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Abstract 

Let T  be an arbitrary time scale that is unbounded above. In this paper, we will present some stability 

criteria for first order delay differential equations  

 ))(()()()(=)( txtbtxtatx   

using their asymptotic behavior. 
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1. Introduction 

Time delays occur in many social and natural phenomena, often in a form of time gap between an 

action/decision and the corresponding effects. Time delays also exist in different systems such as 

mechanical systems, chemical systems, etc. 

A major class in dynamical systems is delay differential equations. These equations particularly arise in 

control problems. In a control problem, the state of the system is continuously monitored by a controller 

and the system is adjusted after each monitoring process, based on the observations. Here, as a result of 

the gap between monitoring and adjustment, a considerable time delay can occur. 

A good example is the Insulin-Glucose system. The most important factors in this system are the amount 

of Insulin, Glucose and their alteration rate. The system is represented with a delay differential equation 

with two delays. Writing the mass conservation law for both Insulin and Glucose, we have:  
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In this relation we present the production of Hepatic Glucose with )(5 If , that is related to blood Insulin, 

the rate of glucose consumption with )(2 Gf  and the absorption with respect to Insulin with )()( 43 IfGf . 

2. Some Preliminaries 

2.1 Time Scale 

  

Despite the great importance of studying time delays, the theory of time delay equations had not been 

developed until 1990. The study of time delay systems which was very difficult in the infinite-

dimensional space, became easy after developments in nonlinear dynamics. 

The theory of time scales was introduced by Stefan Hilger in 1988. His main purpose was to unify 

continuous and discrete analysis (see [1]). This theory is able to unify the theories of differential 

equations and difference equations. Besides, it can extend those classical cases to cases in between.  

Definition 2.1 ( time scale). A time scale T  is an arbitrary nonempty closed subset of R . 

The cases when this time scale is equal to the real numbers or to the integer numbers represent the 

classical theories of differential and of difference equations. Many other interesting time scales exist, and 

they give rise to plenty of applications. 

A book on the subject of time scale by Bohner and Peterson [2,9] summarizes and organizes much of time 

scale calculus. For the notions used below we refer to [2-10]. In the next section we recall some of the 

main tools used in the subsequent sections of this paper.  

Definition 2.2 let T  be a time scale. For Tt  we define the  forward jump operator TT :  by  

 }.>:{inf:=)( tsTst   

Definition 2.3 let T  be a time scale. For Tt  we define the  backward jump operator TT :  by  

 }.<:{sup:=)( tsTst   

Definition 2.4 If tt >)( , we say that t  is  right-scattered, while if tt <)(  we say that t  is  left-

scattered.  
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Definition 2.5 If )(sup< Tt  and tt =)( , we say that t  is  right-dense, and if )(> Tintt  and tt =)(  we 

say that t  is  left-dense.  

Definition 2.6 The  graininess function RT :  is defined by  

 .)(:=)( ttt   

Definition 2.7 If T  has a left-scattered maximum m, then mTT = . Otherwise, TT = . In summary,  
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Definition 2.8 If RTf :  is a function, when we define the function RTf :  by  

 ).(=))((=)( tfotftf   

Example 2.9 In the following table, we get some examples:  

 scaletime             

RT =    tt =)(    tt =)(    0=)(t  

ZT =    1=)( tt    1=)( tt    1=)(t   

],[= baT    tt =)(  tt =)(    0=)(t   

hZT =   htt =)(   htt =)(    ht =)(   

 

Definition 2.10 Assume RTf :  is a function and let Tt . Then, we define )(tf   to be a number 

(provided it exists) with the property that given any 0> , there exist a neighborhood U  of t, such that  

 .|)(||])()[()]())(([|            ststtfsftfUsTt     

We call )(tf   the  delta (or Hilger) derivative of f  at t .  

Theorem 2.11 (see [2]). Assume RTf :  is a function and let Tt . Then we have the following: 

1. If f  is differentiable at t , then f  is continuous at t . 

2. If f  is continuous at t  and t  is right-scattered, then f  is differentiable at t  with  

 .
)(

)())((
=)(

t

tftf
tf


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3. If f  is right-dense, then f  is differentiable at t  iff the  
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exists as a finite number. In this case  
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4. If f  is differentiable at t , then  

 ).()()(=))(( tfttftf    

Definition 2.12 A function RTf :  is called  regulated provided its right-sided limits exist (finite) at all 

right-dense points in T  and its left-sided limits exist (finite) at all left-dense points in T .  

Definition 2.13 A function RTf :  is called  rd-continuous provided it is continuous at right-dense 

points in T  and its left-sided limits exist (finite) at all left-dense points in T . The set of rd-continuous 

functions RTf :  will denoted by )(TCrd .  

Definition 2.14 A function RTf :  is called  regressive  

 0.)()(1  tft  

The set of all function RTf :  that are regressive will be denoted by R . Also the set of all positively 

regressive function, that is  

 }  0,)()(1  :  { TforallttftRf    

will be denoted by R .  

Definition 2.15 If Rp , then we define the exponential function by  

 )(}))(({exp=)(:=),( 0)(

0

0 tyssptytte s

t

t
p    (3) 

 for all Tts , , where )(zh  is the cylinder transformation, which is given by  

 













0,

0,
)1(

=)(

hz

h
h

hzLog

zh  

Theorem 2.16 ( Mean Value Theorem(see [2])). Let f  be continuous on ],[ dc  and delta-differential on 

),[ dc , where Tdc , , dc < . Then there exist ),[, dcba   such that  
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Theorem 2.17 ( Chain Rule(see [2])). Assume that RTf :  is increasing, )(:= TfT  is a time scale and 

let RTg := . If f  and ))((
~

tfg  exist for all Tt , where " 
~

" is the delta-derivative on T , then  

).())((=)()(     , 
~

tftfgtgofTt   

Theorem 2.18 ( Substitution(see [2])). Let )(1 TCf rd  be an increasing function, )(:= TfT  be a time 

scale and let )(TCg rd . Then  
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Theorem 2.19 (see [2]). Let rdCfy ,  and Rp . Then  

 ).()()()(     tftytptyTt    

implies  
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2.2 Stability 

 

In [3] M. Adivar and Y. Raffoul represent some stability criteria for first order delay differential equations  

                   ,)())(()()()(=)( ttxtatxtbtx      (4) 

with the use of Lyapunov theorem and fixed point theory. Also, Kipnis and Levitskaya in [4], present 

some stability criteria for first order differential and difference equation. 

First, we get some definitions for the stability of solutions of an arbitrary differential equation.  

Definition 2.20  Let )(tx  be a solution of the system  

)())(()()()(=)( ttxtatxtbtx     

 we say that )(tx  is asymptotically stable if  

                              0=)(lim tx
t 

   (5) 
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2.3 The Asymptotic Behavior 

Throughout the paper, we suppose that the time scale under consideration is not bounded above, i.e. 

=supT . 

First, we are looking for some relations to study stability of solutions of first order delay differential 

equations. Next, we introduce some auxiliary functional relations which turn out to be of great importance 

in the asymptotic investigation of  

 )).(()()()(=)( txtbtxtatx   

We consider the equation  

                  1,)(=))((     ,  ttTt   (6) 

and the inequality  

                 ).(|)(|))((|)(|     , ttattbTt    (7) 

The simple result ensuring the existence of a solution of (6) have certain delta-differential properties. 

Proposition 2.21  (see [5]). Assume that the function )(1 TCrd  satisfies tt <)(  for all Tt ,   is 

positive and non increasing on ),[ 0 t  for some Tt 0  and let TT =)( . Then there exist an unbounded 

solution ),([ 0
1  tCrd  of (6) whit a positive and non increasing delta-derivative on )),([ 0 t .  

   The question of the existence of a positive solution   of (7) having certain additional properties can be 

dealt with similarly. In particular, if a  and b  are nonzero constant functions, then (7) becomes  

              )(||))((||     , tatbTt    (8) 

and )(|=|)( t

a

b
t  , where   is a solution of (6), and this defines the positive function satisfying (8). 

Consider the following equation:  

            )),(()()()(=)(     , txtbtxtatxTt    (9) 

J. Cermak and M. Urbanek have shown the following theorems and corollaries about asymptotic behavior 

of solutions of (9) in [5]: 

Theorem 2.22  (see [5]). Consider Equation (9), where ),(,, TCba rd  0)(0,>)( tbta  for all Tt  and 

let TT :  be increasing on T  such that tt <)(  for all Tt  and  =)(lim tt  . Further assume that  

 

          

,<))(),((|)(|     ,
0

0  


tttetbTt a
t

  (10) 

then for any solution x  of (9) there exists a constant RL  such that  
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.=),()(lim 0 Lttetx a
t 

 (11) 

Lemma 2.23  (see [5]). Consider the equation  

                  )),(()(=)(     , tbxtaxtxTt    (12) 

where 0>a , 0b  are real scalars and   is a delta-differentiable on T  such that tt <)(  for all Tt , 

TT =)(  and 1<<0    on T . Let x  be a solution of (12) satisfying (11) with 0=L , i.e.,  

             tastteOtx a          )),,((=)( 0  (13) 

and let   be a positive solution of (8), then  

 
                            

)).((=)( tOtx   (14) 

 Theorem 2.24  (see [5]). Consider equation (12), where 0>a , 0b  are real scalars and   is a delta-

differentiable function on T  such that tt <)(  for all Tt , TT =)(  and 1<<0  
 on T . Then any 

solution x  of (12) satisfies (11). Moreover, if 1x  , 2x  are solutions of (12) satisfying (11) with the same 

limit L . Then  

 ,        ))((=)()( 21  tastOtxtx   

where   is a positive solution of (8).  

Now, we consider the equation (9) with a negative coefficient a . 

Proposition 2.25  (see [5]). Let 
Ra , 0<)( ta  for all Tt  and let   be a delta-differentiable 

function on T  such that tt <)(  for all Tt , TT =)(  and 1<<0  
 on T . Then  

 0,)( t  

on .T   

Using proposition (2.25) we can derive the following consequence:  

Corollary 2.26  (see [5]). Consider Dynamic equation (9), where 
Ra , )(TCb rd , )(1 TCrd , a  is 

non increasing on T , 0<)( ta ,  |)(|0 tb , tt <)(  for all Tt , TT =)( , 
  is positive and non 

increasing on T  and 1<)( 0t
 . If   is a solution of (6) with the properties guaranteed by Proposition 

(2.21)), then  




tasOtx t        ))((=)( )(




 

for any solution x  of (9).  
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3. Stability Results   

Theorem 3.1  Assuming that the assumptions of corollary (2.26) holds and  < , then the solution )(tx  

of (9) is asymptotically stable.  

 proof. According to definition (2.20), we must show that if )(tx  is a solution of (9), then  

0.=)(lim tx
t 

 

From Proposition (2.21) it becomes clear   that is a solution of (6) is an increasing and unbounded 

function. Also according to Corollary (2.26) we know that if  <  then  

.       0)(=)( )( 


tast t




  

Then from Lemma (2.23) we see that  

)).((=)( tOtx   

Thus we have  

0.=)(lim tx
t 

 

Example 3.2 Let RT =  and consider the equation  

)),(()()()(=)( txtbtxtatx   

that   is a differential function on 1  ),,[= 00  ttI , 
1

=)(




t

t
ta  and 

12
=)(

2

2

t

t
tb , and let tt <)( for all 

It ,  =)(lim tt   and 1<)(<0   t  on I . 

It can be shown clearly that 0<)(ta , )(, ICba  , 0)( tb . Also we have  

.=
2

1
|<)(|     ,=1<)(  tbta   

and  < . Thus according to (2.26), 0)( t , as t .  

 tastOtx        0))((=)(       

that is, from Theorem (3.1), )(tx  is asymptotically stable.  
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