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Abstract

In this paper, we establish fixed point theorems for a new generalized -1\ type contractive mapping in complete b-metric
spaces. As applications of our results, we obtain fixed point theorems on metric space endowed with a partial order or a graph.
We also obtain fixed point theorems for cyclic contractive mappings. Moreover, an application to integral equation is given here
to illustrate the usability of the obtained results.
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1. Introduction and preliminaries

Fixed point theorems for a-\p type contractive mappings in metric spaces were firstly obtained in 2012
by Samet et al. [29]. In this direction several authors obtained further results (see, e.g., [3-7, 16, 18, 19, 27,
31)).

Let ¥ be family of functions \ : [0, 00) — [0, 00) satisfying the following conditions:

(i) W is increasing;
(ii) P is continuous bijective;
(i) limp 10 $™(t) =0, for all t > 0, where Y™ is the n-th iterate of .

It is easy to see that {(t) < t for all t > 0 and (0) = 0.
In this paper we denote G(t) =t —As(t), As € (0,1]. We easily obtain that G is increasing continuous
bijective, hence G “1is increasing and continuous and G 10) =0.

Definition 1.1. Let (X, d) be a metric space and T : X — X be a given mapping. We say that T is an -\
contractive mapping if there exist two functions o : X x X — [0, 00) and { € ¥ such that

o(x,y)d(Tx, Ty) < P(d(x,y)), VxyeEX
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Clearly, any contractive mapping is an «-\p contractive mapping with «(x,y) =1 for all x,y € X and
P(t) =kt, ke (0,1).

Definition 1.2. Let T: X — X and « : X x X — [0,00). We say that T is an x-admissible mapping if for all
x,Yy € X we have the following implication:

a(x,y) =>21=a(Tx, Ty) > 1.

Definition 1.3. Let T: X — Xand « : X x X — [0, 00). We say that T is a triangular x-admissible mapping
if for all x,y,z € X we have
alx,y) > 1= o(Tx, Ty) > 1,

and
alx,y) =21, x(y,z) 2 1= «(x,z) > 1.

Various examples of the above mappings are presented in [16, 29] and [18].
Some results of fixed point in b-metric space have been obtained (see, e.g., [8, 9, 11, 12]). Now, we
present some definitions in b-metric space.

Definition 1.4. Let X be a nonempty set and the mapping b : X x X — R" satisfies:

(b1) b(x,y) =0if and only if x =y for all x,y € X;

(b2) b(x,y) =b(y,x) forall x,y € X;

(b3) there exists a real number s > 1 such that b(x,y) < s[b(x,z) + b(z,y)] for all x,y,z € X.

Then b is called a b-metric on X and (X, b) is called a b-metric space with coefficient s.

Remark 1.5. It is clear that every metric space is a b-metric space with coefficient s = 1.

Definition 1.6. Let (X, b) be a b-metric space, then for x € X and € > 0, the b-ball with center x and radius
els B(x,e) ={y € X|b(x,y) < €}

Definition 1.7. Let (X, b) be a b-metric space, A C X. A is said to be a closed if and only if x € X and for
all e >0, B(x,e)NA # ¢, then x € A.

Definition 1.8. Let (X, b) be a b-metric space, A C X. The diameter of A is

d(A) = sup b(x,y).
X,YyeEA

Definition 1.9 ([32]). A sequence {x,} in a b-metric space (X, b) is said to be:

(i) a Cauchy sequence if and only if for all € > 0 there exists n(e) € N such that for each n,m > n(e)
we have b(xn,xm) < €;

(ii) a convergent sequence if and only if there exists x € X such that for all € > 0 there exists n(e) € N
such that for each n > n(e) we have b(xn,x) < €.

Definition 1.10. A b-metric space (X, b) is said to be complete if every Cauchy sequence {xn} C X con-
verges to some x € X.

Definition 1.11. Let (X, b) be a b-metric space and T : X — X be a mapping. T is continuous at x € X, if
and only if whenever {x,,} is convergent to x, then {Tx,,} is convergent to Tx.
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2. Main results
We introduce a new concept of generalized «-\ contractive type mappings as follows.

Definition 2.1. Let (X, d) be a metric space and T : X — X be a given mapping. We say that T is a
generalized o~ contractive mapping if there exist two functions « : X x X — [0,00), ¥ € V¥, for all
X,y € X such that

«(x,y)d(Tx, Ty) < p(max{d(x,y),d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}).

Remark 2.2. Since 1 is increasing, clearly every x-\p contractive mapping is generalized x-\{p contractive
mapping.
Our results are the following.

Theorem 2.3. Let (X, b) be a complete b-metric space with coefficient s > 1 and T : X — X be a given mapping. If
there exist a function \p € ¥ and constant A € (0, %],for all x,y € X such that

x(x,y)b(Tx, Ty) < Mp(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx)}), (2.1)
and which satisfies:
(i) T is triangular x-admissible;
(ii) there exists xg € X such that «(xg, Txg) = 1;
(iii) T is continuous,
then T has a fixed point.

Proof. Let xo € X such that «(xo, Txg) > 1. Take xny1 = Txn = T™xg for all n € N. If xp, = Xn,41 for
some TNy, then x,,, is a fixed point of T. So, we can assume that x, 1 # x,, for all n. Since T is triangular
o-admissible, we have

a(xp,x1) = a(xp, Txg) > 1 = «(Txo, Tx1) = x(xq,%x2) > 1.

Moreover
x(xp,x1) 21, ofx1,%2) 2 1= (xq,x3) > 1.

Inductively, for all m,n € N, n < m, we easily obtain
a(Xn, Xxm) = 1. (2.2)

Let us denote Ot (xg;n) = {xo, Txo, -+, T™xo} and 8O7(xgp;n) denotes the diameter of Ot (xg;n). From
(2.1) and (2.2), foreach 1 <i<j<n, i,j € N, we have

b(xi,%5) = b(Txi—1, Txj_1)

< alxi—1,%-1)b(Txi—1, Txj—1)

< A (max{b(xi—1,%j-1), b(xi—1,%i), b(xj-1,%5), b(xi—1, %), b(xi,%5-1)})

< AP(807(x0; 1)) (2.3)
<P (8071(x0;1)). (2.4)

It is easy to see that there exists k < n, k € N such that

b(XQ, TkXO) = 5OT(X0; TL). (2.5)
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Indeed, if there exists i,j # 0, i < j such that 607(xp;n) = b(xy,x;), from (2.4) we have
807 (x0; 1) = b(xy,%5) < PY(8071(x0;m)) < 807 (x0;M).
It is a contradiction. Hence, by applying (2.3), (2.5) and the triangular inequality, we have
807 (xo; 1) = b(x0, T x0)

< sb(xg, Txo) + sb(Txg, T¥xo)
< sb(xo, Txo) + sAP (807 (xp; 1)),

which leads to
80T (x0; ) — sAMP (807 (x0; 1)) < sb(xo, Txo).

For G(t) = t — sA(t), since G~! is increasing, then
507 (xo; 1) < G~ !(sb(xo, Txo)). (2.6)
Also, for all m,n € N and m > n, using (2.4), it results
b(xn, xm) <P(r1), (2.7)

where
T = 6OT(xn,1;m—n + 1)

Now, by (2.5), there exists k; € N, k; < m —n + 1 such that
T =80T(xn_p;m—n+1) = blxn_1, T%n_1).
By using again (2.5) we have
11 = b(xn-1, T%n 1) = b(Txn—2, T xn2) <1h(r2), (2.8)

where
T2 =807 (xn_2;k1 +1).

Since 1 is monotone increasing and k; +1 < m —n+ 2, from (2.7) and (2.8) we obtain
b(xn, Xm) < P* (807 (xn 2, m—n+2)).
So, for all m,n € N, and m > n, by induction, we get
b(xn, xm) < Y™ (807 (x0;m)).

By (2.6), we get
b(xn, xm) < W™ (G (sb(xo, Txo)))- (2.9)

Letting n — oo in (2.9), we get
b(xn,Xxm) — 0. (2.10)

It implies {xn } is a Cauchy sequence, hence it is convergent. So there exists x* € X such that

lim b(xn,x*) =0. (2.11)

n—o00

Next we will show that x* € F(T). Since T is continuous, then Tx,, — Tx* as n — oco. Using the
triangular inequality, we have

b(x*, Tx*) < sb(x™, xn41) + sb(Txn, TX"). (2.12)

Letting n — oo in (2.12), we get b(x*, Tx*) = 0, which means x* € F(T). O
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Example 2.4. Let X = [0, c0), endow with the b-metric b(x,y) = (x —y)? with s = 2 for all x,y € X. Define
the mapping T : X — X by
TX:{ %I XG[OI]-]I

2x — Z, x € (1,00).

We define the mapping o : X x X — [0, 00) by

eyl if x,ye (0,1,
e x=ul  otherwise.

a(x,y) = {

Clearly, T is a triangular x-admissible and generalized «- contractive mapping with {(t) = ﬁ for all
t € [0, 00). In fact taking A = }I for all x,y € X, we have

a(x,y)b(Tx, Ty) < Ap(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx)}).

Moreover, there exists xg = % € X such that

Sl

1 1
o(x0, Txg) = (5, —) =el6 > 1.

4" 16

Obviously T is continuous.
Now, all the hypotheses of Theorem 2.3 are satisfied, T has a fixed point. In this example, 0 and % are
two fixed points of T.

Theorem 2.5. Let (X, b) be a complete b-metric space with coefficient s > 1 and T : X — X be a given mapping.
Suppose there exist a function \p € Y and constant A € (0, 1], for all x,y € X such that

x(x,y)b(Tx, Ty) < Ap(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx)}), (2.13)
and which satisfies:
(i) T is triangular x-admissible;
(ii) there exists xg € X such that «(xg, Txg) = 1;

(iii) if {xn} is a sequence in (X,b) such that &(xn,Xn+1) = 1 foralln € N and x, — x* € Xas n — oo, then
o(xn,x*) > 1.

Then T has a fixed point.

Proof. Following the proof of Theorem 2.3, we know that the sequence x,, defined by x,, 11 = Tx;, for all
n € N, and converges to some x* € X. By applying (2.2) and condition (iii), we obtain d(xn,x*) > 1. So,
by (2.1) and the triangular inequality, we have

b(x", Tx") < sb(x™, xn41) + sb(Txn, Tx")
< sb(X™, xn+1) + sa(xn, x#)b(Txn, TX") (2.14)
< Sb(X*/Xn+1) + wa(max{b (XH/X*)/b(XTU TX*)/b(Xn+1/X*)/b(X*/TX*)/ b(Xn/ TXTL)}) .
=sb(x*, xny1) + sAP(M),
where

M = maX{b (XTL/ X* )/ b (XTU TX* )/ b (XTL+1/ X* )/ b (X*r TX* )/ b (an TXTL )}
There are three cases.

Case 1. If M = max{b(xn,x*), b(xn41,x*), b(xn, Xni1)}
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Since 1 is continuous, let n — oo in (2.14). By (2.10) and (2.11) we get b(x*, Tx*) = 0.
Case 2. If M = b(x*, Tx*).

From (2.14), we have
b(x", Tx™) — sAp(b(x*, Tx")) < sb(xn+1,x7),

this implies b(x*, Tx*) < G~ 1(sb(xn41,x*)), since G~ is continuous and G~1(0) =0, let n — oo, by (2.11)
we obtain b(x*, Tx*) = 0.

Case 3. If M = b(xn, Tx*).
Since 1 is continuous, let n — oo in (2.14), by (2.11) we get
b(x*, Tx*) < sAp(b(x*, Tx™)).
This implies b(x*, Tx*) =0, or
b(x*, Tx™) < P(b(x*, Tx*)) < b(x™, Tx*).

It is a contradiction.
From the above three cases, we all obtain b(x*, Tx*) = 0, hence x* is a fixed point of T. O

Example 2.6. Let X = R, endow with the b-metric b(x,y) = (x —y)? with s = 2 for all x,y € X. Define the
mapping T : X — X by

We define the mapping o : X x X — [0, 00) by

1, if x,yeQqQ,

Clearly, T is a triangular a-admissible and generalized a-\ contractive mapping with (t) = ; for all
t € [0, 00). In fact, taking A = % for all x,y € X, we have

a(x,y)b(Tx, Ty) < Ap(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx)}).

Moreover, there exists xg = % € X such that

11
O((X(),TX()) = “(ZI E) =1

Take xn = T™xp. We easily obtain

1 1
X(Xn, Xn+1) = “(Bz W) =1

and as n — oo, we have

1
Xn = 4—n—>X—OEX

So

o(xn,x) = of 0)=1.

47“/

Now, all the hypotheses of Theorem 2.5 are satisfied, T has a fixed point. In this example, 0, 1+2‘@ and

1= \[ are three fixed points of T.
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(H) For all x,y € F(T), there exists z € X such that «(x,z) > 1 and «(y,z) > 1.

Theorem 2.7. Adding condition (H) to Theorem 2.3 (resp., Theorem 2.5), then that x* is the unique fixed point of
T.

Proof. Let that x*,y* € F(T). By condition (H), there exists z € X such that
a(x*,z) =21, «(y*,z)>1
Since T is a-admissible, from the above inequalities, for all n € N, we obtain

x(x*,T"z) > 1, a(y*,T"z) > 1.

So
b(x*, T"z) < a(x*, T 12)b(T™x*, T"z)
< Mp(max{b(x*, T 1z), b(T™ 1z, T"2), d(x*, Tx*), b(x*, T"z), b(x*, T 12)}) 2.15)
= Mp(N)
<YP(N),
where

N = max{b(x*, T 1z),b(T" !z, T"2), b(x*, Tx*), b(x*, T"z), b(x*, T 12)}.
There are four cases.
Case 1. If N = b(x*, Tx*).
It implies for all n € N, we have b(x*,T"z) = 0.
Case 2. If N = b(x*, T 12).
It results
b(x*, T"z) < P(b(x*, TV '2)),
recursively, we obtain
b(x*, T"z) < Y™ (b(x",z)).
Letting n — oo, we have
lim b(x*, T"z) =0.

n—oo
Case 3. If N = b(x*, T"z).
We get

b(x*,T"z) < P(b(x*, T"z)).
It implies for all n € N, we have b(x*,T"z) = 0.
Case 4. If N =b(T" 1z, T"z).
Let n — oo in (2.15). From (2.10) we obtain

lim b(x*, T"z) =0.

n—oo

From the above four cases, we all obtain
lim b(x*,T"z) =0.
n—oo

Similarly, we can get
lim b(y*, T"z) =0.
n—oo
Using the triangular inequality, we have
b(x*,y") < sb(x*, T"z) +sb(y*, T"z).

Letting n — oo, we get b(x*,y*) =0, i.e,, x* = y*. Hence T has the unique fixed point. O
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3. Applications

Next, we will show that some results can be deduced easily from our Theorem 2.7.

3.1. Standard fixed point theorems
Letting s = 1 in Theorem 2.7, we may get the following fixed point theorem.

Corollary 3.1. Let (X, d) be a complete metric space and T : X — X be a mapping. If there exists a function \p € ¥
forall x,y € X such that

«(x,y)d(Tx, Ty) < p(max{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}),
and which satisfies:
(i) T is triangular x-admissible;
(ii) there exists xg € X such that «(xg, Txg) = 1;

(iii) T is continuous or if {xn} is a sequence in (X, d) such that oc(xn,xn4+1) = 1 foralln € N and x, — x* € X
as n — oo, then o(xn,x*) > 1,

then
(1) T has a fixed point;
(2) if the condition (H) is satisfied, T has a unique fixed point.
Letting «(x,y) = 1 in Theorem 2.7, for all x,y € X, we get the following fixed point theorem.

Corollary 3.2. Let (X, b) be a complete b-metric space with coefficient s > 1 and T : X — X be a mapping. If there
exist a function \p € ¥ and constant A € (0, %],for all x,y € X such that

b(Tx, Ty) < Ap(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx}}),
then T has a unique fixed point.

Corollary 3.3. Let (X, d) be a complete metric space and T : X — X be a mapping. If there exists a function \p € ¥,
forall x,y € X such that

d(Tx, Ty) < w(max{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}),
then T has a unique fixed point.

Corollary 3.4. Let (X, d) be a complete metric space and T : X — X be a mapping. If there exist a function \p € ¥
and constant k € (0,1), for all x,y € X such that

d(Tx, Ty) < kmax{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
then T has a unique fixed point.

3.2. Fixed point theorem on b-metric spaces endowed with a partial order

Many exciting fixed point theorems on metric space with a partial have been obtained (see, e.g.,
[1, 13, 20, 24, 25, 28]). According to our Theorem 2.7, we will deduce fixed point theorems on metric space
with a partial, and know that those exciting theorems will be obtained easily by our result. At first, we
present some concepts.

Definition 3.5. Let (X, <) be a partially ordered set, T : X — X be a mapping. We say that T is increasing
with respect to =<, if for all x,y € X
x2y=Tx=Ty.
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Definition 3.6. Let (X, <) be a partially ordered set. A sequence {xn,} C X is said to be increasing with
respect to =<, if xn < x4 for all n.

Definition 3.7. Let (X, <, d) be partially ordered metric space. We say that (X, <, d) is regular if for every
increasing sequence {xn} C X such that x, — x € X asn — oo, there exists a subsequence {x, ()} of {xn}
such that x,, () = x for all k.

We obtain the following result.

Corollary 3.8. Let (X, <, b) be complete partially ordered b-metric space with coefficient s > 1 and T : X — X be
an increasing mapping with respect to <. Suppose there exist a function \p € ¥ and constant A € (0, 1] such that

d(Tx, Ty) < Ab(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), bly, Tx)})
forall x,y € X with x >y and suppose the following conditions are satisfied:
(i) there exists xg € X such that xy < Txp.
(ii) T is continuous or (X, =,b) is reqular.

Then T has a fixed point. And, suppose for all x,y € X there exists z € X such that x <y and y = z, therefore the
fixed point is unique.

Proof. Define the mapping « : X x X — [0, 00) by

1, if x=<y or xxvy,
0, otherwise.

OC(X/U) = {

It is easy to see that T is a generalized «- contractive mapping, that is,
«(x,y)b(Tx, Ty) < Mp(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), by, Tx)})

for all x,y € X. From condition (i), we have «(xg, Txg) > 1. Moreover, for all x,y € X, from the monotone
property of T, we have

ax,y)=>21=x=<y or x>-y=Tx>=Ty or Tx=<Ty= «(Tx,Ty) >1,

and
ax,y) =21 a(yz)21=x<y=<z or xr-yr-z =«a(y,z)>1.

Thus T is triangular x-admissible. One the case that if T is continuous, then all the hypotheses of Theorem
2.3 are satisfied, so T has a fixed point. The other case if that (X, <,b) is regular. Take Tx,, = x,,, we may
obtain &(xn,Xny1) = 1, that is, xn < xn41 for all n and x, — x € X. Then there exists a subsequence
{Xn(x)} of {xn} such that x,,(x) = x for all k. This implies that o(x,(x),x) = 1 for all k. Then all the
hypotheses of Theorem 2.5 are satistied. So T has a fixed point. Next, we show the uniqueness. By
hypothesis for x,y € X, there exists z € X such that x <y and y < z. So we get «(x,z) > 1 and «(y,z) > 1.
Hence the uniqueness of the fixed point is obtained from Theorem 2.7. O

Corollary 3.9. Let (X, <, d) be complete partially ordered metric space. Let T : X — X be an increasing mapping
with respect to <. Suppose there exists a function \p € ¥ such that

d(Tx, Ty) < b(max{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)})
forall x,y € X with x > y. Suppose the following conditions are satisfied:

(i) there exists xg € X such that xy < Txg.
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(i) T is continuous or (X, =, d) is reqular.

Then T has a fixed point. And, suppose for all x,y € X there exists z € X such that x <y and y = z, so the fixed
point is unique.

Corollary 3.10. Let (X, =,d) be complete partially ordered metric space. Let T : X — X be an increasing mapping
with respect to <. Suppose there exists a constant k € (0, 1) such that

d(Tx, Ty) < kmax{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
forall x,y € X with x > y. Suppose the following conditions are satisfied:
(i) there exists xg € X such that xy < Txp.
(i) T is continuous or (X, =, d) is reqular.
Then T has a fixed point. And, suppose for all x,y € X there exists z € X such that x <y and y = z, so the fixed

point is unique.

3.3. Fixed point theorems for cyclic contractive mappings

Some fixed point theorems for cyclic contractive mappings are obtained (see, e.g., [15, 17, 22, 23, 26,
32]). Next, we will show that some fixed point theorems for cyclic contractive mappings are obtained by
our Corollary 3.2.

Corollary 3.11. Let {A{}?_, be nonempty closed subsets of complete b-metric space (X,b) with coefficient s > 1
and T : Y — Y be a given mapping, where Y = Ay U Ay. Suppose that the following conditions hold:

(i) T(A1) € Azand T(Az) C Ay,
(ii) there exist a function \p € V¥ and constant A € (0, %], forall (x,y) € Ay x Ay such that

b(Tx, Ty) < Mp(max{b(x,y), b(x, Tx), b(y, Ty), b(x, Ty), bly, Tx]}).
Then T has a unique fixed point that belongs to A1 N Ax.

Proof. Since A; and A; are closed subsets in the complete b-metric space (X, b), then (Y, b) is complete.
So, all the conditions of Corollary 3.2 are satisfied. Thus we may get that T has a unique fixed point, and
it belongs to A1 N Ay (from (i)).

O

Corollary 3.12. Let {A{}?_, be nonempty closed subsets of complete metric space (X, d), T : Y — Y be a mapping,
where Y = A1 U Ajy. Suppose that the following conditions hold:

(i) T(A1) € Azand T(A2) C Ay,
(ii) there exists a function \p € V¥, for all (x,y) € Ay x Ay such that

d(Tx, Ty) < b(max{d(x,y),d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}).

Then T has a unique fixed point that belongs to A1 N Ax.

Corollary 3.13. Let {A;}?_, be nonempty closed subsets of complete metric space (X, d), T : Y — Y be a mapping,
where Y = A1 U A,. Suppose that the following conditions hold:

(i) T(A1) CAxand T(A2) C Ay;

(ii) there exists constant k € (0,1), for all (x,y) € A1 x Ay such that

d(Tx, Ty) < kmax{d(x,y),d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

Then T has a unique fixed point that belongs to A1 N Ax.
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3.4. Fixed point theorem on metric spaces endowed with a graph

Recently, Jachymski [14] obtained fixed point theorems on a metric space with a graph. Following the
paper [14], some fixed point theorems on a metric space with a graph have appeared (see, e.g., [10, 21, 30]).
At first, we need to introduce some concepts.

Let (X, d) be a metric space and A be the diagonal of X x X. Let G be a directed graph such that the
set V(G) of its vertices coincides with X and A C E(G), E(G) being the set of the edges of the graph.
Assuming that G has no parallel edges, we will suppose that G can be identified with the (V(G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length k € N is a finite sequence (xi)g of
vertices such that xop = x,xx =y and (xi_1,%i) € E(G), fori e {1,2,--- ,k}

Let us denote by G the undirected graph obtained from G by ignoring the direction of edges. Notice
that a graph G is connected if there is a path between any two vertices and it is weakly connected if G is
connected.

The following results are obtained by Corollary 3.1.

Corollary 3.14. Let (X, d) be a metric space and G be a directed graph and T : X — X be a given mapping. Suppose
there exists a function \p € ¥, for all x,y € E(G) such that

d(Tx, Ty) < Y(max{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}),
and which satisfies:
(1) (x,y) € E(G) = (Tx, Ty) € E(G), and (x,y) € E(G), (y,z) € E(G) = (x,2z) € E(G);
(ii) there exists xg € X such that (xg, Txg) € E(G);

(iii) T is continuous or if {xn} is a sequence in (X, d) such that (xn,Xn+1) € E(G) foralln € Nand x, — x* € X
as n — oo, then (xn,x*) € E(G).

Then

(1) T has a fixed point;

(2) if x,y € F(T), there exists z € X such that (x,y) € E(G), (y,z) € E(G), T has a unique fixed point.
Proof. Define the mapping o : X x X — [0, 00) by

[ 1, ifx,y € E(G),
alxy) = { 0, otherwise,
which means all the hypotheses of Corollary 3.1 are satisfied. So we can deduce that T has a unique fixed
point. O

Corollary 3.15. Let (X, d) be a metric space and G be a directed graph and T : X — X be a given mapping. Suppose
there exists a constant k € (0,1) for all x,y € E(G) such that

d(Tx, Ty) < kmax{d(x,y),d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
and which satisfies:
(i) (x,y) € E(G) = (Tx, Ty) € E(G), and (x,y) € E(G), (y,z) € E(G) = (x,z) € E(G);
(ii) there exists xg € X such that (xg, Txg) € E(G);

(iii) T is continuous or if {xn} is a sequence in (X, d) such that (xn,Xn4+1) € E(G) foralln € Nand x, — x* € X
asn — oo, then (xn,x*) € E(G).

Then
(1) T has a fixed point;
(2) if x,y € F(T), there exists z € X such that (x,y) € E(G), (y,z) € E(G), T has a unique fixed point.
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3.5. Application to integral equations
Here, we are concerned with the nonlinear quadratic integral equation

x(t) =h(t)+6 Jt k(t,s)f(s,x(s))ds, te][0,T], T>0. (3.1)
0

Let X = C([0, T]) be the set of continuous functions in [0, T] and

b(x,y) = sup [x(t)—y(t)I’, x,y e C([0,T]).
te[0,T]

It is easy to see that (X, b) is the complete b-metric space with s = 21 p>112].
We consider (3.1) under the following assumptions:

(i) h: [0, T] — R is continuous;
(ii) f:[0, T] — R is continuous and for all t € [0, T], if x < y, we have
f(t,x) <ft,y), If(t,x) —ft,y)l < Lx—yl,
where L > 0 is a constant;

(iii) k: [0, T] x [0, T] — [0, c0) is continuous and there exists a constant K > 0 such that

t
j K(t, s)ix(s) —y(s)lds <K, te [0,T];
0

(iv) there exists xg € X such that

t

xo(t) = h(t) +6L k(t,s)f(s,xo(s))ds, te[0,T], T>O0.

We have the following theorem.

Theorem 3.16. Suppose the above conditions (i)—(iv) are satisfied. If OLKT < 5.1, then the integral equation (3.1)

217
has a unique continuous solution x* € C[0, T].
Proof. We consider the operator T : X — X defined by
t
Tx(t) =h(t) + GJ k(t,s)f(s,x(s))ds, te€[0,T], T>0. (3.2)
0

We show that T is an «-1 generalized contractive mapping in b-metric spaces, that is,
o(x,y)b(Tx(t), Ty(t)) < Ap(M(x,y)), (3.3)

where M(x,y) = max{d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
Now we let the function « : X x X — R defined by

1, ifx(t) <y(t), telo,T],
x(xy) = { 0, otherwise,

and the function { : [0, 00) — [0, 00) defined by

P(t) = (BKLT)P't, te[0,00).
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Obviously, P € V.

b(Tx(t), Ty(t)) = sup [Tx(t) — Ty(t)[P. (3.4)
te[0,T]

Also, if x(t) < y(t) is not satisfied, then the inequality (3.3) holds immediately. So we may suppose
x(t) < y(t), t € [0, T]. From conditions (ii), (iii) and (3.2), we have

t t

k(t,s)f(s,x(s))ds —h(t) — SJ k(t,s)f(s,y(s))ds|

Txﬁy—Tyun=wha)+ej 0

0

<0 E k(t,s)[f(s,x(s)) —f(s,y(s))[ds

<9£kﬁﬁﬂhwn—MﬂMs

< OKLT[x(s)) —y(s)!.

So, from (3.4), we get
b(Tx(t), Ty(t)) < (OKLT)Pb(x,y) < (OKLT)PM(x,y). (3.5)

Taking A = OKLT and by (3.5) we obtain

x(x,y)b(Tx(t), Ty(t)) < Ab(M(x,y)).

So, T is an x-\ generalized contractive mapping in b-metric spaces.
Take x, = T™xp, n € N. From condition (iv), we get «(xo, Txg) = 1. And from condition (ii) we may
obtain
alx,y)=1= a(Tx, Ty) =1.

So by induction, we get easily &(xn,xny1) = 1. Also from the proof of Theorem 2.3, we know that
Xn — X" € X, then «(xn,x*) = 1. Hence all assumptions of Theorem 2.5 are satisfied. So, according to
Theorem 2.5 we can deduce that x* is a fixed point of T, that is, x* is a solution to the integral equation
(3.1).

Also, take z(t) = max{x(t),y(t)}, t € [0,T]. Then for all x,y € X, there exists z € X such that
x(x,z) = «(y,z) = 1. From Theorem 2.7, we know that x* is the unique solution to the integral equation
3.1).

O
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