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Abstract

We aim to establish new Hermite-Hadamard type inequalities for products of two different convex functions involving
certain generalized fractional integral operators. The results presented here, being very general, are pointed out to be specialized
to yield many new and known inequalities associated with some known fractional integral operators.
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1. Introduction and preliminaries

Here we recall some definitions and some known results for easier reference and later use. Let I be an
interval in R. A function f : I→ R is said to be convex if the inequality

f(tx+ (1 − t)y) 6 tf(x) + (1 − t)f(y),

holds for all x, y ∈ I and t ∈ [0, 1]. Here and in the following, let C, R, R+, N and Z−
0 be the sets

of complex numbers, real numbers, positive real numbers, positive integers and non-positive integers,
respectively, and let R+

0 := R+ ∪ {0} and N0 := N ∪ {0}. For this convex function f : I → R, the following
well-known inequality is referred to, in the literature, as the Hermite-Hadamard integral inequality:

f

(
a+ b

2

)
6

1
b− a

∫b
a

f(x)dx 6
f(a) + f(b)

2
,

where a,b ∈ I with a < b.
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A function f : [0,∞) → R is said to be s-convex in the second sense if

f(tx+ (1 − t)y) 6 tsf(x) + (1 − t)sf(y)

for all x, y ∈ [0,∞), t ∈ [0, 1] and for some fixed s ∈ (0, 1].
Breckner [3] introduced the s-convex function in the second sense and Hudzik and Maligranda [9]

presented a number of properties and connections with s-convexity in the first sense.
Since fractional calculus was introduced at the end of the nineteenth century, the subject has become

a rapidly growing area and has found many applications in various research fields. Due mainly to the
demonstrated applications, many researchers have investigated certain inequalities for different classes of
functions involving diverse fractional integral operators (see, e.g., [2, 6–8, 10, 12–16, 18]).

We denote by Lp(a,b) (1 6 p 6∞) the set of those Lebesgue complex-valued measurable functions f
on [a,b] (−∞ 6 a < b 6∞) for which ‖f‖p <∞, where

||f||p =

(∫b
a

|f(t)|p dt

) 1
p

, (1 6 p <∞) ,

and
||f||∞ = ess supa6t6b |f(t)|.

Let f ∈ L1[a,b] := L(a,b). The Riemann-Liouville integrals Jαa+f and Jαb−f of order α ∈ R+ with
a ∈ R+

0 are defined, respectively, by

Jαa+f(x) =
1
Γ(α)

∫x
a

(x− t)α−1 f(t)dt, (x > a),

and

Jαb−f(x) =
1
Γ(α)

∫b
x

(t− x)α−1 f(t)dt, (x < b),

where Γ is the familiar Gamma function (see, e.g., [19, Section 1.1]). It is noted that J1a+f(x) and J1b−f(x)
become the usual Riemann integrals.

The beta function B(α,β) is defined by (see, e.g., [19, Section 1.1])

B(α, β) =


∫ 1

0
tα−1(1 − t)β−1 dt, (<(α) > 0; <(β) > 0),

Γ(α) Γ(β)

Γ(α+β)
,

(
α, β ∈ C \ Z−

0

)
.

(1.1)

Chen [4] presented Hermite-Hadamard type inequalities for products of two functions, which are
recalled in Theorems 1.1 and 1.2.

Theorem 1.1. Let f and g be real-valued, nonnegative and convex functions on [a,b]. Then

Γ(α+ 1)
2(b− a)α

[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

6

(
α

α+ 2
−

α

α+ 1
+

1
2

)
M(a,b) +

α

(α+ 1)(α+ 2)
N(a,b),

(1.2)

where α ∈ R+,

M(a,b) := f(a)g(a) + f(b)g(b), and N(a,b) := f(a)g(b) + f(b)g(a). (1.3)
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Theorem 1.2. Let f and g be real-valued, nonnegative and convex functions on [a,b]. Then

2f
(
a+ b

2

)
g

(
a+ b

2

)
6
Γ(α+ 1)

2(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

+M(a,b)
α

(α+ 1)(α+ 2)
+N(a,b)

(
α

α+ 2
−

α

α+ 1
+

1
2

)
,

(1.4)

where α ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3).

Chen and Wu [5] established Hermite-Hadamard type inequalities for products of two different convex
functions, which are recalled in Theorems 1.3, 1.4 and 1.5.

Theorem 1.3. Let f,g : [a,b] → R (a < b) with a,b ∈ [0,∞) be functions such that f,g ∈ L[a,b]. Also, let f be
convex and nonnegative and g be s-convex on [a,b] for some fixed s ∈ (0, 1]. Then

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)] 6

(
1

α+ s+ 1
+B(α, s+ 2)

)
M(a,b)

+

(
B(α+ 1, s+ 1) +

1
(α+ s)(α+ s+ 1)

)
N(a,b),

(1.5)

where α ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3).

Theorem 1.4. Let f,g : [a,b] → R (a < b) with a, b ∈ [0,∞) be functions such that f, g ∈ L[a,b]. Also, let f
be s1-convex and g be s2-convex on [a,b] for some fixed s1, s2 ∈ (0, 1]. Then

Γ(α)

(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)] 6

{
1

α+ s1 + s2
+B(α, s1 + s2 + 1)

}
M(a,b)

+ {B(α+ s1, s2 + 1) +B(α+ s2, s1 + 1)} N(a,b),
(1.6)

where α ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3).

Theorem 1.5. Let f,g : [a,b] → R (a < b) with a, b ∈ [0,∞) be functions such that f, g ∈ L[a,b]. Also, let f
be convex and nonnegative and g be s-convex on [a,b] for some fixed s ∈ (0, 1]. Then

2sf
(
a+ b

2

)
g

(
a+ b

2

)
6
Γ(α+ 1)

2(b− a)α
[Jαa+f(b)g(b) + Jαb−f(a)g(a)]

+
1
2
M(a,b)

{
B(α+ 1, s+ 1) +

1
(α+ s)(α+ s+ 1)

}
+

1
2
N(a,b)

{
B(α, s+ 2) +

1
α+ s+ 1

}
,

(1.7)

where α ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3).

Raina [11] introduced a class of functions defined formally by

Fσρ,λ(x) = F
σ(0),σ(1),···
ρ,λ (x) =

∞∑
k=0

σ(k)

Γ(ρk+ λ)
xk,

(
ρ, λ ∈ R+; |x| <∞) , (1.8)

where the coefficients σ(k) ∈ R+ (k ∈ N0) form a bounded sequence. With the help of (1.8), Raina
[11] and Agarwal et al. [1] defined the following left-sided and right-sided fractional integral operators,
respectively, as follows:

(
Jσρ,λ,a+;wϕ

)
(x) =

∫x
a

(x− t)λ−1Fσρ,λ[w(x− t)
ρ]ϕ(t)dt, (a < x), (1.9)
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and (
Jσρ,λ,b−;wϕ

)
(x) =

∫b
x

(t− x)λ−1Fσρ,λ[w(t− x)
ρ]ϕ(t)dt, (x < b), (1.10)

where ρ, λ ∈ R+, w ∈ R and ϕ(t) is a function such that the integrals on the right sides exist.
It is easy to verify that Jσρ,λ,a+;wϕ(x) and Jσρ,λ,b−;wϕ(x) are bounded integral operators on L(a,b) if

M := Fσρ,λ+1[w(b− a)
ρ] <∞.

In fact, for ϕ ∈ L(a,b), we have

||Jσρ,λ,a+;wϕ(x)||1 6 M(b− a)λ||ϕ||1,

and
||Jσρ,λ,b−;wϕ(x)||1 6 M(b− a)λ||ϕ||1.

It is noted that many useful fractional integral operators can be obtained by specializing the coefficient
σ(k) in (1.9) and (1.10), for example, the Riemann-Liouville fractional integrals Jαa+ and Jαb− of order α
follow easily by setting λ = α, σ(0) = 1 and w = 0 in (1.9) and (1.10). For some recent results and
properties concerning the fractional integral operators (1.9) and (1.10), one may be referred to [17, 20, 21].

Here, we aim to establish certain new Hermite-Hadamard type inequalities for products of two dif-
ferent convex functions involving the fractional integral operators (1.9) and (1.10). The results presented
here, being very general, are pointed out to be specialized to yield many new and known inequalities
associated with some known fractional integral operators.

2. Inequalities for product of convex and s-convex functions

Here we begin by stating a generalized Hermite-Hadamard type inequality for product of a convex
function and a s-convex function involving the fractional integral operators (1.9) and (1.10), which is
asserted by Theorem 2.1.

Theorem 2.1. Let f,g : [a,b] → R+
0 (a < b) with a,b ∈ [0,∞) be functions such that f,g ∈ L[a,b]. Also, let f

be convex and g be s-convex on [a,b] for some fixed s ∈ (0, 1]. Then

1
(b− a)α

[
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

]
6M(a,b)Fσ1

ρ,α [w(b− a)ρ] +N(a,b)Fσ2
ρ,α [w(b− a)ρ] ,

(2.1)

where α, ρ, w ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3),

σ1(k) := σ(k)

(
1

α+ ρk+ s+ 1
+B(α+ ρk, s+ 2)

)
,

and

σ2(k) := σ(k)

(
B(α+ ρk+ 1, s+ 1) +

1
(α+ ρk+ s)(α+ ρk+ s+ 1)

)
.

Proof. We find from the definitions of f and g that, for t ∈ [0, 1],

f(ta+ (1 − t)b) 6 tf(a) + (1 − t)f(b), (2.2)

and
g(ta+ (1 − t)b) 6 tsg(a) + (1 − t)sg(b). (2.3)
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By multiplying side by side of (2.2) and (2.3) and considering that each term is non-negative real, we get
for t ∈ [0, 1],

f(ta+ (1 − t)b)g(ta+ (1 − t)b) 6 ts+1f(a)g(a) + (1 − t)s+1f(b)g(b)

+ t(1 − t)sf(a)g(b) + (1 − t)tsf(b)g(a).
(2.4)

Similarly,
f((1 − t)a+ tb)g((1 − t)a+ tb) 6 (1 − t)s+1f(a)g(a) + ts+1f(b)g(b)

+ (1 − t)tsf(a)g(b) + t(1 − t)sf(b)g(a).
(2.5)

By adding side by side of (2.4) and (2.5), we obtain

f(ta+ (1 − t)b)g(ta+ (1 − t)b) + f((1 − t)a+ tb)g((1 − t)a+ tb)

6
{
ts+1 + (1 − t)s+1} M(a,b) + {t(1 − t)s + (1 − t)ts} N(a,b),

(2.6)

where M(a,b) and N(a,b) are the same as given in (1.3).
Multiplying both sides of (2.6) by tα−1Fσρ,α[w(b− a)

ρtρ] and integrating the resulting inequality with
respect to t over [0, 1], we obtain

L1(α,σ, ρ,w) +L2(α,σ, ρ,w) 6 R1(α,σ, ρ,w, s) +R2(α,σ, ρ,w, s), (2.7)

where

L1(α,σ, ρ,w) :=
∫ 1

0
tα−1Fσρ,α[w(b− a)

ρtρ]f(ta+ (1 − t)b)g(ta+ (1 − t)b)dt,

L2(α,σ, ρ,w) :=
∫ 1

0
tα−1Fσρ,α[w(b− a)

ρtρ]f((1 − t)a+ tb)g((1 − t)a+ tb)dt,

R1(α,σ, ρ,w, s) :=M(a,b)
∫ 1

0
tα−1Fσρ,α[w(b− a)

ρtρ]
{
ts+1 + (1 − t)s+1} dt,

R2(α,σ, ρ,w, s) := N(a,b)
∫ 1

0
tα−1Fσρ,α[w(b− a)

ρtρ] {t(1 − t)s + (1 − t)ts} dt.

Setting ta+ (1 − t)b = u and (1 − t)a+ tb = v in L1(α,σ, ρ,w) and L2(α,σ, ρ,w), respectively, and using
(1.9) and (1.10), we get

L1(α,σ, ρ,w) +L2(α,σ, ρ,w) =
1

(b− a)α

∫b
a

(b− u)α−1
Fσρ,α [w(b− u)ρ] f(u)g(u)du

+
1

(b− a)α

∫b
a

(v− a)α−1
Fσρ,α [w(v− a)ρ] f(v)g(v)dv

=
1

(b− a)α
{
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

}
.

(2.8)

Using (1.8), we have

R1(α,σ, ρ,w, s) =M(a,b)
∞∑
k=0

σ(k)wk(b− a)ρk

Γ(α+ ρk)

∫ 1

0
tα+ρk−1 {ts+1 + (1 − t)s+1} dt.

We find from (1.1) that∫ 1

0
tα+ρk−1 {ts+1 + (1 − t)s+1} dt = 1

α+ ρk+ s+ 1
+

∫ 1

0
tα+ρk−1 (1 − t)s+1 dt

=
1

α+ ρk+ s+ 1
+B(α+ ρk, s+ 2).
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In view of (1.8), we thus have

R1(α,σ, ρ,w, s) =M(a,b)Fσ1
ρ,α [w(b− a)ρ] . (2.9)

Similarly, we get
R2(α,σ, ρ,w, s) = N(a,b)Fσ2

ρ,α [w(b− a)ρ] . (2.10)

Finally, substituting (2.8), (2.9), and (2.10) in (2.7), we are led to the desired result (2.1).

Remark 2.2. Setting σ(0) = 1 and w = 0 in Theorem 2.1, we find that the inequality (2.1) reduces to the
inequality (1.5).

Theorem 2.3. Let f,g : [a,b] → R+
0 (a < b) with a,b ∈ [0,∞) be functions such that f,g, fg ∈ L[a,b]. Also, let

f and g be s1-convex and s2-convex on [a,b] for some fixed s1, s2 ∈ (0, 1], respectively. Then

1
(b− a)α

{
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

}
6M(a,b)Fσ3

ρ,α [w(b− a)ρ] +N(a,b)Fσ4
ρ,α [w(b− a)ρ] ,

(2.11)

where α, ρ, w ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3),

σ3(k) := σ(k)

{
1

α+ ρk+ s1 + s2
+B(α+ ρk, s1 + s2 + 1)

}
,

σ4(k) := σ(k) {B(α+ ρk+ s1, s2 + 1) +B(α+ ρk+ s2, s1 + 1)} .

Proof. A similar argument as in the proof of Theorem 2.1 will establish the result here. We omit the
details.

Corollary 2.4. Under the assumptions of Theorem 2.3 with s1 = s2 = 1, we have

1
(b− a)α

{
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

}
6M(a,b)Fσ5

ρ,α [w(b− a)ρ] +N(a,b)Fσ6
ρ,α [w(b− a)ρ] ,

(2.12)

where α, ρ, w ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3),

σ5(k) := σ(k)

(
2

α+ ρk+ 2
−

2
α+ ρk+ 1

+
1

α+ ρk

)
,

σ6(k) :=
2σ(k)

(α+ ρk+ 1)(α+ ρk+ 2)
.

Remark 2.5. Setting σ(0) = 1 and w = 0 in Theorem 2.3, we find that the inequality (2.11) reduces to the
inequality (1.6). Taking σ(0) = 1 and w = 0 in Corollary 2.4, we see that the inequality (2.12) reduces to
the inequality (1.2).

Theorem 2.6. Let f,g : [a,b] → R+
0 (a < b) with a, b ∈ [0,∞) be functions such that fg ∈ L[a,b]. Also, let f

be convex and g be s-convex on [a,b] for some fixed s ∈ (0, 1]. Then

2s+1f

(
a+ b

2

)
g

(
a+ b

2

)
Fσ7
ρ,α[w(b− a)

ρ] 6
1

(b− a)α
{
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

}
+M(a,b)Fσ2

ρ,α[w(b− a)
ρ] +N(a,b)Fσ1

ρ,α[w(b− a)
ρ],

(2.13)

where α, ρ, w ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3), σ1 and σ2 are the same as given in
Theorem 2.1,

σ7(k) :=
σ(k)

α+ ρk
.
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Proof. By using the definitions of f and g, we have (see [5, p. 714])

f

(
a+ b

2

)
g

(
a+ b

2

)
= f

(
ta+ (1 − t)b

2
+

(1 − t)a+ tb

2

)
g

(
ta+ (1 − t)b

2
+

(1 − t)a+ tb

2

)
6

1
2s+1 [f(ta+ (1 − t)b)g(ta+ (1 − t)b)

+f((1 − t)a+ tb)g((1 − t)a+ tb)]

+
1

2s+1 [{t(1 − t)s + (1 − t)ts} M(a,b)

+
{
(1 − t)s+1 + ts+1} N(a,b)

]
.

(2.14)

Now, applying a similar argument to (2.14) as in the proof of Theorem 2.1 will establish the result here.
We omit the details.

Corollary 2.7. Under the assumptions of Theorem 2.6 with s = 1, we have

4f
(
a+ b

2

)
g

(
a+ b

2

)
Fσ7
ρ,α [w(b− a)ρ] 6

1
(b− a)α

{
(Jσρ,α,a+;w)(fg(b)) + (Jσρ,α,b−;w)(fg(a))

}
+M(a,b)Fσ6

ρ,α [w(b− a)ρ] +N(a,b)Fσ5
ρ,α [w(b− a)ρ] ,

(2.15)

where α, ρ, w ∈ R+, M(a,b) and N(a,b) are the same as given in (1.3), σ5 and σ6 are the same as in Corollary
2.4, and σ7 is the same as given in Theorem 2.6.

Remark 2.8. Setting σ(0) = 1 and w = 0 in Theorem 2.6, we find that the inequality (2.13) reduces to the
inequality (1.7). Taking σ(0) = 1 and w = 0 in Corollary 2.7, we see that the inequality (2.15) reduces to
the inequality (1.4).
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[17] E. Set, A. Gözpınar, Some new inequalities involving generalized fractional integral operators for several class functions,
AIP Conference Proceedings, (2017). 1
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