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                                                                        Abstract 

  In this paper we prove some results on upward subsets of a Banach lattice 𝑋 with a strong unit. Also 

we study the best approximation in 𝑋 by elements of upward sets, and we give the necessary and 

sufficient conditions for any element of best approximation, by a closed subset of  𝑋. 
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1.  Introduction 

   The theory of best approximations is an important subject in Functional Analysis. It is a very 

extensive field which has various applications ([2], [5], [7] and [10]  ). Also the problems of best 

approximation by elements of convex sets are welldeveloped and have many applications in different 

areas of Mathematics ( [3], [4], [6], [8] and [12]). Downward and upward sets are not necessarily 

convex and since, convexity is sometimes a very  restrictive assumption, so we can use the so-called 

downward and upward sets as good tools in the study of best approximation by closed and not 

necessarily convex sets. Best approximation by downward sets and their properties have been studied 

by several authors (for example see [1]). 

 

  The approximation properties of upward sets play a crucial role in this paper. We study some aspects 

of best approximation by elements of closed upward sets, in a Banach lattice 𝑋 with a strong unit. We 

show that a closed upward set is proximinal, and we derive the necessary and sufficient conditions for 

the uniqueness of  best approximation. As we  reminded, an upward set is not necessarily convex. We 

show that this set is abstract convex with respect to a certain set of elementary functions (for the 

definition of abstract convexity, see [11]). This fact allows us to examine the separation properties of 

upward sets and gives the necessary and sufficient conditions for best approximations. 
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2. Preliminaries 

In this section, we introduce some basic definitions for the next sections. Let 𝐺 be a non empty subset 

of a normed linear space 𝑋. An element  𝑔0  ∈  𝐺 is called a best approximation to 𝑥 ∈  𝑋 from 𝐺 if 

for every  𝑔 ∈  𝐺, 

∥  𝑥 −  𝑔0  ∥≤∥  𝑥 −  𝑔 ∥ . 

On the other hand, recall that (see e.g. [13]) a point 𝑔0  ∈  𝐺 is called a best approximation to 𝑥 ∈  𝑋 

if 

∥  𝑥 −  𝑔0  ∥=  𝑑(𝑥, 𝐺), 

Where 

                                          𝑑(𝑥, 𝐺)  =  𝑖𝑛𝑓 𝑔∈𝐺 ∥  𝑥 −  𝑔 ∥. 

The set of all such elements  𝑔0   ∈  𝐺 (called best approximations to 𝑥 ∈  𝑋) is denoted by 𝑃𝐺  (x). 

Thus 

                                   𝑃𝐺(x) = { 𝑔0∈ G:      ∥ x - 𝑔0 ∥ = d( x,G) }.                              (1) 

Hence  𝑃𝐺   defines a mapping from 𝑋 into the power set of 𝐺, called metric projection onto 𝐺 ( other 

names are nearest  point mapping and proximity map). If  𝑃𝐺 (𝑥) contains at least one element, then 

the subset 𝐺 is call a proximinal set. In other words, if 𝑃𝐺(𝑥)  =  ∅, then 𝐺 is called a proximinal set. 

Also if each element  𝑥 ∈  𝑋 has a unique best approximation in 𝐺, then 𝐺 is called a Chebyshev 

subset of  𝑋. 

 It is well-known that 𝑃𝐺(𝑥) is a closed and bounded subset of  𝑋 . If  𝑥 ∈  𝐺 then. 𝑃𝐺(𝑥) is located in 

the boundary of 𝐺. 

 Definition 2.1 ( [14]) A vector space 𝑋 which is ordered by a relation ≤ , is called a vector lattice if 

any two elements 𝑥, 𝑦 ∈  𝑋 have a least upper bound denoted by  𝑥 ∨ 𝑦 =  𝑠𝑢𝑝(𝑥, 𝑦), a greatest lower 

bound denoted by  𝑥 ∧ 𝑦 =  𝑖𝑛𝑓(𝑥, 𝑦) and the following  properties are satisfied: 

(1) 𝑥 ≤  𝑦 implies that  𝑥 +  𝑧 ≤  𝑦 +  𝑧, for all 𝑥, 𝑦, 𝑧 ∈  𝑋, 

(2) 𝑥 ≥  𝑜 implies that  𝑡𝑥 ≥  0, for all 𝑥 ∈  𝑋 and 𝑡 ∈  𝑅+. 

If a vector lattice 𝑋 is equipped with a norm ‖ . ‖  for which 

(3) | 𝑥 | ≤ | 𝑦 | implies  ∥  𝑥 ∥≤∥  𝑦 ∥, for  𝑥, 𝑦 ∈  𝑋, 

 then 𝑋 (equipped with ≤ and  ‖  .  ‖) is called a normed vector lattice. A complete normed vector 

lattice is called a Banach lattice. 

Example 2.2 Let 𝑆 be a set, equipped with a sigma-field 𝜎. The space 𝐿∞(𝑆, 𝜎) of all bounded, 

𝜎 −measurable real functions on 𝑆 is a vector lattice for the pointwise ordering  𝑓 ≤  𝑔  means 

𝑓(𝑠)  ≤  𝑔(𝑠), ∀𝑠 ∈  𝑆. The supremum norm, defined by  ‖𝑓 ‖ =  𝑠𝑢𝑝𝑠∈𝑆| 𝑓(𝑠) |, satisfies in 2.1(3) 

and the space 𝐿∞(𝑆, 𝜎) is a normed vector lattice. The space  𝐿∞(𝑆, 𝜎) is also complete by supremum 

norm, in the sense that Cauchy sequences converge to bounded, measurable limit functions. 
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If 𝑋 is a vector lattice, an element 𝟏 ∈  𝑋 is called a strong unit if for each 𝑥 ∈  𝑋, there exists 0 <

 𝛼 ∈ R such that 𝑥 ≤  𝛼𝟏.  

Using a strong unit 1, we can define a norm on 𝑋 by 

                            ‖ 𝑥  ‖ =  𝑖𝑛𝑓{𝛼 >  0 ∶  | 𝑥 | ≤  𝛼𝟏}       ∀𝑥 ∈  𝑋.                                                  (2) 

  Then                                                                                                                                                         

            𝐵(𝑥, 𝑟) ∶=  {𝑦 ∈  𝑋 ∶  ‖ 𝑥 –  𝑦‖    ≤  𝑟}  =  {𝑦 ∈  𝑋 ∶   𝑥 −  𝑟𝟏 ≤  𝑦 ≤  𝑥 +  𝑟𝟏}.           (3)   

                                         

Also we have 

                                           |  𝑥 |  ≤   ‖ 𝑥 ‖ 𝟏          𝑓𝑜𝑟 𝑎𝑙𝑙            𝑥 ∈  𝑋.                                                (4) 

𝑙∞(S, ∑ ,µ) denotes the lattice of all essentially bounded functions defined on the space 𝑆 with a 𝜎 − 

algebra of measurable sets, ∑ , and a measure µ. Also th lattice of all bounded functions defined on 𝑋 

is an example of  Banach lattices with the strong units. 

Recall that a subset 𝐺 of an ordered set 𝑋 is said to be upward if 

                              𝑔 ∈  𝐺 , 𝑔 ≤  𝑥 ⇒  𝑥 ∈  𝐺. 

  

     If 𝑋 is a normed linear space and G is a subset of 𝑋, we shall denote by  𝑖𝑛𝑡𝐺, 𝑐𝑙𝐺 and 𝑏𝑑𝐺 the 

interior, the closure and the boundary of 𝐺, respectively. If 𝑋 is a lattice and there exists the greatest 

elements of 𝐺, we shall denote it by  𝑚𝑎𝑥𝐺. 

 

3. Upward sets and their approximation properties 

   Let 𝑋 be a Banach lattice with a strong unit 1. In this section we investigate the best approximations 

in 𝑋 by elements of upward sets. In particular, we show that the greatest element, in the set of  best 

approximations, exists. 

Proposition 3.1 Let 𝐺 be an upward subset of  𝑋 and 𝑥 ∈  𝑋. Then the following statements are true: 

(1) If  𝑥 ∈  𝐺, then 𝑥 +  𝜀𝟏 ∈  𝑖𝑛𝑡𝐺, ∀𝜀 >  0, 

(2) 𝑖𝑛𝑡𝐺 =  {𝑥 ∈  𝑋 ∶  𝑥 −  𝜀𝟏 ∈  𝐺, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜀 >  0}. 

Proof: (1) Let 𝜀 >  0 be given and  𝑥 ∈  𝐺. suppose that 

         𝑊 =  {𝑦 ∈  𝑋 ∶ ∥  𝑦 −  (𝑥 +  𝜀𝟏)  ∥<  𝜀}, 

be an open neighborhood of (x + ε1). Then, by (3), 

                                                   𝑊 =  {𝑦 ∈  𝑋 ∶  𝑥 <  𝑦 <  𝑥 +  2𝜀𝟏}.                         

Since 𝐺 is an upward set and 𝑥 ∈  𝐺, it follows that 𝑊 ⊂  𝐺, and so 𝑥 + 𝜀𝟏 ∈  𝑖𝑛𝑡𝐺. 
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(2) Let 𝑥 ∈  𝑖𝑛𝑡𝐺. Then there exists 𝜀0  >  0 such that the closed ball 𝐵(𝑥, 𝜀0)  ⊂  𝐺. In view of (3) , 

𝑥 −  𝜀0𝟏 ∈  𝐺. Conversely, suppose that there exists  𝜀 >  0 such that  𝑥 −  𝜀𝟏 ∈  𝐺. Then, as we 

saw, 𝑥 =  (𝑥 −  𝜀𝟏)  +  𝜀𝟏 ∈  𝑖𝑛𝑡𝐺, which completes the proof. □ 

Corollary 3.2 Let G be a closed upward subset of  X and 𝑔 ∈  𝐺. Then 𝑔 ∈  𝑏𝑑𝐺 if and only if 𝑔 −

 𝛼𝟏 ∉  𝐺, for each 𝛼 >  0. 

Lemma 3.3 Let 𝐺 be a closed upward subset of  𝑋. Then 𝐺 is proximinal in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 \ 𝐺 be arbitrary and 𝑟 ∶=  𝑑(𝑥0 , 𝐺)  =  𝑖𝑛𝑓 𝑔∈𝐺  ∥  𝑥0   −  𝑔 ∥>  0. This implies 

that for each 𝜀 >  0, there exists 𝑔 𝜀 ∈  𝐺 such 𝑡ℎ𝑎𝑡 ∥  𝑥0   −  𝑔 𝜀 ∥<  𝑟 + 𝜀. Then, by (3), we have 

              −(𝑟 +  𝜀)𝟏 ≤ 𝑔 𝜀   −  𝑥0  ≤  (𝑟 +  𝜀)𝟏.   

Let 𝑔0 = 𝑥0 + r1. Then, we have 

              ∥   𝑥0  −  𝑔0 ∥=∥  −𝑟𝟏 ∥=  𝑟 =  𝑑( 𝑥0, 𝐺), 

and hence  𝑔0  +  𝜀𝟏 =   𝑥0 +  𝑟𝟏 +  𝜀𝟏 =   𝑥0 +  (𝑟 +  𝜀)𝟏 ≥ 𝑔 𝜀. Since G is upward and 𝑔 𝜀 ∈

 𝐺, it follows that 𝑔0  +  𝜀𝟏 ∈  𝐺, for each ε > 0. Since G is closed, we have  𝑔0 ∈ G and then 𝑔0 ∈ 

𝑃𝐺  (𝑥0). Thus the result follows. □ 

Remark 3.4 We proved that for each 𝑥0 ∈ 𝑋 \ 𝐺, the set  𝑃𝐺  (𝑥0) contain the element  𝑔0  =  𝑥0 +

 𝑟𝟏 with 𝑟 =  𝑑(𝑥0, 𝐺). If 𝑥0  ∈  𝐺 then 𝑔0  =  𝑥0 and 𝑃𝐺  (𝑥0) = {𝑔0}. 

Proposition 3.5  Let 𝐺 be a closed upward subset of  𝑋 and 𝑥0  ∈  𝑋. Then there exists the greatest 

element 𝑔0 =  𝑚𝑎𝑥 𝑃𝐺  (𝑥0) of the set  𝑃𝐺  (𝑥0),  namely  𝑔0 =  𝑥0  +  𝑟𝟏, where 𝑟 ∶=  𝑑(𝑥0, 𝐺). 

Proof: If  𝑥0  ∈  𝐺, then the result  holds. Assume that 𝑥0 ∉ 𝐺 and  𝑔0 =  𝑥0  + 𝑟𝟏 . 

Then, by remark 𝟑. 𝟒, we have 𝑔0∈  𝑃𝐺  (𝑥0). By applying (3) and the equality ∥ 𝑥0   −  𝑔0  ∥=  𝑟, 

we get 

                                   𝑥 ≤  𝑥0 +  𝑟𝟏 =  𝑔0       for all    𝑥 ∈  𝐵(𝑥0, 𝑟).            

This implies that  𝑔0 is the greatest element of the closed ball 𝐵(𝑥0, 𝑟).  Now, let  𝑔 ∈   𝑃𝐺  (𝑥0)  be 

arbitrary. Then ∥  𝑥0  −  𝑔 ∥=  𝑟, and so 𝑔 ∈  𝐵(𝑥0, 𝑟). Therefore 𝑔 ≤  𝑔0   and hence,  𝑔0   is the 

greatest element of   𝑃𝐺  (𝑥0). □ 

Corollary 3.6  Let 𝐺 be a closed upward subset of  𝑋,  𝑥0  ∈  𝑋 and   𝑔0  =  𝑚𝑎𝑥 𝑃𝐺  (𝑥0). Then, 

 𝑔0  ≥  𝑥0. 

Corollary 3.7  Let 𝐺 be a closed upward subset of 𝑋 and 𝑥 ∈  𝑋  be arbitrary. Then 

𝑑(𝑥, 𝐺)  =  𝑚𝑖𝑛{𝛼 ≥  0 ∶  𝑥 +  𝛼𝟏 ∈  𝐺}. 

Proof : Let 𝐴 =  {𝛼 ≥  0 ∶  𝑥 +  𝛼𝟏 ∈  𝐺}. If  𝑥 ∈  𝐺 then 𝑥 +  0𝟏 =  𝑥 ∈ 𝐺, and so 𝑚𝑖𝑛 𝐴 =

 0 =  𝑑(𝑥, 𝐺). Suppose that  𝑥 ∉ 𝐺  then  𝑟 ∶=  𝑑(𝑥, 𝐺)  >  0. Let 𝛼 >  0 be arbitrary such that 𝑥 +

 𝛼𝟏 ∈  𝐺. Thus, we have 

𝛼 =∥  𝛼𝟏 ∥=∥  (𝑥 +  𝛼𝟏)  −  𝑥 ∥≥  𝑑(𝑥, 𝐺)  =  𝑟. 
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Since, by proposition 3.5,  𝑥 +  𝑟𝟏 ∈  𝐺, it follows that  𝑟 ∈  𝐴. Hence,  𝑚𝑖𝑛 𝐴 =  𝑟  which 

completes the proof. □ 

4.  Characterization of best approximation by upward sets 

In this section, we present the characterization of  upward sets in terms of separation from outside 

points. Throughout this section, X  is a Banach lattice. Let  𝜑 ∶  𝑋 ×  𝑋 →  𝑅  be a function defined 

by 

𝜑(𝑥, 𝑦): =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 +  𝑦},                      (𝑥, 𝑦 ∈  𝑋).                                  (5) 

Since 1 is a strong unit, it follows that the set {𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 +  𝑦} is non empty and bounded 

from above ( by the number ∥  𝑥 +  𝑦 ∥). Clearly this set is closed. It follows from the aforesaid and 

the definition of 𝜑 that the function 𝜑 enjoys the following  properties.  

              −∞ <  𝜑(𝑥, 𝑦) ≤∥  𝑥 +  𝑦 ∥ ,             𝑓𝑜𝑟 𝑎𝑙𝑙                𝑥, 𝑦 ∈  𝑋;                                 (6) 

       𝜑(𝑥, 𝑦)𝟏 ≤  𝑥 +  𝑦,                       𝑓𝑜𝑟 𝑎𝑙𝑙                     𝑥, 𝑦 ∈  𝑋;                                   (7) 

              𝜑(𝑥, 𝑦) =  𝜑(𝑦, 𝑥),                             𝑓𝑜𝑟 𝑎𝑙𝑙                     𝑥 , 𝑦 ∈ 𝑋;                                     (8)            

     𝜑(𝑥, −𝑥) =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 −  𝑥 =  0} =  0,    𝑓𝑜𝑟 𝑎𝑙𝑙           𝑥 ∈  𝑋;         (9) 

𝜑(𝑥, 𝑦 +  𝛼𝟏) =  𝜑(𝑥, 𝑦) +  𝛼,            𝑓𝑜𝑟 𝑎𝑙𝑙                𝑥, 𝑦 ∈  𝑋 𝑎𝑛𝑑 𝛼 ∈  𝑅;                 (10) 

𝜑(𝑥 +  𝛼𝟏, 𝑦) =  𝜑(𝑥, 𝑦) +  𝛼            𝑓𝑜𝑟 𝑎𝑙𝑙             𝑥, 𝑦 ∈  𝑋 𝑎𝑛𝑑 𝛼 ∈  𝑅;                   (11) 

𝜑(𝛾𝑥, 𝛾𝑦) =  𝛾𝜑(𝑥, 𝑦),                     𝑓𝑜𝑟 𝑎𝑙𝑙                   𝑥, 𝑦 ∈  𝑋 𝑎𝑛𝑑 𝛾 >  0.                    (12) 

For each 𝑦 ∈  𝑋, define the function 𝜑𝑦 ∶  𝑋 →  𝑅 by 

𝜑𝑦(𝑥): =  𝜑(𝑥, 𝑦)                         𝑓𝑜𝑟 𝑎𝑙𝑙                         𝑥 ∈  𝑋.                                              (13) 

The function 𝑓 ∶  𝑋 →  𝑅 is called topical if this function is increasing (𝑥 ≥  𝑦 ⇒   (𝑥)  ≥  𝑓(𝑦)) and 

plus-homogeneous (𝑓(𝑥 +  𝜆𝟏)  =  𝑓(𝑥)  +  𝜆  for all 𝑥 ∈ X and λ ∈ R). The definition of topical 

function in finite dimensional case can be found in [11]. 

Lemma 4.1 The function 𝜑𝑦 defined by (13) is topical. 

Proof: we try to check the conditions. Let  𝑥, 𝑧 ∈  𝑋 with 𝑥 ≤  𝑧. Then {𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 +  𝑦}  ⊂

 {𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑧 +  𝑦}. Hence, 

𝜑𝑦(𝑥)  =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 +  𝑦}  ≤  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑧 +  𝑦}  =  𝜑𝑦(𝑧). 

Let 𝑥 ∈  𝑋 and 𝜆 ∈  𝑅 be arbitrary. Then 

𝜑𝑦(𝑥 +  𝜆𝟏)  =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  𝑥 +  𝜆𝟏 +  𝑦} 

                                                             =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  (𝛼 −  𝜆)𝟏 ≤  𝑥 +  𝑦} 

                                                             =  𝑠𝑢𝑝{𝛽 +  𝜆 ∈  𝑅 ∶  𝛽𝟏 ≤  𝑥 +  𝑦} 

                                                            =  𝑠𝑢𝑝{𝛽 ∈  𝑅 ∶  𝛽𝟏 ≤  𝑥 +  𝑦} +  𝜆 =  𝜑𝑦(𝑥) +  𝜆.     □ 
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Proposition 4.2 The function 𝜑𝑦 is Lipschitz continuous. 

Proof: Let 𝑥, 𝑧 ∈  𝑋 be arbitrary. Since | 𝑥 −  𝑧 | ≤∥  𝑥 −  𝑧 ∥ 𝟏, it follows that 

𝑧− ∥  𝑥 −  𝑧 ∥  𝟏 ≤  𝑥 ≤  𝑧+ ∥  𝑥 −  𝑧 ∥  𝟏. 

In view of lemma 4.1, we have 

𝜑𝑦(𝑧)− ∥  𝑥 −  𝑧 ∥≤ 𝜑𝑦(𝑥)  ≤  𝜑𝑦(𝑧)+ ∥  𝑥 −  𝑧 ∥, 

and hence 

                                         𝜑𝑦(𝑥)  −  𝜑𝑦(𝑧) | ≤∥  𝑥 −  𝑧 ∥  .                                                   (14) 

Therefore, 𝜑𝑦  is Lipschitz continuous. □ 

As a direct result of (14), we have: 

Corollary 4.3 The function 𝜑 defined by (5) is continuous. 

Lemma 4.4 Let 𝐺 be a closed upward subset of  𝑋, 𝑦0  ∈  𝑏𝑑𝐺 and let 𝜑 be the function defined by 

(5). Then, 𝜑(−𝑔, 𝑦0)  ≤  0, for all 𝑔 ∈  𝐺. 

Proof: Assume that there exists 𝑔0  ∈  𝐺 such that 𝜑(𝑔0, 𝑦0)  >  0. Then 𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤

 −𝑔0  + 𝑦0}  >  0. So there exists  𝛼0 >  0 such that  𝛼0𝟏 ≤  −𝑔0  + 𝑦0. This means that  𝛼0𝟏 −

𝑦0  ≤  −𝑔0. Therefore  𝑦0  −   𝛼0𝟏 ≥  𝑔0. Since 𝐺 is upward and 𝑔0  ∈  𝐺, it follows that 𝑦0 −

 𝛼0𝟏 ∈  𝐺. So, by proposition 3.1 (2), we have 𝑦0  ∈  𝑖𝑛𝑡𝐺. This is a contradiction, which completes 

the proof. □ 

     Now, we give the characterization of upward sets in terms of separation from  outside points. For 

an easy reference we present the following theorem. 

Theorem 4.5 Let 𝐺 be a subset of  𝑋 and 𝜑 be the coupling function of (5). Then the following 

statements are equivalent: 

(1) 𝐺 is an upward set, 

(2) For each 𝑥 ∈  𝑋 \ 𝐺, we have 

𝜑(−𝑔, 𝑥)  <  0 , ∀𝑔 ∈  𝐺, 

(3) For each 𝑥 ∈  𝑋 \ 𝐺, there exists 𝑙 ∈  𝑋 such that 

𝜑(−𝑔, 𝑙)  <  0 ≤  𝜑(−𝑥, 𝑙)                   ∀𝑔 ∈  𝐺. 

Proof:(1) ⇒ (2). Suppose that 𝐺 is an upward set and that exists 𝑥 ∈  𝑋 \𝐺, 𝑔 ∈  𝐺 such 

that 𝜑(−𝑔, 𝑥)  ≥  0. Then, by (7) we have 0 ≤  𝜑(−𝑔, 𝑥)𝟏 ≤  𝑥 −  𝑔, and so  𝑥 ≥  𝑔. Since G is an 

upward set and 𝑔 ∈  𝐺, it follows that  𝑥 ∈  𝐺. This is a contradiction. 

(2) ⇒ (3). Assume that (2) holds and 𝑥 ∈  𝑋 \ 𝐺 is arbitrary. Then by hypothesis, we have 

𝜑(−𝑔, 𝑥)  <  0               ∀𝑔 ∈  𝐺. 
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Now, let  𝑙 =  𝑥 ∈  𝑋, using (9), for each 𝑔 ∈  𝐺, we have : 

𝜑(−𝑔, 𝑙)  =  𝜑(−𝑔, 𝑥)  <  0 =  𝜑(−𝑥, 𝑥)  =  𝜑(−𝑥, 𝑙). 

(3) ⇒  (1). Suppose that (3) holds and 𝐺 is not an upward set. Then there exists 𝑔0  ∈  𝐺 and 𝑥0  ∈

 𝑋 \G with 𝑥0  ≥ 𝑔0. It follows, by hypothesis, that there exists 𝑙 ∈  𝑋  such that 

                          𝜑(−𝑔, 𝑙)  <  0 ≤  𝜑(−𝑥0, 𝑙),                   ∀𝑔 ∈  𝐺.                                  (15) 

Since 𝜑(. , 𝑙) is increasing, we have 

0 ≤  𝜑(−𝑥0, 𝑙)  ≤  𝜑(−𝑔0, 𝑙). 

This contradicts (15) . □ 

Theorem 4.6 Let 𝜑 be the function defined by (5). Then for a subset 𝐺 of 𝑋 the following statements 

are equivalent: 

(1) 𝐺 is a closed upward subset of 𝑋, 

(2) 𝐺 is upward, and for each 𝑥 ∈  𝑋 the set 

𝐻 =  {𝛼 ∈  𝑅 ∶  𝑥 −  𝛼𝟏 ∈  𝐺} 

is closed in 𝑅, 

(3) For each  𝑥 ∈  𝑋 \ 𝐺, there exists 𝑙 ∈  𝑋 such that 

𝜑(−𝑔, 𝑙)  <  0 <  𝜑(−𝑥, 𝑙),                    (𝑔 ∈  𝐺) 

(4) For each 𝑥 ∈  𝑋 \ 𝐺, there exists 𝑙 ∈  𝑋 such that 

 𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙)  <  𝜑(−𝑥, 𝑙). 

Proof: (1) ⇒ (2). Assume that 𝐺 is a closed upward subset of 𝑋 and let 𝑥 ∈  𝑋, 𝛼𝑘  ∈  𝑅, 𝑥 − 𝛼𝑘𝟏 ∈

 𝐺 (𝑘 =  1,2, . . . ) and 𝛼𝑘  → α ∈ R. Then, we have 

        ∥  (𝑥 − 𝛼𝑘𝟏) −  (𝑥 −  𝛼𝟏 ∥=∥  (𝛼 − 𝛼𝑘)𝟏 ∥= | 𝛼 − 𝛼𝑘  | →  0, 𝑎𝑠 𝑘 →  +∞.   

Since 𝑥 − 𝛼𝑘𝟏 ∈  𝐺, (𝑘 =  1,2, . . . ), and 𝐺 is closed, it follows that  𝑥 −  𝛼𝟏 ∈  𝐺, and so 𝛼 ∈  𝐻. 

Hence, 𝐻 is a closed subset of 𝑅. 

(2)⇒ (3). Suppose that (2) holds and 𝑥 ∈  𝑋 \ 𝐺 is arbitrary. We claim that there exists 𝛼0  >  0 such  

that  −𝛼0  ∈  𝐻. Indeed, if  −𝛼 ∈  𝐻, for all 𝛼 >  0, then due to the closedness of H, we have 0 ∈

 𝐻. This implies that  𝑥 =  𝑥 −  0𝟏 ∈  𝐺. This is a contradiction. Now, let  𝑙 =  𝑥 +  𝛼0𝟏 ∈  𝑋. We 

show that 𝜑(−𝑔, 𝑙)  <  0, for all 𝑔 ∈  𝐺. Assume that there exists 𝑔0  ∈  𝐺 such that 𝜑(−𝑔0, 𝑙)  ≥  0. 

Then by (7) we have 0 ≤  𝜑(−𝑔0, 𝑙)𝟏 ≤  −𝑔0 +  𝑙, and so  𝑔0  ≤  𝑙 =  𝑥 + 𝛼0𝟏. Since 𝐺 is an 

upward set and 𝑔0 ∈  𝐺, it follows that  𝑥 + 𝛼0𝟏 ∈  𝐺, and consequently  −𝛼0  ∈  𝐻. This is a 

contradiction. Hence, 𝜑(−𝑔, 𝑙)  <  0, for all 𝑔 ∈  𝐺. On the other hand, we have 

𝜑(−𝑥, 𝑙)  =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  −𝑥 +  𝑙} 

                                                              =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  −𝑥 +  𝛼0𝟏 +  𝑥 = 𝛼0 𝟏} 
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                                                              =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  (𝛼 – 𝛼0)𝟏 ≤  0} 

                                                              = 𝑠𝑢𝑝{𝜆 +  𝛼0  ∈  𝑅 ;  𝜆𝟏 ≤  0} 

                                                              =  𝑠𝑢𝑝{𝜆 ∈  𝑅 ∶  𝜆𝟏 ≤  0} +  𝛼0  =  𝛼0   >  0.           

 (3) ⇒ (4) is abvious. 

  (4) ⇒ (1). Suppose that (4) holds and that 𝐺 is not an upward set. Then there exists 𝑔0  ∈  𝐺 and 

𝑥0  ∈  𝑋 \ 𝐺 with  𝑥0  ≥  𝑔0. By hypothesis, there exists 𝑙 ∈  𝑋 such that 

                                                 𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙)  <  𝜑(−𝑥0, 𝑙). 

Since 𝜑(. , 𝑙) is increasing, it followes that 

𝜑(−𝑥0, 𝑙)  ≤  𝜑(−𝑔0, 𝑙)  ≤   𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙)  <  𝜑(−𝑥0, 𝑙). 

This is a contradiction. Hence, 𝐺 is an upward set. Finally, assume that 𝐺 is not closed. Then there 

exists a sequence {𝑔𝑛}𝑛≥0 ⊂  𝐺 and 𝑥0  ∈  𝑋 \ 𝐺 such that ∥  𝑔𝑛  −  𝑥0  ∥→  0, as 𝑛 →

 +∞.  Since 𝑥0  ∈  𝑋 \ 𝐺, by hypothesis, there exists 𝑙 ∈  𝑋 such that 

 𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙)  <  𝜑(−𝑥0, 𝑙). 

Thus, we have 

𝜑(−𝑔𝑛, 𝑙)  ≤   𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙),                      ∀𝑛 ≥  1. 

By continuity of 𝜑 𝑙 =  𝜑(. , 𝑙), it follows that 𝜑(−𝑥0, 𝑙)  ≤   𝑠𝑢𝑝𝑔∈𝐺𝜑(−𝑔, 𝑙). This is a contradiction, 

which completes the proof. □ 

Lemma 4.7  Let 𝐺 be a closed upward subset of  𝑋,  𝑔0   ∈  𝑏𝑑𝐺 and 𝑙 =  𝑔0 . Let  𝜑 be defined by 

(5). Then 

𝜑(𝑔, 𝑙)  ≤  0 =  𝜑(−𝑔0, 𝑙),              ∀𝑔 ∈  𝐺. 

Proof: Since 𝑔0  ∈  𝑏𝑑𝐺, it follows, by lemma 4.4, that 

𝜑(𝑔, 𝑙)  =  𝜑(𝑔, 𝑔0)  ≤  0,                 ∀𝑔 ∈  𝐺. 

Also, we have 

𝜑(−𝑔0, 𝑙)  =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  −𝑔0  +  𝑙} 

                                                               =  𝑠𝑢𝑝{𝛼 ∈  𝑅 ∶  𝛼𝟏 ≤  −𝑔0   +  𝑔0  =  0} 

                                                               =  0.                                                                                 □ 
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