝑑𝜇 𝑥  

                                                                                     = 𝑘𝐿𝑇 𝑓, 𝜇  
Theorem 3.6Suppose that 𝐼𝑑 ∶  𝑋 → 𝑋is the identity map on the compact metric space 𝑋, and 

𝜇 ∈ 𝑀 𝑋,𝑇 . Then,  𝐿𝐼𝑑 𝑓, 𝜇 = 0. 
Proof: Since 𝐼 𝑥, 𝐼𝑑, 𝜇 = 0, so 𝐿𝐼𝑑 𝑓, 𝜇 = 0. 
Theorem 3.7 If 𝑇1:𝑋1 → 𝑋1and  𝑇2:𝑋2 → 𝑋2are topologically isomorphic continuous maps via the 

homeomorphism 𝜑:𝑋1 → 𝑋2, and 𝜇 ∈ 𝑀(𝑋1,𝑇1), then, 

𝐿𝑇1
 𝑓, 𝜇 = 𝐿𝑇2

 𝑓𝜑−1,𝜇𝜑−1  

for all 𝑓 ∈ 𝐶(𝑋1). 

proof: First, we prove that, 

   𝐼 𝑥,𝑇1,𝜇 = 𝐼 𝜑 𝑥 ,𝑇2,𝜇 . 
Let  𝑋1,𝑇1  and  𝑋2,𝑇2  be two isomorphic dynamical systems with 𝜑:𝑋1 → 𝑋2, 𝜑(𝑇1(𝑥)) =
𝑇2(𝜑(𝑥)) for all 𝑥 ∈ 𝑋. If 𝛼 is a finite measurable partition of the dynamical system  𝑋1,𝑇1  with  

𝐼 𝑥,𝑇1,𝛼, 𝜇 < ∞,  for 𝑥 ∈ 𝑋. Then, 𝜑(𝛼) is a finite measurable partition of the dynamical system 

 𝑋2,𝑇2  with 𝐼 𝑦,𝑇,𝜑(𝛼), 𝜇 < ∞, for 𝜑 𝑥 = 𝑦 ∈ 𝑋2. Therefore for all 𝑥 ∈ 𝑋1,   

𝐼 𝑦,𝑇2,𝜑 𝛼 , 𝜇 = 𝐼 𝑦,𝜑𝑜𝑇1𝑜𝜑
−1,𝜑 𝛼 , 𝜇  

                                                                                  =lim𝑛→∞
1

𝑛
𝐼(𝑦, (𝜑𝑜𝑇1

−𝑖𝑜 𝜑−1)𝜑(𝛼𝑛−1
𝑖=0 ),𝜇) 

 =lim𝑛→∞
1

𝑛
𝐼(𝜑−1 𝑦 ,𝜑−1  𝜑𝑜𝑇1

−𝑖(𝛼𝑛−1
𝑖=0 )  

                                   = lim
𝑛→∞

1

𝑛
𝐼(𝑥, 𝑇1

−𝑖(𝛼)

𝑛−1

𝑖=0

, 𝜇) 

= 𝐼 𝑥,𝑇1,𝛼, 𝜇 . 
 

 Let𝜇 ∈ 𝑀 𝑋1,𝑇1 , and 𝑓 ∈ 𝐶(𝑋). Then, 

𝐿𝑇1
 𝑓, 𝜇 =  𝑓 𝑥 

𝑋1

𝐼(𝑥,𝑇1, 𝜇)𝑑𝜇 𝑥  

                                        =  𝑓 𝑥 
𝑋1

𝐼 𝜑 𝑥 ,𝑇2,𝜇 𝑑𝜇 𝑥  
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                                                        =  𝑓 𝜑−1(𝑥 )
𝑋2

𝐼 𝑥,𝑇2,𝜇 𝑑𝜇 𝜑−1(𝑥)  

                       = 𝐿𝑇2
 𝑓𝜑−1,𝜇𝜑−1 . 

 

 

5. CONCLUSION 
 

For the classification of the dynamical systems based on isomorphism, isomorphism invariants play 

an important role. In this paper, we have introduced the weighted information function for dynamical 

systems compact metric spaces. It is a linear functional on 𝐶(𝑋). It is indeed an integral function. The 

map 𝐼(𝑥,𝑇, 𝜇)is indeed a local information map and so the value 𝐿𝑇 𝑓, 𝜇  may be interpreted as the 

average information of 𝑇weightened by 𝑓. We also generalized the invariance of the local information 

function of a system, under topological isomorphism, to the weighted information function. 
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