
Journal of mathematics and computer science 10 (2014), 100-112 

 

On Bivariate Haar Functions and Interpolation Polynomial  
 

R. Dehghan, K. Rahsepar Fard 

Department of Mathematics, Islamic Azad University, Masjed Soleiman branch, Masjed Soleiman, Iran. 

 

Department of Computer Engineering, University of Qom, Qom, Iran 

E-mail: rezadehghanamoli@gmail.com 
Article history: 

Received    February 2014  

Accepted    March 2014 

Available  online  March 2014 

Abstract 

In this paper we consider bivariate Haar series in general case, where bivariate Haar functions are defined on the 

plane. Here we define a new bivariate Haar function that is included two independent variables.  Indeed we 

presented the new function that is not in previous researches.  Mathematicians have applied bivariate Haar function 

based on tensor product that is a special case of bivariate case.  In this research we define the Haar functions by 

applying another way. Therefore, we define the Haar function differently. And also, the interpolation polynomial 

with two variables is explained. Then we compare two methods for calculating the approximating function. Namely, 

we consider a numerical example for comparing the new approximation to bivariate interpolation polynomial. In this 

example we compute interpolation polynomial by points with Newton lattice form. The calculations indicate that the 

accuracy of the obtained solutions is acceptable when the number of calculation points is small. 

 

Keywords: Bivariate Haar function, Bivariate interpolation polynomial, Haar Fourier coefficient, Haar series 

1. Introduction 

The wavelets technique allows the creation of very fast algorithms when compared to algorithms which 

are ordinarily used. Various wavelet basis are applied, we can see some of wavelet applications in [11-

13]. One of the wavelet basis is Haar wavelet where we use of this kind of base on Bivariate interpolation 

polynomial.Before defining the Haar system, we introduce the standard notation for binary intervals, 

which will be used throughout the rest of the paper. A binary interval is an interval of the form 

   
𝑖−1

2
𝑘 ,

𝑖

2
𝑘 , where 𝑖 = 1, 2, … , 2𝑘 , 𝑘 = 0,1, …. 
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2. . MATERIALS AND METHODS 

2.1. Main properties of the Haar System  

 

The Haar functions are the most elementary wavelets. They still illustrate in the most direct way some of 

the main features of wavelet decompositions. Here, we shall consider in some detail the properties that 

make them suitable for numerical applications. 

Let 1 be the set of (𝑛, 𝑘) such that ).0,0(:,...,1,0,21 1  nk n
Denote   
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Such intervals are named dyadic. Clearly, if two dyadic intervals intersect, then one of them contains the 

other. The inclusion 
k q

n p
   is equivalent to conditions 

, 2 ( 1) 2 .p n p np n k q k      

Put 
0( ) 1.
0

t   If ( , ) ,
1

n k   then  

𝜒𝑛
𝑘 𝑥 =  

1, 𝑡 ∈ Δn+1
2k−1       

−1, 𝑡 ∈ Δn+1
2k        

0, 𝑡 ∈ Δn
k        .

  

The value of ( )k t
n

 in a discontinuity point t is defined as     

1
( ) lim ( ( ) ( )).

20

k k kt t t
n n n

    


   


 

If 𝑘 =  1 or 𝑘 =  2𝑛 , then the value ( )k t
n

 in 0 and 1 is defined so that ( )k t
n

  is continuous in 0 and 1. 

The set of functions ( ), ( , )
1

k t n k
n

   is called the Haar system (for convenience show by H.s.).  

The one-to-one mapping of   on the set of integers is realized by the following: 

(0,0) 1,(2 , ) 2 , ( , ) .
1

n nk m k n k      
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The system  2
2 ( ), ( , )

n kx t n k
n

 is orthonormal. 

Let 2 , ( , ) .
1

nm k n k    Denote by mA  the set of intervals: 

 1 (0,1) ;A 
 

1 2 2 1 2

1 1 1
{ , ,..., , ,..., }.

nk k

m n n n n n
A



        (1)
 

Denote by mF the 𝜎-algebra generated by partitioning mA . Clearly, each function { } (1 )i i m   is 

measurable with respect to mF and mF  is the smallest 𝜎 -algebra.  Given 𝑚 ≥  1, the polynomial 

1

( ) ( ), 1
m

j j

j

x t c t m


 
           

 

with respect to the H.s. is a step function. It is a constant on each interval from mA . It satisfies the 

condition 

1
( ) ( ( ) ( )) (0,1),lim

2 0
x t x t x t t 


     


 

and x(t) is continuous in 0 and 1. Denote by 𝐷𝑚  the set of such functions. 

Since ∪𝑚 𝐷𝑚  is dence in 𝐿𝑝  , 1 p   , then the Haar system is a complete one in 𝐿𝑝 .  

Given ,
1

x L the Fourier - Haar coefficients are defined by 

1( ) ( ) ;
01

c x x s ds   

1( ) ( ) 2 ( ) ( )
0,

n kc x c x x s s dsx nm n k
   2 1 2

1 1

2 ( ( ) ( ) )k k

n n

n x s ds x s ds

 

 
    

12 ( ( ) ( 2 )) ,2 1
1

n nx s x s dsk
n

       

where 2 , ( , ) .
1

nm k n k    

Using standard arguments we can obtain the representation of the partial sum of Fourier - Haar series 

1( ): ( ) ( ) ( , ) ( ) ,
0

1

m
S x t c x X t K t s x s ds

m i i m
i

  
    (3)
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where  
1

( , ) ( ) ( ).
|| ||1 1

m
K t s X t X s

m i iX Li i

 


 

One of the main properties of the H.s. is that it forms a basis in C, (1 )L p
p

   . Any function 𝜒𝑛(𝑡) 

(𝑛 >  1) is discontinuous. Therefore if [0,1],x C  then the convergence 𝑆𝑛(𝑥) to x is meant in .L  

Theorem 2.1.1. If [0,1],x C  then the corresponding Haar series is convergence to the function f. 

For proof of this Theorem see [17]. 

2.1.1  Bivariate Haar systems in a special case (Tensor product in dimension two)  

Frequently, the coefficients of an everywhere convergent series ( )a f x
n n

n
 with respect to some 

orthonormal system of functions { ( )}f x
n

are reconstructed by its sum ( )S x with the help of the usual 

Fourier formulas  

( ) ( ) .a S x f x ds
n n
                                                                                                        (4) 

Since the function ( )S x is not necessarily sum able, we assume that the integral in formula (4) is not the 

Lebesgue one. For example, the coefficients of an everywhere convergent trigonometric series are 

reconstructed with the help of the so-called MT integral ([19]). 

In this section, we consider the problem of reconstruction of coefficients of the bivariate Haar series. 

Since there are different definitions of the (one-dimensional) Haar functions ([10]), we note that we use 

the standard definition ([6]) which implies that the Haar system is complete in [0,1]C , i.e., we assume 

that 1( ) 1 [0,1];X x on if 2 , 0,1 2 ,k kn i k i      , then 

𝜒𝑛 𝑥 =

 
  
 

  
 2𝑘 2 , 𝑥 ∈ (

2𝑖 − 2

2𝑘+1
,
2𝑖 − 1

2𝑘+1
)

−2𝑘 2 , 𝑥 ∈ (
2𝑖 − 1

2𝑘+1
,

2𝑖

2𝑘+1
)  

0, 𝑥 𝑛𝑜𝑡 𝑖𝑛  
2𝑖 − 2

2𝑘+1
,

2𝑖

2𝑘+1
 .

  

 We assume that at points and 1 the function 𝑋𝑛(𝑥) equals the right and left limits, respectively, and at 

other points of the segment [0,1] it equals the arithmetic average of the right and left limits. 

In [15] the p-regular convergence is considered, i. e., a convergence of the Haar series 

( , ) ( ) ( ),
, , ,

1 1 1 1

a x y a x y
n m n m n m n

mn m n m

 


   
   

   
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such that the sequence of the rectangular partial sums ( , ) ( , )
, , ,

1 1

S x y a x y
N M n m n m

n m


 

  
 

verges to ( , )S x y  as min( , )M N   

and min( / , / ) .N M N N p   

 

 

2.2. Main properties of the multivariate interpolation problem 

This section is intended to introduce multivariate polynomial interpolation.   

First consider interpolation problem in univariate case. In this case, this problem has a well developed 

theory, see [4] and [5] for conditions ensuring its solvability.  

2.2.1  Introduction to the multivariate case  

Definition 2.2.1.1 The Lagrange interpolation problem (𝛱𝑛
𝑘 , 𝒳𝑠) is called correct (poised), if for any 

values {𝑐1, ⋯ , 𝑐𝑠} there exists a unique polynomial 𝑝 ∈ 𝛱𝑘
𝑛 , satisfying the conditions  

 𝑝(𝑥(𝑖)) = 𝑐𝑖 , 𝑖 = 1, … , 𝑠. 

In other words, the Lagrange interpolation problem is to find a unique polynomial 

 𝑝(𝑥) =  ‍|𝛾|≤𝑛 𝑎𝛾 ⋅ 𝑥𝛾 ∈ Π𝑛
𝑘  

such that 

 𝑝(𝑥(𝑖)) =  ‍|𝛾|≤𝑛 𝑎𝛾 ⋅ (𝑥(𝑖))𝛾 = 𝑐𝑖 , 𝑖 = 1, … , 𝑠. (5) 

Thus, the correctness of interpolation means that the linear system (5) has a unique solution for 

arbitrary right hand side values. A necessary condition for this is that the number of unknowns be 

equal to the number of equations: i.e., 𝑠 = 𝑁. 

We know that in this case the linear system (5) has a unique solution for arbitrary values {𝑐1, … , 𝑐𝑠}, 

if and only if the corresponding homogeneous system has only trivial solution. In other words we 

have  

Proposition 2.2.1.2 The Lagrange pointwise interpolation problem (𝛱𝑛
𝑘 , 𝒳𝑁) is correct if and only if   

 ∀𝑝 ∈ Π𝑛
𝑘     𝑎𝑛𝑑    𝑝 𝑥 𝑖  = 0, 𝑖 = 1, … , 𝑁 ⇒ 𝑝 = 0. 

Equivalently: The interpolation problem (Π𝑛
𝑘 , 𝒳𝑁) is not correct if and only if 
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 ∃𝑝 ∈ Π𝑛
𝑘 , 𝑝 ≠ 0    𝑠𝑢𝑐ℎ    𝑡ℎ𝑎𝑡    𝑝 𝑥 𝑖  = 0, 𝑖 = 1, … , 𝑁. (6) 

When the Lagrange interpolation problem for any 𝑁 distinct points in ℝ𝑘  is poised in 𝑉 ⊆ Π𝑘 ,  then 

𝑉 is called a Haar space of order  N. 

Haar spaces exist in abundance for 𝑘 = 1. The situation for 𝑘 > 1 is dramatically different. In this 

case there are no Haar spaces of dimension greater than one. For refinements of this important result 

see [16] 

 For 𝑘 > 1, the Haar space of order 𝑁 of least dimension is yet to be determined and only be 

known for a few special cases.  

2.2. 2 Construction of sets of interpolation points 

Since the poisedness of multivariate polynomial interpolation depends on the geometric structure of 

the points at which one interpolates, there has been interested in identifying points and polynomial 

subspaces, for example Π𝑛
𝑘 , for which interpolation is poised.  

 

2.2.2.1 Regular grids and natural lattices:  

Here we will focus on various methods to choose points 𝑥1, … , 𝑥𝑁  in ℝ𝑘  such that the interpolation 

problem with respect to these points is poised in ℝ𝑘  and moreover the Lagrange formula can be easily 

constructed. Clearly, this requires the following 

 𝑁 = 𝑁𝑘 = d𝑖𝑚Π𝑛
𝑘 =  n+k

k
 . 

The first and most natural approach to choose such interpolation nodes is the triangular grid of the 

unit simplex formed by the points in 
1

𝑛
ℕ0

𝑘,𝑛 . In the bivariate case, this configuration has been 

discussed in classical textbooks on numerical analysis, for example (Gasca and Sauer, 2001). This also 

deals with the more general case of arrays formed by points (𝑥𝑖 , 𝑦𝑗 ),0 ≤ 𝑖 + 𝑗 ≤ 𝑛, where 𝑥𝑖 , 𝑦𝑗 , 𝑖, 𝑗 =

0, … , 𝑛, are two sets of n + 1 distinct points. A Newton formula with bivariate (tensor product) 

divided differences is provided for this case. The bivariate array is triangular when 𝑥𝑖  and 𝑦𝑗  are 

ordered and uniformly spaced.  

It was this subject which apparently motivated the construction in the paper [1], written by 

Chung and Yao. According to [1], a set of 𝑁 points 𝑋 = {𝑥1, … , 𝑥𝑁} in ℝ𝑘  satisfies the GC condition 

(Geometric Characterization) if for each point 𝑥𝑖  there exist hyperplanes 𝐺𝑖𝑙 , 𝑙 = 1, 2, … , 𝑛, such that 

𝑥𝑖  is not on any of these hyperplanes, and all points of 𝑋 lies on at least one of them, i.e., we have  

Theorem 2.2.2.1.1 let  𝑛 and 𝑘 be given. Let a set of  𝑁 nodes  𝑥1, … , 𝑥𝑁be given in ℝ𝑘 . If there exists 

a hyperplane 𝐻𝑖𝑗  in ℝ𝑘 , with 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑛, such that  
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 𝑥𝑗 ∈∪𝑣=1
𝑛 𝐻𝑖𝑣 ⇔ 𝑗 ≠ 𝑖, (1 ≤ 𝑖 ≤ 𝑁) 

then arbitrary data on the node set with Π𝑛
𝑘  is correct.   

For example, let 𝑟0, 𝑟1, … , 𝑟𝑛+1  be 𝑛 + 2  straight lines in ℝ2  such that any two of them 𝑟𝑖 , 𝑟𝑗  

intersect at exactly one point 𝑥𝑖𝑗  and these points have the property that 

 𝑥𝑖𝑗 ≠ 𝑥𝑘𝑙 ⇔ {𝑖, 𝑗} ≠ {𝑘, 𝑙}. 

Then the set 

 𝑋 = {𝑥𝑖𝑗 : 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1} 

satisfies the GC condition and formula (3.3.2.1) reads as  

 𝑝 =  ‍𝑛
𝑖=0  ‍𝑛+1

𝑗=𝑖+1 𝑓(𝑥𝑖𝑗 )  ‍𝑛+1
𝑘=0,𝑘≠𝑖,𝑗

𝑟𝑘

𝑟𝑘(𝑥𝑖𝑗 )
. (7) 

The set X is called a natural lattice of order n. 

2.2.3  The Newton lattice 

 Let a number 𝑘 ∈ ℤ+ and arbitrary points  𝑎0, … , 𝑎𝑘 ∈ ℝ𝑘  be given such that 𝑣𝑜𝑙𝑘(𝑆) ≠ 0, where 

𝑆 is the simplex [𝑎0, … , 𝑎𝑘 ].      

 

Figure  2.2.3.1: The Newton lattice 𝚲𝑵(𝟓) inside the triangle [𝒂𝟎, 𝒂𝟏, 𝒂𝟐]. 

 

It is convenient for us to introduce the Newton lattice for Π𝑛−1
𝑘  inside the simplex 𝑆 as follows: 

 Λ𝑁(𝑛) = {𝑥𝛾 = 𝑎0 +
1

𝑘
 ‍𝑘

𝑖=1 𝛾𝑖(𝑎𝑖 − 𝑎0): 𝛾 ∈ Γ}, 
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where Γ = {𝛾: 𝛾 = (𝛾1, … , 𝛾𝑘) ∈ ℤ+
𝑘 , |𝛾| ≤ 𝑛 − 1}. 

 

 

3. RESULTS AND DISCUSSION 

Now we consider two intervals same as the above interval on the plane. 

Without loss of generality, let us 

Λ =   𝑛, 𝑚 : ∃𝑘 ∈ ℤ+, 𝑛 = 2
𝑘 + 𝑖, 𝑚 = 2

𝑘 + 𝑗,   𝑖, 𝑗 = 1, … , 2𝑘 , 𝑘 = 0, 1, …  .       (8) 

We only consider the problem where 𝑛, 𝑚 ∈ Λ.  

Denote by  𝜒𝑛,𝑚   the Haar function of two variables in dimension two, where 𝑚, 𝑛 are positive integers.   

Thus, by the above mentioned we have the following definitions  

𝜒1,1 𝑥, 𝑦 = 1, 𝑥, 𝑦 ∈  0, 1 , 

𝜒2,2 𝑥, 𝑦 =

 
 
 
 
 

 
 
 
 1,                          0 ≤ 𝑥, 𝑦 ≤

1

2

1, 0 ≤ 𝑥 ≤
1

2
,
1

2
≤ 𝑦 ≤ 1 

−1,
1

2
≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤

1

2

−1,                     
1

2
≤ 𝑥, 𝑦 ≤ 1.  

  

According to (19) the functions  𝜒1,2,𝜒2,1, 𝜒2,3, 𝜒3,2 can not be defined.  

In interval  0, 1 × [0, 1] we also define: 𝜒3,3(𝑥, 𝑦) 

0 0 0 0 

0 0 0 0 

1 -1 0 0 

1 -1 0 0 

 

𝜒3,4(𝑥, 𝑦) 
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1 -1 0 0 

1 -1 0 0 

0 0 0 0 

0 0 0 0 

 

𝜒4,3(𝑥, 𝑦) 

0 0 1 -1 

0 0 1 -1 

0 0 0 0 

0 0 0 0 

 

𝜒4,4(𝑥, 𝑦) 

0 0 0 0 

0 0 0 0 

0 0 1 -1 

0 0 1 -1 

 

 

By this way we can define the other functions. 
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Now, suppose that the function f is defined on [0,1].  An approximation of a function f  is based on Haar 

function is as follows: 

𝑓 𝑥, 𝑦 ≅   𝑎𝑛,𝑚𝜒𝑛,𝑚 ,𝑁
𝑚=1

𝑀
𝑛=1  (20) 

where M, N are big possitive numbers and  𝑎𝑛,𝑚 s are Haar Fourier coefficient. Namely,  

𝑎𝑛,𝑚 =  𝑓 𝑥, 𝑦 

 0,1 ×[0,1]

. 𝜒𝑛,𝑚  𝑥, 𝑦 𝑑𝐴. 

 Note that each bracket is a collection in a same power of number two.  

Based on chapter two we conclude that  

Theorem 3.1 Suppose 𝑓 ∈ 𝐶( 0, 1 2) then 

𝑙𝑖𝑚
𝑛,𝑚→∞

  𝑎𝑛,𝑚 𝜒𝑛,𝑚  𝑥, 𝑦 = 𝑓(𝑥, 𝑦)

𝑚𝑛

,  𝑥, 𝑦 ∈  0, 1 ×  0, 1 . 

It is easily seen that the system of {𝜒𝑛,𝑚 }𝑛,𝑚=1
∞  is orthonormal, i.e.,  

 𝜒𝑛,𝑚  𝑥, 𝑦 . 𝜒𝑝,𝑞 𝑥, 𝑦 

[0,1]2

𝑑𝑥𝑑𝑦 = 𝛿𝑛,𝑚,𝑝,𝑞 ,  

where 𝛿𝑛,𝑚,𝑝,𝑞  is Kronecker delta. 

According to (2) the function f is approximated by sixth first terms, namely 

𝑓 𝑥, 𝑦 ≈   [𝑎1,1 𝜒1,1 𝑥, 𝑦 ] + [𝑎2,2 𝜒2,2 𝑥, 𝑦 ] +  𝑎3,3 𝜒3,3 𝑥, 𝑦 + 𝑎3,4 𝜒3,4 𝑥, 𝑦 + 𝑎4,3 𝜒4,3 𝑥, 𝑦 +

𝑎4,4 𝜒4,4𝑥,𝑦            (21) 

Now we bring an example of this function and approximated also by bivariate interpolation polynomial. 

Example 3.2 Let 𝑓(𝑥, 𝑦) =
1

 1+𝑥2 .(1+𝑦2)
 be a function. Then we decide to approximate f by Haar and 

interpolation polynomial. 

 Using Mathematica program the Haar Fourier coefficients are as follows:  

𝑎11 =
𝜋2

16
,     𝑎22 = −

1

16
𝜋 𝜋 − 8ArcCot 2  , 

 

𝑎33 =
ArcTan 

219336

2076473
 ArcTan 

4

3
 

4  2
, 𝑎34 =

ArcTan 
219336

2076473
 ArcTan 

24

7
 

8  2
, 
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𝑎43 =
ArcTan[

1476984

9653287
]ArcTan[

24

7
]

8  2
,  𝑎44 =

ArcTan[
1476984

9653287
]ArcTan[

4

3
]

4  2
. 

 

By approximating  the above coefficients and formula (21) we have  

 

𝑝 𝑥, 𝑦 ≈  0.61685 . χ11
 x, y +  0.111446. χ22

 x, y +  0.0172512. χ33
 x, y +  0.0119716. 𝜒3,4 𝑥, 𝑦 

+  0.0172711𝜒4,3 𝑥, 𝑦 + 0.0248879. 𝜒4,4 𝑥, 𝑦 . 

Therefore  

𝑝  
1

4
,
3

4
 ≈  0.740268. 

The error is  0.602353 − 0.740268 =  0.137915. 

This example shows that the problem is numerically stable. 

Now, for instance, consider six points 

 𝟎, 𝟎 ,  𝒂, 𝟎 ,  𝒂 +
𝟏

𝟐
, 𝟎 ,  𝟎, 𝒂 ,  𝒂, 𝒂 ,  𝟎, 𝒂 +

𝟏

𝟐
 , 

where 0 < 𝑎 <
1

2
. 

The above points have Newton lattice form.  Thus, the interpolation polynomial coincide with these 

points is unique. Again by applying Mathematica program the polynomial is 

𝑝(𝑥, 𝑦) = 1 + (−
−5 − 14𝑎 − 7𝑎2 + 6𝑎3 + 8𝑎4

𝑎3(5 + 4𝑎 + 4𝑎2)
)𝑥 + (−

−5 − 14𝑎 − 7𝑎2 + 6𝑎3 + 8𝑎4

𝑎3(5 + 4𝑎 + 4𝑎2)
)𝑦

+
2(−5 − 4𝑎 + 𝑎2 + 2𝑎3)

𝑎3(5 + 4𝑎 + 4𝑎2)
𝑥2 + (−

2 + 2𝑎2 − 𝑎6

𝑎4(1 + 𝑎2)2
)𝑥 ∗ 𝑦 +

2(−5 − 4𝑎 + 𝑎2 + 2𝑎3)

𝑎3(5 + 4𝑎 + 4𝑎2)
𝑦2 

 

p  a, a +
1

2
 = −

10 + 18𝑎 + 26𝑎2 + 18𝑎3 + 16𝑎4 + 2𝑎5 + 3𝑎6 − 4𝑎7 − 4𝑎8

2𝑎3(1 + 𝑎2)2(5 + 4𝑎 + 4𝑎2)
. 

If 𝑎 =
1

4
,  then 

 p  
1

4
,
3

4
 = −

539726

7225
≅ −74.7025605536332. 
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Note that this is far from to exact solution, i.e., 
256

425
=  0.602353. 

This means that the problem is not stable. 

 

 

 

4. CONCLUSION  

In this work, the Haar wavelet approach for numerical solution of the system of interpolation problem 

and the system of Haar Fourier series are presented, Illustrative examples are included to demonstrate 

the validity and applicability of the technique. The calculations indicate that the accuracy of the 

obtained solutions is quite high even when the number of calculation points is small. 
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