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Abstract
In this article we study the nonlinear Robin boundary-value problem

—Ap U = Af (x,u), in Q;
|V [P)—2 g_: + B |uP®2u=0, on Q.

Using the variational method, under appropriate assumptions on f, we obtain a result on existence and
multiplicity of solutions.

Keywords: p(x)-Laplace operator, variable exponent Lebesgue space, variable exponent Sobolev space,
Ricceri’s variational principle.

1. Introduction

The purpose of this article is to study the existence of solutions for the following problem:

Ay = Af (x,u), in Q ;

11
VuP®2 2 4 g @2 =0, on 0Q, oo

where Q ¢ RY (N > 2) is a bounded smooth domain, g—’: is the outer unit normal derivative on 0Q, A is a

positive number, p is a continuous function on Q with p~: = inf LeoP(x) > 1, and f € L*(0Q) with
B~ :=inf, 508 (x) > 0. The main interest in studying such problems arises from the presence of the
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p(x)-Laplace operator div(|Vu|P®~2Vu), which is a natural extension of the classical p-Laplace
operator div(|Vu|?~2Vu) obtained in the case when p is a positive constant. However, such
generalizations are not trivial since the p(x)- Laplace operator possesses a more complicated structure
than p Laplace operator; for example, it is inhomogeneous.

Nonlinear boundary value problems with variable exponent has been received considerable attention in
recent years. This is partly due to their frequent appearance in applications such as the modeling of
electro-rheological fluids [16, 18, 22, 23] and image processing [7], but these problems are very
interesting from a purely mathematical point of view as well. Many results have been obtained on this
kind of problems; see for example [6, 8, 9, 11, 12, 19, 20, 21]. In [8], the authors have studied the case
f(x,u) = |ulP™@~2y, they proved that the existence of infinitely many eigenvalue sequences. Unlike the
p-Laplacian case, for a variable exponent p(x) (# constant), there does not exist a principal eigenvalue
and the set of all eigenvalues is not closed under some assumptions. Finally, they presented some
sufficient conditions for the infimum of all eigenvalues is zero and positive, respectively.

We make the following assumptions on the function f:

a(x)
(F1) |f(x,9)| < a(x) + b|s|*®~1 forall (x,5) € Q x R, where a(x) is in L«@-1(Q),

b = 0 isaconstant, a(x) € C(Q), 1 < a™:=inf ga(x) < a*:=sup ga(x) <p~ andp(x) > N.

(F2) f(x,t) <0,when|t| € (0,1), f(x,t) =m > 0,when t € (ty,®), to > 1.

In [4], the authors obtained the existence and multiplicity of solutions for Navier problems under the
following conditions:

If G5l

SUP(x,5)e0xR T4y T < o0 Where ¢ € C(Q) and t(x) < p*(x) for all x € Q and there exist

two positive constants p, ¥ and a function y(x) € C(Q) with1 <y~ <y* < p~, such that
(11) F(x,s)=0forae.x € Qandall s €]0,p];

(12) there exist p; (x) € C(Q) and p* < p; < p;(x) < p*(x), such that

F(x,s)
|s|?’1(x)

limsupsup < +oo;

s=0 x€eQ

(I13) |F(x, )| <9(1+ |s|'®) for ae. x €Q andall s € R.

There are many functions which do not satisfy the above conditions (11), (12). For instance the function
below does not satisfy (11), (12).

t—1
t2+1

flx,t) = + Arctan(t) — 1, (1.2)

where
F(x,t) =[] f(x,5)ds = (t — 1)Arctan(t) — t.
But it is easy to see the above function (1.2) satisfies our conditions.
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Remark 1.1. Let2 = R, p(x) =p = 2 and F(t) = (t — 1)Arctan(t) —t.

So we have
p~=pt =2, and p* = 4.
Moreover
F(t) <0 forall t€(0,1), and F(t) >0 forall t<DO.
And
Vpy >p =2, lirsnj(l)lplil% = o0,

The main result of this paper is as follows.

Theorem 1.2. If (F1), (F2) hold, then there exist an open interval 4 c (0,) and a positive real
number p such that each 4 € A, (1.1) has at least three solutions whose norms are less than p.

This article is organized as follows. First, we will introduce some basic preliminary results and lemmas in
Section 2. In Section 3, we will give the proof of our main result.

2. Preliminary
For completeness, we first recall some facts on the variable exponent spaces LP*)(Q) and WP (Q).
For more details, see [13, 14]. Suppose that Q is a bounded open domain of RV with smooth boundary

dQ and p € C,.(Q) where

C.(Q)={pec(Q) and ingp(x) > 1}

Denote by p~:=inf _sp(x) and p*:=sup sp(x). Define the variable exponent Lebesgue space
(@) by

LPOI(Q) = {u: Q- R is measurable and fg [u|P®dx < +oo},
with the norm
|ulp ey = inf{z > 0; [, |=1PPdx < 13,
Define the variable exponent Sobolev space W17 (Q) by
WP@(Q) = {u € PO (Q): |Vu| € LPX(Q)},
with the norm

_ ) Y pe) 4 (L@
hwll 1nf{r>0,fg(|1| + |- [P*)dx < 13,
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Il ll= [Vul, iy + [ulpeo-

We refer the reader to [13, 14] for the basic properties of the variable exponent Lebesgue and Sobolev
spaces.

Lemma 2.1 (cf. [14]) . Both (LP®)(Q), ] - |,,xy) and (WP (), 1) are separable and uniformly
convex Banach spaces.

Lemma 2.2 (cf. [14]). HOlder inequality holds, namely

Jo luvldx < 2|uly vl Vu € LPO(Q),v € LPO)(Q),

1 1
where e + o

Lemma 2.3 (cf. [13]). Assume that the boundary of 2 possesses the cone property and p € C({2) and
1 < q(x) < p*(x) for x € 2, then there is a compact embedding W™ (2) & LI®) (), where

Np(x) . .

+o0, if p(x)= N.
Now, we introduce a norm, which will be used later.
Let § € L*(0Q) with f~: = inf,¢y0f (x) > 0 and for u € WP (Q), define
. \%
lullg= inf{z > 0; f, (| = P@dx + [, )| = PD)do < 13,
Then, by Theorem 2.1 in [10], Il ll; is also @ norm on W17 (Q) which is equivalent to |I. II.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the mapping
defined by the following.

Lemma 2.4 (cf. [10]). LetI(w) = [, |VulPWdx + [,, B(x)|ulP®do with ~ > 0. Foru €
WP () we have

lul<i(=1>1D) e I(w) <1(=1>1).
. :
lullpg<ti=lully <T@ <luly .

P pt
‘Mulg=z1=lu g < I(w) <llu g

Lemma 2.5 (cf. [5,15,17]). Let X be a separable and reflexive real Banach space, ¢: X —» Risa
continuous Gateaux differentiable and sequentially weakly lower semicontinuous functional whose
Gateaux derivative admits a continuous inverse on X*; ¥: X — R is a continuous Gateaux differentiable
functional whose Gateaux derivative is compact, assume that:

(i) limyy iy 500 (P(w) + AP(u)) = o forall 1 > 0,
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(i) there exist r € R and ug, u; € X such that ¢p(ug) < r < ¢p(uy),
(iii)

. (b u ) =) (ug)+(r—b (uo ) (1)
£ > .
wep T, @) ) —b (o)

Then there exist an open interval A c (0,%) and a positive constant p > 0 such that for any A € A the
equation ¢'(u) + AY'(u) = 0 has at least three solutions in X whose norms are less than p.

Theorem 2.6. Let X = WP™)(0) and f: 2 x R — R be a carathéodory function with primitive
F(x,u) = fou f(x, t)dt. If the following condition hold:
« |f(x,5)] < a(x) + b|s|*™®~1 forall (x,5) € QX R,

a(x)
where a(x) € Le®-1(Q) and b > 0 is a constant, a(x) € C,(Q) such that for all x € Q,

Np (x) . .
a(x) < {N-p()’ i ) < N; (2.1)
+OO’ lf p(x) 2 N:

then Y(u) = — [, Fx,u(x))dx € C'(X,R) and Dy(u,¢) =<y'(w),p >=— [, f(x,u(x))edx,
moreover, the operator ¥": X — X™ is compact.

Proof. It is easily adapted from Theorem 2.9 in [3].

Let X = WLP™)(Q) and

1 B(x)
P = fo 505 IVulP @ dx + [, oS ulP @) do,

Y(u) = — [, F(x, u)dx,
where F(x,t) = [, f(x,s)ds.
Obviously ¢ € C'(X,R) and

(@', v) = [, [VulP®2VuVvdx + [, , B(x)|ulP )~ *uvdo,
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W), v) = — [, fx wvdx.
Definition 2.7. We say that u € X is a weak solution of (1.1) if

Jo |Vu|P ) ~2vuvy dx + 0 B |[ulP®2uv do = AJ, flx,wvdx  forallv € X.

3. Proof of main result

[Proof of theorem 1.2]. For proving our result we use lemma 2.5. It is well known that ¢ is a continuous
convex functional, then it is weakly lower semicontinuous and its inverse derivative is continuous, from
theorem 2.6 the precondition of lemma 2.5 is satisfied. In following we need to verify that the conditions
(i), (ii) and (iii) in lemma 2.5 are fulfilled.

Foru € X such that || u ||32 1, we have
Y() = — [, Frwdx = — [, [ fx, tdt]dx
b
< o [ + 55 lul*@]dx

b
< 20a] ot [tlag + o= [P dx
a(x)—-1

b
< 2Clal_ew Nullg+—=J, |u|*@® dx.

a(x)-1

By the embedding theorem, we have u € L*™) (Q); therefore,
Jo 1" ®dx < max{fuli, luleo} < € Hulig
Then

b
@) < 2Clal aco Nullg+==C Il .

a(x)-1

On the other hand,

1 B 1 -
$) = [ 5o VUl @ dx+ [ P @ do = 2l u i
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Which implies that for any A > 0,

$(w) + Mp(w) = = wlf = 2AC1al_ecoy N ullg== N ul.

a(x)-1

From p~ > a* we obtain

Hm (p() + Wp(w)) = oo,

llulig
then (i) of lemma 2.5 is verified.

It remains to show (ii) and (iii) of this lemma (Ricceri). By (F2), it is clear that F(x,t) is increasing for
t € (ty, ) and decreasing for t € (0,1) uniformly for x € Q, and F(x, 0) = 0 is obvious, F(x,t) = 4o
when t — 4o because (F(x, t) = mt uniformly on x). Then, there exists a real number § > t, such that

F(x,t) 20=F(x,0) > F(x,7) VYueX,t>4§,t€ (0,1).
Let a, b be two real numbers such that 0 < a < min{1, c¢;} where ¢, is a constant which satisfies
lullogscllulg,
where || u "0(5): = sup, glux)|.
The above inequality is well defined due to compactly embedding from W1?®)(Q) to C(Q).
We choose b > & satisfying b? 7| 0Q| > 1. When ¢t € [0, a] we have

F(x,t) < F(x,0)=0.

Then
Jo sup F(x,t)dx < [, F(x,0)dx = 0.
0<t<a
Furthermore, since b > & we have
Jo F(x,b)dx > 0.
Moreover,
C1+ bp_f F(x,b)dx > 0.
Which implies

Jo sup F(x, t)dx<0< — p_f F(x, b)dx.
0<t<a

169



M. Allaoui, A. El Amrouss, F. Kissi, A. Ourraoui/ J. Math. Computer Sci. 10 (2014), 163-172

Let ug,u; € X , ug(x) = 0 and uy (x) = b for any x € Q. We define r = 2[)iJr(Ci)?f’"L. Clearly r € (0,1),
1
d(ug) = YP(up) =0,

_ B(x) B 1p— 1 1 a\p+ _
o) = f(’)Q mbp(x)dO' = p—+bp | 0Q| > p_+1 > F(Z)p =r,

and
() = — [, Fe,u (0)dx = — [, F(x,b)dx < 0.
So we have ¢ (uy) < r < ¢(uy). Then (ii) of lemma 2.5 is verified.

On the other hand, we have

_ (@) —m)p(uo) + (r — pwo))p(wa) _ _rw(uﬂ
P (uq) — P(uo) b (uq)

Jo F(x, b)dx

o B b

Letu € X besuchthat p(u) <r < 1.
SetI(w) = [, VulP@dx + [, , B |ulPPdo.
Since %I(u) < ¢(u) < r, foru € X, we obtain
I(w) <p*.r= (C"—l)P+ <1.
It follows that Il u llz< 1 by Lemma 2.4. We have
Sl <21 < ) <7
Then

1
[u@)| <ci llullg< c(pt.ryyT=a VueX,xeQ ¢(u) <r.

The above inequality shows that

— inf u) = su —Y(u) < sup F(x,t)dx < 0.
u6¢‘1(—w,r]lp( ) u€gp~1(—oo,r] v fQ 0<tl<)a 6
Then
. (@) o) +0r—¢ (wo))p (u1)
f .
wep B P > ¢ (1)~ (o)
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Which means that condition (iii) in lemma 2.5 is obtained. Since the assumptions of lemma 2.5 are
verified, there exist an open interval A c (0, ) and a positive constant p > 0 such that for any 4 € A the
equation ¢'(u) + AY'(u) = 0 has at least three solutions in X whose norms are less than p.
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