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Abstract 
  Many problems in system analysis in real world lead to continuous-domain optimization. 

Existence of sophisticated and many-variable problems in this field emerge need of efficient 

optimization methods. One of the optimization algorithms for multi-dimensional functions is 

simulated annealing (SA). In this paper, a modified simulated annealing named Dynamic Simulated 

Annealing (DSA) is proposed which dynamically switch between two types of generating function on 

traversed path of continuous Markov chain. Our experiments indicate that this approach can improve 

convergence and stability and avoid delusive areas in benchmark functions better than SA without any 

extra mentionable computational cost. 

Keywords: Continuous Global Optimization; Dynamic Simulated Annealing. 

1. Introduction 

Global optimization or global search have been used for solving problems and obtain near-global 

solution. Global optimization has functionality in many types of problems such as economic, 

engineering and social systems for cost minimization or profit maximization. Existence of 

complicated problems which usually lead to multi-dimensional functions with different behavior, 

emerge need of many optimization methods. Optimization is a process of improving the fitness of 

at-hand solution in regard to a target fitness function for a predefined purpose. Simulated annealing 

is one of these approaches which guarantee achieving of solution in continuous-domain search 

space. Simulated annealing (SA) has ability to escape local traps due to its stochastic acceptance 

function. SA can be introduced as a continuous Markov chain from beginning to the optimum 

solution [1]. 

For making the global optimum certain, the chance of choosing any state of Markov chain must be 

none-zero; and in SA this condition is satisfied as long as cooling procedure is slow enough. One 

criticism that has been imported to SA is that it does not support the parallel functionality, ergo 

parallel versions of SA have been proposed to overcome this objection [2]. The other criticism to 
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SA is lack of memory, hence memory added to SA in [3]. Although, even serial and memoryless 

variants of SA has better performance than Genetic algorithm in practice [4, 5]. In this work, an 

extension to the standard SA have been proposed, which dynamically change generation function 

based on progress of solution. 

2. Simulated Annealing 

Boltzmann annealing was essentially introduced as a Monte Carlo importance-sampling technique 

for doing large-dimensional path integrals arising in statistical physics problems [6]. Simulated 

annealing is a global search and optimization method that is based on the principles of 

thermodynamics and from statistical standpoint it ensures achieving global optimum if temperature 

decrease rate (temperature schedule) is chosen properly [8]. This method has extensive 

functionality in both continuous and discrete regions, simultaneously [4, 5]. SA choose a point 

with a density function g(x) around current state x*. Then, the cost of new state is calculated by 

cost function, and at last an acceptance function h(x) decides to accept this state or not. It is clear 

that if the new state has lower cost, it has a greater chance to be accepted. At the beginning of the 

search, range of possible new points is wide and chance of acceptance and denial is almost equal 

due to high temperature. With decrease of temperature, range of new state will be decreased which 

leads to an increase in resolution. In the next part, we will explain how SA works and example 

some of its variants. 

     2.1. Boltzmann (Gaussian) Annealing. 

Boltzmann or standard SA performs as follows [4, 5]: 

1. Choose initial temperature (T1) and initial point (x1). 

2. Let k=1 , x*=x1 

3. Generate a new point x randomly in neighborhood of x* with probability density 

function g(x;x*), 
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4. Calculate cost of x using cost function E(x). 

5. Accept new point x with acceptance probability h(x) 
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6. Let k=k+1. 

7. Reduce temperature by the following temperature schedule: 

0
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T
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(4) 

8. If ending criteria is met, then STOP, else go to step 3. 

In this algorithm, D is dimension of x or dimension of the search space. ||x-x*|| is the Euclidian 

distance of two D-dimensional x and x* vectors. Acceptance function h(x) is usually in the 

mentioned form which is called Barker function, but there is another function which is called 

Metropolis function and is legacy of Monte Carlo algorithm [1, 4]. 
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In standard SA or Boltzmann Annealing, Gaussian or normal probability density function 

(PDF) is used as generating function and if temperature schedule is not faster than the formula 

in step 7, it is guaranteed that the global optimum will be found. It is obvious that the 

decreasing rate of the temperature is too slow and therefore reaching a good solution requires 

many iterations, that is why faster variants of SA has been proposed. 

2.2. Fast (Cauchy Annealing) 

The simulated annealing methodology can be readily extended to use any reasonable PDF or 

generating function g(x), without relying on the principles underlying the ergodic nature of 

statistical physics. Specifically, using Cauchy distribution as generating function has some 

definite advantages over Gaussian one (Boltzmann form) [1]. This approach called fast  

 

TABLE I.  BENCHMARK FUNCTIONS 

Title Function Range 
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annealing or Cauchy annealing due to its PDF. An Isotropic Cauchy distribution PDF for a 

D-dimensional domain is as follows [9]. 
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To ensure reaching global optimum, the temperature schedule shall not be faster than below: 
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3. Dynamic Simulated Annealing 

In this approach, instead of exploiting Gaussian or Cauchy distributions, a dynamic combination of 

them have been used. In fact a switching criterion has been proposed to determine which 

distribution should be used at each step. This parameter is called SW and shows amount of relative 

dispersion of produced vectors in search space in latest steps; in other words as relative dispersion 

rise, SW will rise concordantly. SW is defined as follows: 
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In above equations MED, MAD and DEV are vectors, ε is a very small positive quantity. d
kx ,

dMED and dMAD are d-th element of kx , MED and MAD vectors respectively. Furthermore, kx  is 

k-th point in D-dimensional space and generated in k-th iteration of SA algorithm. ||SW|| indicates 

Euclidean norm of SW vector in ℝ𝐷 and MED is a D-dimensional vector whose elements are 

median of corresponding elements of latest M point. Elements of MAD vector is Median Absolute 

Deviation of corresponding dimension of given vectors. To determine when the generating 

function is switched, a threshold parameter θ is used. The following heuristic rule have been 

proposed to determine the generating function (distribution selection). These properties plus the 

good properties of previous SA including guaranteed reach to the global optimum, makes the 

dynamic simulated annealing a proper approach for global optimization. Parameter θ or switch 

threshold is experimentally determined and in this paper it is equal to 1.  

(9) 
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TABLE II.  CONVERGENCE RESAULTS OF F1 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F1(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 1.0022E-02 1.3231E+01 1.9644E+00 2.6656E+00 

FA (Cauchy) 9.7110E-05 1.1155E+01 2.8121E-01 1.5707E+00 

DSA 1.0934E-04 3.3229E-01 9.9068E-02 8.6642E-02 
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TABLE III.  CONVERGENCE RESAULTS OF F2 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F2(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 4.6755E-02 7.4573E+00 3.2503E+00 1.9507E+00 

FA (Cauchy) 2.0856E-03 9.9763E+00 1.1956E+00 1.6176E+00 

DSA 4.7882E-03 9.0036E+00 2.1472E+00 2.2066E+00 

 

TABLE IV.  CONVERGENCE RESAULTS OF F3 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F3(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 7.9053E-02 2.2289E+01 1.0211E+01 7.8159E+01 

FA (Cauchy) 2.6156E-03 2.0053E+01 1.2086E+01 9.3443E+00 

DSA 1.5715E-04 2.0046E+01 8.9881E+00 9.2223E+00 

 

TABLE V.  CONVERGENCE RESAULTS OF F4 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F4(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 1.3448E+00 3.9654E+01 1.4267E+01 9.8273E+00 

FA (Cauchy) 6.7997E-02 6.2810E+00 1.1595E+00 1.2110E+00 

DSA 6.5608E-02 4.3928E+00 1.2115E+00 9.3918E-01 

 

TABLE VI.  CONVERGENCE RESAULTS OF F5 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F5(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 1.8544E-02 6.817E+00 1.8571E+00 1.8571E+00 

FA (Cauchy) 3.5222E-04 6.1917E-02 1.6375E-02 1.5086E-02 

DSA 1.4508E-04 6.4603E-02 1.1898E-02 1.3164E-02 
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TABLE VII.  CONVERGENCE RESAULTS OF F6 FOR 100 INDEPENDENT RUNS 

Optimization method 

f(x)=F6(x) 

Minimum (best) Maximum (worst) Mean Standard deviation 

BA (Gaussian) 1.2030E-03 8.2380E+00 1.4368E+00 1.4974E+00 

FA (Cauchy) 5.5286E-04 1.5926E-01 2.5823E-02 3.0358E-02 

DSA 2.6052E-04 5.8822E-02 1.2160E-02 1.3367E-02 

Note: The best results are in boldface 

 

4. Simulation and Results 

For evaluation of methods, we used six benchmark functions mentioned in Table I. The used 

benchmark functions includes Rosenbrock, Rastrigin, Ackley, Griewangk, Sphere and ‘Sum of 

Different Powers’ functions. The Rosenbrock function (a.k.a Rosenbrock valley or banana 

function) is a classic benchmark which has a hard-to-reach optimum placed in a long, narrow, 

parabolic-shaped flat valley. Sphere function or first De Jong’s function is simplest test function. It 

is unimodal, convex and continuous. Rastrigin function is based on sphere function with an 

additional cosine term to produce frequent local minima [10]. Griewangk function is similar to 

Rastrigin and possess many local minima spread wide and regularly. Coefficient of sigma controls 

the amplitude of ripples in its surface. Ackley’s function is also a multimodal test function which 

can be parameterized vastly based on test requirements. We use recommended default coefficients 

mentioned in [10]. Sum of different powers function is a good sample of unimodal function which 

has a harder path to reach the global optimum in comparison to famous sphere function. All the 

test functions used here have global optimum equal to f(x) =0 which is located in origin of 

coordinates. Standard range for each function is mentioned in Table I. It should be noted that the 

problems here are two dimensional. 

For detracting effect of transient random good solutions, we evaluate each condition with 50 

independent runs with chaotic initial seed for generating random numbers while start point is 

identical for all methods per run. The results are shown in Tables II to VII based on test function 

on 1000 iteration. Minimum and maximum solutions are best and worst solutions among 50 runs. 

Also mean value and standard deviation of the solutions are reported. As it is obvious in most 

cases, proposed approach possesses better convergence. 

 

  
Fig. 1. Results of 2D Rosenbrock function Fig. 2. Results of 2D Rastrigin function 
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Fig. 3. Results of 2D Ackley function Fig. 4. Results of 2D Griewangk function 

  
Fig. 5. Results of 2D Sphere function Fig. 6. Results of 2D Sum of Products function 

 

5. Conclusion 

Simulated annealing is a powerful global optimization methods which from statistical standpoint, 

ensures achieving global optimum. All simulated annealing variants usually uses a fixed generating 

function for generating new points. In this paper a novel approach have been proposed which 

exploits a dynamic generating function which fits itself with progress of solving procedure. 

According to flexibility of this ‘dynamic’ method, it can be adjoined to any other variants of SA. 

Results of this approach in practice shows that it possesses better convergence and evasion of traps 

regarding of the fact that it switches between generating functions. Furthermore this approach 

imposes no mentionable extra time and computation complexity. 
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