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Abstract 

In this work, we introduce a new class of rational basis functions defined on [ , )a b and based on mapping 

the Laguerre polynomials on the bounded domain [ , )a b . By using these rational functions as basic 

functions, we implement spectral methods for numerical solutions of operator equations. Also the 

quadrature formulae and operational matrices (derivative, integral and product) with respect to these basis 

functions are obtained. We show that using quadrature formulae based on rational Laguerre functions give 

us very good results for numerical integration of rational functions and also implementing spectral methods 

based on these basis functions for solving stiff systems of ordinary differential equationsgive us suitable 

results. The details of the convergence rates of these basis functions for the solutions of operator equations 

are carried out, both theoretically and computationally and the error analysis is presented in  2 [ , )L a b

space norm. 

 
Keywords: Rational Laguerre functions, Spectral methods, Quadrature formulae, Stiff system, Hilbert 

space. 

 

1. Introduction 

Orthogonal polynomials play a prominent role in pure, applied and computational mathematics, as well as 

in the applied sciences and also in the many fields of numerical analysis such as quadratures, approximation 

theory and so on [1-4]. In particular case, these polynomials have an important role in the spectral methods. 

These methods (spectral methods) have been successfully applied in the approximation of partial, 

differential and integral equations. Three most widely used spectral versions are the Galerkin, collocation 

and Tau methods. Their utility is based on the fact that if the solution sought is smooth, usually only a few 

terms in an expansion of global basis functions are needed to represent it to high accuracy [5-11]. 

We must note to this point that numerical methods for ordinary, partial and integral differential equations 

can be classified into the local and global categories. The finite-difference and finite-element methods are 

based on local arguments, whereas the spectral methods are in a global class [12, 13]. Spectral methods, in 
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the context of numerical schemes for differential equations, belong to the family of weighted residual 

methods, which are traditionally regarded as the foundation of many numerical methods such as finite 

element, spectral, finite volume and boundary element methods. There are essentially three important 

questions that we have to make to derive a spectral method: i: what expansion functions should be used? ii: 

the form in which the approximation will be written? And finally iii: the procedure by which the solution 

unknowns are determined? The first question or selecting the global basis functions for expansion of 

functions has an important role in implementing spectral methods, and this choice depend on the behavior 

of an exact solution of the problem. For instance, if an exact solution has periodic behavior, then 

trigonometric functions are the suitable choices for basic functions [14]. Also in nonperiodic cases the 

polynomial solutions of eigenvalue problems in ordinary differential equations, known as Sturm-Liouville 

problems on the interval [ 1,1] are suitable choices. The Jacobi polynomials are the well-known class of 

polynomial solutions of nonperiodic Sturm-Liouville problem exhibiting spectral convergence, of which 

particular examples are Chebyshev polynomials of the firrst and second kinds, and Legendre polynomials 

in which have high applications [8-15]. In the numerical solutions of ordinary, partial and integral 

differential equations on the unbounded domains, also some basic functions are named as rational Jacobi 

functions are used [16-18]. In this work, we introduce a new set of rational basis functions defined on [ , )a b  

and based on mapping the Laguerre polynomials on the bounded domain [ , ).a b using these rational 

functions as basic functions, we implement spectral methods for numerical solution of the operator 

equations. The importance and superiority of the new basis functions rather than other basis functions such 

as polynomials are shown for one experiment with stiff solution. The details of the convergence rates of 

these basis functions for solution of the operator equations are carried out, both theoretically and 

computationally. This work is organized as follows. In section 2, we introduce the Laguerre polynomials 

and rational Laguerre functions (generalized) and their properties such as their quadrature formulae and etc. 

In section 3, we present the derivative, integral and product operational matrices with respect to rational 

Laguerre functions. Section 4, is devoted to the approximation with rational Laguerre functions and 

convergence rates of these basis functions for solutions of the operator equations. One experiment is 

presented in section 5, for showing the accuracy of our development. Finally in section 6, we have 

monitored a brief conclusion. 

 

2. The Laguerre polynomials (generalized) 

In this part, we define the Laguerre polynomials (generalized) and their properties such as their Sturm-

Liouville ordinary differential equation, three terms recursion formula and etc. Let (0, ),   then 

Laguerre polynomials are denoted by ( ) ( 1),nL x    and they are the Eigen functions of the Sturm 

Liouville problem 

 1 ( ) ( ) 0,   ,x x

n n nx e x e L x L x x     
 

 








                                       
(1) 

with the eigenvalues n n  [12, 13]. 

Laguerre polynomials are orthogonal in
2 ( )
w

L   space with the weight function ( ) ,xw x x e

 satisfy in 

the following relation 

,
0

( 1)
( ) ( ) ( ) , ,

( 1)
n m n m n n

n
L x L x w x dx

n

   




  

   
 

 
             

(2)

 

where ,m n is kronecker delta function. The explicit form of these polynomials is in the form 
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 0

( ) ,
n

i

n i

i

L x E x 




                                                                       (3) 

where 

 

 1

.
!

i

i

n

n i
E

i



 
 

 
                                  

(4) 

These polynomials are satisfied in the following three terms recurrence formula 

1 1

0 1

( 1) ( ) (2 1 ) ( ) ( ) ( ),

( ) 1, ( ) 1 .

n n nn L x n x L x n L x

L x L x x

  

 

 



       

   
             

(5) 

The case 0,  leads to the classical Laguerre polynomials, which are used most frequently in practice and 

will simply be denoted by  xnL . An important property of the Laguerre polynomials is the following 

derivative relation [12, 13]: 

 
1

0

( ) ( ).
n

n i

i

L x L x 







                                                                  

(6) 

Further,
( )( ( )) k

iL x
are orthogonal with respect to the weight function kw . i.e. 

( ) ( )

,
0

( ) ( )( ) ( ) ( ) ,k k k

i j k n k i jL x L x w x dx  

  




                                    
(7) 

where
k

n k

 

 is defined in (2). 

 

2.1 The rational Laguerre functions (generalized) 

In this section, we present the rational Laguerre functions (generalized) as orthogonal basis functions. At 

first we use a suitable change of variable formula, in which transform the un bounded domain (0, )

(domain of Laguerre polynomials) to the bounded domain[ , )a b . Using this change of variable formula and 

substituting it in the Laguerre polynomials, we define a new set of rational orthogonal basis functions in 

the bounded domain. For this purpose, let ( , )x h be a strictly increasing function with respect to a positive 

parameter h ; or 

 

( , ),    0,  [ , ),y x h h x a b  
                                                    

(8)

(0, ).y 
                                                                      

(9) 

However the condition ( , ) 0,x h  ; is equivalent to the strictly increasing property of ( , )x h . 

Several types of transformation ( , )x h are exist for mapping the unbounded domain to bounded domain 

such as: 
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( )
,   ,

h x a by ha
y x

b x y h

 
 

                                                        

(10) 

in which transform between [ , )x a b and (0, ).y    

This transformation (10) is named as an algebraic transformation. Now using the change of variable 

( )h x a

b x




(algebraic transformation), we construct a new set of orthonormal basis functions in a particular 

weighted Sobolev spaces (on the interval [ , )a b ). Let

( )
( , ) ,   [ , ),i i

h x a
R x h L x a b

b x

   
  

                                                      

(11) 

then ( , )iR x h
are the eigenfunctions of the Sturm-Liouville problem 

 
2 2

1( ) ( )
( , ) ( , ) 0,

( ) ( )

x x

i n i

x h x h
x e x e R x h R x h

h b a h b a

     

 
 
 

 
 

 
                                

(12) 

with the corresponding eigenvalues .n n  We call ( , )iR x h
as the rational Laguerre functions and the 

orthogonality relation for these functions is 
1

,
1

( , ) ( , ) ( ) ,m n r n m nR x h R x h w x dx    



                                                                 

(13) 

where 
( )

( )
( ) ( ) ( ),

h a x

b x
r

h x a
w x e k x

b x

 








                                                                       

(14) 

( )
( ) ( )

(
,

)
n

h x a
k x

b x





is defined in (2) and ,m n  is a kronecker delta function. Moreover, the recurrence 

relations (5) and (6), imply that 

 

1 1

0 1

2 1

0

( )
( 1) ( , ) 2 1 ( , ) ( ) ( , ),

( )
( , ) 1, ( , ) 1 ,

( )
( ) ( , ) ( , ).

( )

n n n

n

n i

i

h x a
n R x h n R x h n R x h

b x

h x a
R x h R x h

b x

x h
R x h R x h

h b a

  

 

 

 



 





 
       

 


   









                             

(15) 

Also let us consider the following notation 

    

( )
span{ ( ), 0,..., },h

n i

h x a
R L i n

b x

 
 

                                                                     

(16) 

in which is needed in this work later. 

 

2.2 The quadrature formulae with respect to rational Laguerre functions (generalized) 

In this part, we introduce the Gauss and Gauss-Radau quadrature formulae based on rational 

Laguerre functions. For this purpose, let us first consider the following theorem. 

 

Theorem 1.Let 
( ) ( ),j jx w 

be the nodes and weights associated with the Gauss or Gauss-Radauquadratures 

for Laguerre polynomials. Then 
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( ) ( )

,
0

0

( ) ( ) ( ) R ( ),
n

j j n

j

f x w x dx f x w x  







 
                                                

(17) 

 

where 
(2 )

,

( )
R ( ) ,

2

n

n
n

f
x

n

 



 






                                                                            

(18) 

Further 0   and 1, for Gauss and Gauss-Radauquadratures respectively, and for some [0, ).   For 

the Gauss quadrature case,
( )

1{ }n

j jx 


are the zeros of ( )nL x

and 

 

 

( )

( ) ( ) ( ) ( )

1

( )

2
( ) ( )

( 1) 1
  

( 1)! ( ) ( )

( 1)
             ,0 ,

( 1)( 1)! ( )

j

n j n j

j

n j

n
w

n L x L x

xn
j n

n n L x



   



 











  
 



  
  

  
                                             

(19) 

and for the Gauss-Radau quadrature, 
( )

1{ }n

j jx 


are the zeros of  ( )

1( )nL x


 and 

 

2
( )

0

( )

2 2
( ) ( )

( ) ( )

( 1) ( 1) ( 1)
,

( 1)

( 1) 1 ( 1) 1
  ,1 ,

! ( 1) ! ( 1) ( )
( )

j

N j
N j

N
w

N

N N
w j n

N N N N L x
L x





 
 

 



 

 

    


  

     
   

          
 
       

(20) 

Proof: see [13].  

Now from (17), we can obtain the following result: 

Let
( ) ( ),j jx w 

be the nodes and weights associated with the Gauss or Gauss-Radau quadrature for Laguerre 

polynomials. Then 

( ) ( )

,

0

( ) ( ) ( ) R ( ),
nb

h

r j j n
a

j

f x w x dx f y w x  




 
                      

(21) 

where 
(2 )

,

( )

R ( ) ,
(2 )

 

 

n

n

h

n

x

h x a
f

b x
x

n

















   
  

  



                         

(22) 

and 
( )

( )

( )

( )
.

j

j

j

h x a
y

b x











                                    

(23) 

Further, 1,  and 0; for Gauss and Gauss-Radau quadrature respectively, and for some [0, ).    
 

Remark 1.As we see from (17), we can prove that the integration formula (21) is exact for all 2

h

np R 

where 2

h

nR  is defined in (16). However it is expected that for rational functions, using quadrature (21), we 

obtain better results than other polynomial base methods, because of the similar behavior of a function and 

its basis functions for approximation. Now for showing this fact and the accuracy of quadrature formula 

(21), we present some experiments. 



A. Aminataei, S. Ahmadi-Asl, Z. KalatehBojdi /J. Math. Computer Sci.    14 (2015) 124 - 142 
 

129 
 

 

Experiment 1.Consider the following integral 

  

2
0.5

20

2 3
,

1 2 2

x x
dx

x x x

 

  


                                                     

(24) 

then the obtained results from rational Laguerre gauss (RLG) and Legendre gauss (LG) methods are shown 

in table 1. 

 
 

Experiment 2.Consider the following integral 
2

0

30.5

1
,

1

x
dx

x x



 
                                                             

(25) 

then the obtained results from RLG and LG methods are shown in table 2. 

 

 
 

3. The operational matrices with respect to rational Laguerrefunctions (generalized) 

 
In this section, we obtain the operational matrices with respect to rational Laguerre functions. 

To do this, first we introduce the concept of operational matrix. 

 

3.1 The operational matrix 

 
Definition 1.Suppose 

0 1[ , ,..., ],n    (26) 

where 0 1, ,..., n   are the basis functions on the given interval[ , ]a b . The matrices n nE  and n nF  are named 

as the operational matrices of derivatives and integrals respectively if and only if 

d
( ) ( ),

dt

( ) ( ).
x

a

t E t

t dt F t

 

                                                          

(27) 

Further assume  0 1g g ,g ,...,g ,n named as the operational matrix of the product, if and only if 
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( ) ( ) ( ).T

gx x G x  
                                                     

(28) 

In other words, to obtain the operational matrix of a product, it is sufficient to find , ,g ,i j k in the following 

relation 

, ,

0

( ) ( ) ( ),
i j

i j i j k k

k

x x g x  





                                                

(29) 

which is called the linearization formula [19]. Operational matrices are used in several areasof numerical 

analysis and they hold particular importance in various subjects such as integral equations [20], differential 

and partial differential equations [21] and etc. Also many textbooks and papers have employed the 

operational matrices for spectral methods [9]. Now we present the following theorem. 

 

Theorem 2.If we present ( )f x in the form 

( )

0

( ) ( , ), [ , ),k k

k

f x D R x h x a b 




 
                                                

(30) 

where 
( ) 1

( )
( ) , ( , ) .

r
k k k w x

D f R x h


   
                                            

(31) 

Then 

( ) ( , ) ,i

i k k

i k

D E  





                                                              

(32) 

 

where 
( ) (0) ( )

,   ( ) ( ),
!

k

k

g h x a
g x f

k b x



 

                                                       
(33) 

and
( , )i

kE 
is presented in (4). 

 

Proof: If we use the change of variable
( )h x a

x
b x





in (3), then we have 

( ) ( , )

0

( )
( , ) .

kn
n

n k

k

h x a
R x h E

b x

 



 
  

 


                             

(34) 

But (34), can be rewritten as 

( ) ( , ) ( ) ( , ) ( ) ( , )

0 1

0 0 0 1

2

( ) ( , ) ( ) ( , )

2

2 0

( ) ( )
( )

( ) ( )
...

ik
k i i

k i i i

k i i i

i i

i i k

i k i k

h x a h x a
f x D E D E D E

b x b x

h x a h x a
D E D E

b x b x

     

   

  

   

  

  

        
                  

       
       

      

   

   .

k




    

(35) 

 

Now if we define 

( )
( ) ( ) ( ) ( ),

bx ha h x a
g x f f x g

h x b x

 
  

                         

(36) 

then from the Maclaurin series of ( ),g x  we have: 

( )

0

(0)
( ) ,

!

k
k

k

g
g x x

k






                                  

(37) 
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or 

( )

0

( ) (0) ( )
( ) .

!

kk

k

h x a g h x a
f x g

b x k b x





    
    

    


                   

(38) 

Comparing (35) and (38), we get 
( )

( ) ( , , ) (0)
,

!

k
i

i k

i k

g
D E

k

  





                               

(39) 

so the proof is completed.  

 

Theorem 3.Suppose 
0 1( , ) [ ( , ), ( , ),..., ( , )],nR x h R x h R x h R x h    where the elements ( , )iR x h

are the 

rational Laguerre functions, then we have 

0

0 1 ( ) ( 1

1

1 )

( , )

( , )
( , ), ( , ), , ( ,

(

,)

, )

n n n

n

R x h

R x hd
R x h R x h R x h D

dx

R x h




   



  
  

 
 
 
 
 
                               

(40) 

where iD
(the ith-column of n nD

 ) is obtained from this linear system (with upper triangular matrix) 

( ,0) ( , 1) ( , ) ( , 1)
,0 00 0 0 0

( ,1) ( , ) ( , 1)
,1 11 1 1

( , 1) ( , ) ( , 1)

1 1 1

( , ) ( , 1)
,

( , 1)
, 11

0

0

0

0 0

0

0

0

i i i
i

i i
i

i i i

i i i

i i
i i ii i

i
i ii

dE E E E

dE E E

E E E

dE E

dE

   

  

  

 











 



 

  






   
   

   
   

   
   

   
   

       1

.

i

 
 
 
 
 
 
 
 
  

                     

(41) 

 

Proof:We know that there exist ,di j such that: 

 2
1

,

0

( ) ( )
( ),

i
i

i j j

j

h x L x
d L x

hb ha
















                                                           

(42) 

but if in (42), we apply the change of variable 
( )h x a

x
b x





, we have 

1

,2
0

( ) ( )
( ) ,

( )

i

i i j i

j

hb ha h x a h x a
L d L

b x b x b x

 




        
    

      


              

(43) 

or 
1

,

0

( ( , )) ( , ).
i

i i j j

j

R x h d R x h 







                              

(44) 

Combining (44) and (3), yields: 

 
1

( , )

,

0 0

( )
( , ) .

kji
j

i i j k

j k

h x a
R x h d E

b x

 




 

 
  

 


                        

(45) 

Now noting to theorem 2, in this case     ' ,f x R x h , we get: 
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( )1
( , )

,

(0)
,  0,1,..., 1,

!

ki
j

i j k

j k

g
d E k i

k






  
                          

(46) 

thus from (46), we can obtain the following linear system: 
( ,0) ( , 1) ( , ) ( , 1)

,0 00 0 0 0

( ,1) ( , ) ( , 1)
,1 11 1 1

( , 1) ( , ) ( , 1)

1 1 1

( , ) ( , 1)
,

( , 1)
, 11

0

0

0

0 0

0

0

0

i i i
i

i i
i

i i i

i i i

i i
i i ii i

i
i ii

dE E E E

dE E E

E E E

dE E

dE

   

  

  

 











 



 

  






   
   

   
   

   
   

   
   

       1

.

i

 
 
 
 
 
 
 
 
  

                                  

(47) 

 

Solving the linear system (47), concludes: 

1
, 1 ( , 1)

1

1
( , )

,

1
, ( , )

,

; 0,1,..., .

i
i i i

i

j
k

i j i k

k i
i j j

j

d
E

E d

d j i
E












 





 





 


                         

(48) 

Also with similar strategy, we can obtain the integral operational matrix of rational Laguarrefunctions. This 

means if we consider 
2 3

,
0

0

( )
( ) ( , ); , 1 1.

iu

i i j j

j

h t
L t dt c R u h u

hb ha

 





   




                  

(49) 

Employing the change of variable
( )

,
h t a

t
b t





on right hand side of (49), gives: 

( ) 3

,

0

( )
( ) ( ).

h t a i

b t
i i j j

a
j

h t a
L dt c L u

b t

 
 











                              

(50) 

Now if we define
bt ha

x
t h





then (50) transforms to 

3

,

0

1 1
( ) ( ),

1 1

ix

i i j j
a

j

t x
L dt c L

t x

 




 


 


                                                                         

(51) 

or 
3

,

0

( , ) ( , ).
ix

i i j j
a

j

R t h dt c R x h





                                                                          

(52) 

Combining (52) and (3), yields 

3
( , )

,
0

0 0

( )
( , ) .

kjix
j

i i j k

j k

h x a
R t h dt c E

b x

 


 

 
  

 


                                                       

(53) 

Now noting to theorem 2, we get: 

3
( , , )

,

( )
; 0,1,..., 3.

ki
j

i j k k

j k

h x a
c E k i

b x

  




 
   

 


                                            

(54) 

From (54), we obtain the following linear system: 
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( ,0) ( , 1) ( , 2) ( , 3)
,00 0 0 0

( ,1) ( , 2) ( , 3)
,11 1 1

( , 1) ( , 2) ( , 3)

1 1 1

( , 2) ( , 3)
, 22 2

( , 3)
, 330 0 0

0

0

0 0 0

i i i
i

i i
i

i i i

i i i

i i
i ii i

i
i ii

E E E E

E E E

c

c

c

c

E E E

E E

E

   

  

  

 



  

 

  

  

 
 




   
   

   
   
   

  
  
  

     

0

1

2

3

.

i

i













 
 
 
 

  
  
  
  

   
                            

(55) 

Solving the linear system (55), concludes: 

3 1
, 3 ( , 3)

3

1
( , )

,

1
, ( , )

,

; 0,1,..., 2.

i i i

i

j
k

i j i k

k i
i j j

j

c
E

ic

E

j
E

c












 





 





  


                                                      

(56) 

Therefore 

1

1

1 2 ( 1) ( 1)

1

( , )

( , )
( , ), ( , ), , ( , )

(

,

, )

n n n

R x h

R x h
R x h R x h R x h dx I

R x h




   



  

 
 
 
 
 
  

  

                            

(57) 

in which (the ith-column of n nI is obtained from the linear system (55)). Finally for obtaining the 

operational matrix of product, we use these two important formulas 

0

( ) ( ) ( , , , ) ( ),
m n

n m i m

i

L x L x c m n L x    







                                                       

(58) 

and 

0

1
( ) ( ),

n

n i

i

n i
L x L x

n i

 
 



    
  

 


                                                                 

(59) 

where 

 
0

( , , , ) 1 .
i

m n

i

k

i m n
c m n

k n k i m k

  
 

 



    
     

     


                                    

(60) 

By combining the relations (58) and (59), we obtain 

0

( ) ( ) ( , , ) ( ),
m n

n m i k

i

L x L x M m n L x  





                                                              

(61) 

where 

0

1
( , , ) ( , , ) ,

i

i i

k

i k
M m n d m n

i k


 



   
  

 


                                                      

(62) 

and 

0

1
( , , ) ( , , , ) .

i

i i

k

i k
d m n c m n

i k


  



   
  

 


                                                     

(63) 
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Using the change of variable 
( )h x a

x
b x





we obtain 

0 0

1
( , ) ( , ) ( , , ) ( , ).

m n i

n m i k

i k

i k
R x h R x h d m n R x h

i k

  





 

   
  

 
 

              

(64) 

Therefore 

0 0

0 1 ( 1) (1)

1 1

( , ) ( , )

( , ) ( , )
( , ), ( , ), , ( , ) ,

( , ) ( , )n n

n n

R x h R x h

R x h R x h
R x h R x h R x h P

R x h R x h

 

 
   

 

 

   
   
         
   
                                

(65) 

where ,1

0

( , , ).
n i

i

j

P M j j 




  

 

4. Approximation with rational Laguerre functions (generalized) 

 
Now we present some approximation properties of rational Laguerre functions. Let us considerthe finite 

dimensional approximation space 

 

span{ ( , ), 0,..., },h

n iR R x h i n 
                                                      

(66)
 

 

in which ( , )iR x h
are orthogonal with respect to rw

(defined on [ , )a b ) and consider the orthogonal 

projection 
( , , ) 2

[ , )
( ) :

r

R h

n nw a b
P u L 

  such that 

 
( , , )( ( ) , ) 0,   .R h h

n n w n nP u u v v R    
                                                 

(67)
 

 

From (67) and the orthogonality relation of rational Laguerre functions, we can write 

 

( , , )

0

( ) ( , ),
N

R h

n n n

n

P u u R x h 




                                                     

(68) 

where 

1
( ) ( , ) ( ) .

b

n n

n a

u u x R x h w x dx


 

                                              

(69) 

Now consider the general operator equation 

 

( ),  [ , ),u Nu g x x a b  
                                                        

(70)
 

 

with respect to boundary condition 

,u 
                                                                         

(71) 

 

where , and are the linear, nonlinear and boundary operators respectively related to a suitable Hilbert 

space, [ , )a b is the domain (one dimensional) of approximation,  is an arbitrary constant and
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2( ) ([ , ))
rw

g x L a b is an arbitrary function. Let
h

nR be an approximation space with weight function ( )rw x

and a set of collocation points
0 ,{ }n

j jx 
shifted roots of Laguerre polynomial with degree n . he spectral-

collocation method for the operator equation (70) defined in the following form: Find ( ) h

nx R   or

0

( ) ( , )
n

i i

i

x a R x h


 such that 

( ) ( ) ( ),  0,..., ,

( ( )) .

j j jx N x g x j n

x

 

 

  

                                                    

(72) 

 

If we suppose that the boundary conditions give us the m equations, then from equation (72), we obtain

1m n  algebraic equations and so for obtaining the 1n unknowns, we must eliminate the m equation 

and add boundary conditions, which must be solved for unknown
0{ }n

i ia 
coefficients. Also the spectral-

Galerkin method for the operator equation (70) is defined in the following form: 

 Find ( ) h

nx R  or 
0

( ) ( , )
n

i i

i

x a R x h


 such that ( )x are satisfied in the boundary conditions (71) 

automatically and 
 

( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ,   ( ) .
r r r

h

nw w w
x p x N x p x g x p x p x R      

                  
(73) 

Also from equation (73), we obtain 1n algebraic equations which must be solved for unknown 0{ }n

i ia 

coefficients. In this work, by using MATLAB software (version 2013), we solve these algebraic systems. 

 

4.1 The error analysis 

Now in this section, we present the details of the convergence rates of rational Laguerre functions 

(generalized) as basic functions. First we consider the following theorem. 
 

Theorem 4.For any (0, )mf B  and 0,m   

    ( ) 2 , 0 ,

l m

l ml m

N m

w w

d d
P f f cN u l m

dx dx
 



 

 
 
    

                       

(74) 

where 

 2(0, ) : ( ) 0, , 0 ,
k

k

m wk

d
B f f L k m

dx 





 
      

 
                                     

(75) 

( )

nP 
is the 

2

( )w x
L  -orthogonal projection operator associated with the Laguerre polynomials(generalized) 

and c  is a positive constant. 

 

Proof: See [13].  
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Theorem 5. For any ([ , ))mu G a b with 0m   

( , , ) /2

( )
( ) ( ) ,m

r r

m
R h m

n mw x w

D
P u u cN u

Dx
 




 
                                                  

(76) 

and for 1,m   

1

( , , ) (1 )/2

( )
( ( ) ) ( ) ,m

r r

m
R h m

N mw x w

d D
P u u cN u

dx Dx
 


 

 
                                

(77) 

where 

2([ , )) { : ( ) ([ , )),0 },k
r

k
m

k w

d
G a b u u L a b k m

dx
    

                                      

(78) 

c is a positive constant and the operator ( )
k

k

D
u

Dx
is defined as 

k times

( ) ( ) ( )
( ) .... .... .

k

k

D h x a d h x a d h x a d
u

Dx b x dx b x dx b x dx

            
                      

                             

(79) 

 

Proof: Let 
,

0

( ) ( )h h i i

i

U x U L x




 and 
,

0

( ) ( , ),h h i i

i

u x u R x h




 then from definition, it is easyto show the 

relation between the coefficients of the rational Laguerre functions (generalized) and Laguerre polynomials 

expansions (generalized) as 

( )( )

, ,

, ( ), ( , )
.r

ii w xw x

h i h i

i i

u L xu R x h
u U






  
  

                                                          

(80) 

Also we need for expressing the error estimates, to introduce an operator 

( )
( ) .

D h x a du
u

Dx b x dx

 
  

 
                                                                                                      

(81) 

Repeating formula (79) leads to 

k times

( ) ( ) ( ) ( )
.... .... ( ).

k k

h

k k

d U x h x a d h x a d h x a d D
u

dx b x dx b x dx b x dx Dx

                               
   

               

(82) 

Let 
( )

nP 
be the 

2

( )w x
L  - orthogonal projection operator associated with the Laguerre polynomials 

(generalized), then by Parseval identity [7], theorem (3) and formula (82), we have 
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2 2( , , ) 2

, ,( )
1 1

2
2

( ) 2 ( )

( ) ( )
( )

( )

( ) ( ) .

r

r

R h

N h i i h i iw x
i N i N

k
m m m

N s s s kw x w x
w x

P u u u U

D
P U U cN U cN u

Dx



 



  



 
 

   

 

  

   

 

                     

(83) 

Next, we deduce from (7) (orthogonality of ( ( ))iL x  that  ( ( , ))iR x h 
 is

2

rw
L  orthogonal, and 

2 2

( ( , )) ( ( )) ,
r

i i i iw w
R x h L x

 

      
                                         

(84) 

where
i

 is the eigenvalue of the Laguerre Sturm-Liouville problem (1). Therefore by (80) and 

theorem (3), we have 

       

1

2 2
2 2( , , ) ( )

, ,

1 1

2
2

(1 ) ( ) (1 )

( ) ( )

.

r

m

R h

N i i h i i i h i N

i N i Nw w

m
m m m

mw
w

d d
P u u u U P u u

dx dx

D
cN u cN u

Dx

 





        





 

   

 

     



 
(85) 

Thus the proof is completed.  

Now we present a theorem which express the error analysis of projection operator of exact solution of (70) 

based on Galerkin basis functions. 

Theorem 6. Suppose and are the linear and nonlinear operators with respect to (70) wherein has 

inversion, 
1
and have these properties 

 

( ) ( ) ,x y x y  
                                 

(86) 
1 1( ) ,x x                                               

(87) 

 

and , ([ , )), ( 1)mf g G a b m  are satisfied in equation (70), then 

( )

( , , ) 1( ) (1 ) ,
r

R h

N w
f P f c L N T

   
                                      

(88) 

where 

 /2 1 ( , , )( ( )) .m
r

m
m R h

Nm w

D
T N N P f

Dx





 
                               

(89) 

Proof: From equation (70) and inevitability of we have 
1 1( ) ( ),f f g k x    (90) 

where ( )k x is a function dependent on an operator .  Now by substituting
( , , ) ( )R h

NP f
in (90) 

we have 
( , , ) 1 ( , , ) 1( ) ( ) ( ) ( ).R h R h

N NP f P f g k x   
                                

(91) 

Also the nonlinear term  ( , , ) ( )R h

NP f
is approximated by 

( , , ) ( , , ) ( , , )( ) ( ( )),R h R h R h

N N NP f P P f  

                                          
(92) 

so from (92) and (91), we obtain 

 ( , , ) 1 ( , , ) ( , , ) 1( ) ( ) ( ) ( ).R h R h R h

N N NP f P P f g k x    
                 

(93) 

Now by subtracting (90) and (93), we have

   ( , , ) 1 ( , , ) ( , , ) 1( ) ( ( ) ( )).R h R h R h

N N Nf P f P NP f f    
           

(94) 
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From (94), we have 

   ( , , ) 1 ( , , ) ( , , )

1 ( , , ) 1 ( , , ) 1

( ) ( )

( ) ( ) ( ),

R h R h R h

N N N

R h R h

N N

f P f P P f

P f P f f

  

 



  

 

 
                               

(95) 

so using properties (86) and (87), we obtain 

  

    

( , , ) 1 ( , , ) ( , , ) ( , , )

1 ( , , ) 1 ( , , ) ( , , ) ( , , )

1 ( , , )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) .

r

R h R h R h R h

N N N Nw

R h R h R h R h

N N N N

R h

N

f P f P P f P f

P f f P P f P f

P f f



   

   





 



 

    


              

(96) 

Finally using theorem (4), we obtain 

( )

( , , ) 1( ) (1 ) ,
r

R h

N w
f P f c T

   
                                   

(97) 

where 

/2 1 ( , , )( ( )) .m
r

m
m R h

Nm w

D
T N N P f

Dx





 
                                 

(98) 

Thus the proof is completed.  

Remark 2.In the similar discussion, we can obtain a new rational basis functions in the interval ( , )a b

using Hermit polynomials [5] and transform function 

,
( )( )

hx
y

x a b x


 
                                                         

(99) 

in which is named as an algebraic transformation, and transform the interval ( , )y   to [ , ).x a b  

 

 

5. The test experiment 
 

Functions with stiffness structures arise in many applied sciences such as in engineering, physics and 

applied mathematics. For instance, when exact solution of problems contains terms of the form
kxe , where 

k is a negative real part of a complex number problem, gives meaningless results [22-28]. In general, the 

methods designed for non-stiff problems such as spectral methods (Galerkin, Tau and collocation and based 

on classical polynomials) [7-11], homotopy analysis method [29], vibrational iteration method [30-32] 

when applied to stiff systems of differential equations tend to be very slow and can give bad (divergent) 

results in solution. Now in this section, a test experiment is presented where its solution has stiffness 

structure. In this case, using spectral collocation method based on classical Jacobi polynomials with free 

parameters ( , )  we obtain very bad results in global interval [0, 1], because of the stiffness structures of 

the exact solutions although if we use adaptive spectral collocation method based on classical Jacobi 

polynomials in sub-intervals with small distances, we can obtain better results. But using spectral method 

based on new rational basis functions, we show the accuracy and superiority of our new basis functions 

rather than other basis functions such as polynomials in global interval. 

 

Experiment 3.Consider the following system of differential equations [33], our new basis functions rather 

than other basis functions such as polynomials in global interval. 
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( ) 21 19 20 ( )

( ) 19 21 20 ( ) ,

( ) 40 40 40 ( )

x t x t

y t y t

z t z t

       
          
                                                  

(100)

 

with initial condition

1.0

(0) 0.0 .

1

x

 
 


 
  

 

The exact solution is 

 

 

 

2 40

2 40

2 40

1
( ) cos(40 ) sin(40 ) ,

2

1
( ) cos(40 ) sin(40 ) ,

2

1
( ) cos(40 ) sin(40 ) .

2

t t

t t

t t

x t e e t t

y t e e t t

z t e e t t



 

 

    

    


    

                                 

(101) 

Now we approximate the exact solution of (100) based on rational Laguarre functions (generalized), or 

 

 

 

,

0

,

0

,

0

( ) ( , ) ( , ) ,

( ) ( , ) ( , ) ,

( ) ( , ) ( , ) ,

m
T

m

i i

i

n
T

n

i i

i

p
T

p

i i

i

x t R t h R x h

y t R t h R x h

z t R t h R x h

 

 

 

 

 

 


















                                           

(102)

 
where , , ,i i i   are the unknown coefficients, 

   0 0 0,..., , ,..., , ,..., ,
TT T

m n p                                 
(103) 

and 

 
,

0 1( , ) [ ( , ), ( , ),..., ( , )] .i T

iR x h R x h R x h R x h   
                               

(104) 

 

In this work, we assume ,m n p  and we can consider the matrix form of equation (100) as follows 

    

    

    

, ( )

, ( )

, ( )

( , ) 21 19 20 0,

( , ) 19 21 20 0,

( , ) 40 40 40 0,

T
n

n n

T
n

n n

T
n

n n

R x h D I

R x h D I

R x h D I

 

 

 

  

  

  







  

   

   
                      

(105) 

 

or 

 

 

 

 

( )

( , ) ( )

( )

21 19 20 0

( , ) 19 21 20 0 ,

040 40 40

n n n n n n

n

n n n n n n

n n n n n n

D I I I

H x h I D I I

I I D I



 









  

  

  

  
    
       
    
         

     

(106) 
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where 

     ( , ) , , ,( , ) ( , ) , ( , ) ( , ) ,,
T T T

n n n nH x h R x h R x h R x h    
                     

(107) 

and
( ) , n nD I


are operational matrices of derivative and identity of order n, respectively. Also the matrix 

form of initial conditions is in the following form 

( , )

1

(0, ) 0 .

1

nH h







   
   


   
                                                              

(108) 

Now we choose 1n collocation points , 0,..., ,ix i n ; and by vanishing (106) in these collocation points, 

we obtain 3n algebraic equations for 3n unknown coefficients. But for imposing the initial conditions, we 

eliminate the 3 latter equations of linear system (106) and add the 3 initial conditions (108). The obtained 

algebraic system is linear and solving it, is easy from implementation point of view. 
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6. Conclusion 

In this work, we have presented a new rational basis functions defined on[ , )a b and based on mapping 

Laguerre polynomials to bounded domain[ , )a b . Using these rational functions as basic functions, we have 

implemented spectral methods for numerical solution of operator equations and we have shown that in some 

cases (operator equations with fractional solutions), these basis functions are obtained better results than 

other basis functions (experiment 3). Also the quadrature formulae and operational matrices (derivative, 

integral and product) with respect to these basis functions are obtained. The importance and superiority of 

the new basis functions rather than other basis functions such as polynomials is shown for quadrature 

formulae and for numerical solution of operator equations in some experiments (experiments 1 and 2). 
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