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Abstract 
This paper presents a multi-objective cell formation problem considering alternative process 
routes and machine utilization with fuzzy demand. Two conflicting objectives include the 
total cell load variation and sum of the other costs consisting machine cost, inter-cell 
material handling cost, parts purchasing, operation, maintenance, and reconfiguration of 
machines cost are to be minimized simultaneously. Moreover, we consider demand in fuzzy 
condition, because it is more realistic to take into account the inexact and uncertain nature of 
demand. Due to the complexity of this problem, we develop a scatter search algorithm. Also 
by using the Taguchi as a robust parameter design method, we tune the effective factors of 
the developed algorithm on two sizes of benchmark problems that are generated randomly. 
NSGAII and Scatter Search evaluated and the related results confirm the efficiency and the 
effectiveness of our proposed Scatter Search provides good output according to some quality 
measures, especially for large-sized problems. 
 

Keywords: Cell formation problem, fuzzy demand, scatter search, Taguchi design 
 

 

1. Introduction 
In many practical cases, a product mix or demand level may vary under a multi-period 
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Table 1. Reasons for considering impreciseness in CMS design parameter. 

CMS Design Parameter Uncertainty Reason 

Part Demand 

 Time gap between design and implementation 

 High cost in acquiring system parameters with precision 

 Insufficient market survey at design stage 

 Product specifications not yet finalized 

 Unknown product mix 

 Competitor's competence and preparedness 

 
planning horizon. A DCMS considers reconfiguration of cells in each period and brings flexibility 
to form machine cells and part families. Some investigations have been carried out in the field of 
CFPs under dynamic conditions by Vakharia and Kaku [1], Harhalaks et al. [2], Wilhelm et al. [3], 
and Askin et al. [4]. Chen [5] proposed a mixed-integer programming (MIP) model that 
minimizes the reconfiguration costs, machine constant costs, and intracellular movements. 
Balakrishnan and Cheng [6] also considered a two-step model for the generalized machine 
assignment problem and dynamic programming for the CFP with changeable part demands. 
Tavakkoli-Moghaddam et al. [7] developed the model, which was first proposed by Chen, with 
additional assumptions such as: alternative process plan, sequence operation, machine capacity 
and machine replication with aim of minimizing the sum of machine total costs and inter-cell 
movements cost simultaneously. Defersha and Chen [8] proposed a comprehensive 
mathematical model for a DCMS based on tooling requirements of the parts, tooling available on 
the machines, dynamic cell configuration, alternative routings, lot splitting, sequence of 
operations, multiple units of identical machines, machine capacity, operation cost, parts' 
outsourcing cost, tool consumption cost, setup cost, cell size limits, and machine adjacency 
constraints. 
Safaei et al. [9] presented a mixed-integer programming model for a dynamic cell formation 
problem with fuzzy parameters, such as part demand and machine availability. Torabi and 
Hassini [10] presented a new multi-objective possibility mixed-integer linear programming 
model with some fuzzy parameters, such as market demands, cost/time coefficients and capacity 
levels.  

Short life cycle, high variation manufacturing, unpredictable demand, and short lead-time 
have pushed production systems to operate dynamically under unreliable conditions [5]. 
Besides, marketing development takes the uncertain nature of the model parameters into 
consideration based on the fuzzy theory. Table 1 lists a number of reasons for considering 
uncertainty in CMS design parameter [11]. 

For dynamic and uncertain manufacturing requirements, it is necessary to identify different 
demands and mixtures of each part type per period through a known membership function. 
Seifoddini [12] considered uncertainty in form of probabilistic demands for a CFP, but under one 
period planning horizon. Tavakkoli-Moghaddam et al. [13] extended their previous model and 
considered trapezoid instead of triangular fuzzy numbers to show the demand uncertainty. They 
also modified the proposed mathematical model to a mixed-integer nonlinear programming 
(MINLP) model with fuzzy parameters [14]. This paper proposes an extended MINLP model with 
fuzzy Demand for the CFP considering two objectives: 1. minimizing the dynamic system total 
cost; 2. minimizing the intracellular workload variation The main constraints are the cell size 
limitation, machine capacity, machine capability of processing an operation, machine 
investment, and production volume. 

The rest of this paper is organized as follows. Detailed description of the proposed model is 
described in Section 2. Section 3 proposes the design of MOSS along with the Taguchi design for 
tuning the parameters of mentioned algorithm. A numerical example and the computational 
results are reported in Section 4. Discussion and conclusion are presented in Section 5. 
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Figure 1. Membership function for a fuzzy demand of part p in period t. 
 

 

 

 

2. Proposed 
mathematical model 
2.1. Notations   The notations 
of the proposed model are 
described as follows: 
p : Part types; 

Pp ,,2,1   

j : Operations 

required by part

p ; 
pJj ,,2,1   

m : Machine types; 
pJj ,,2,1   

c : Manufacturing cells; Cc ,,2,1   

t : Time types; Tt ,,2,1   

P : Number of part types. 

pJ : Number of operations for part p . 

M : Number of machine types. 
C : Maximum number of cells that can be formed. 
T : Number of manufacturing periods. 

)(
~

tDp : Fuzzy demand for part p  in period t  in form of a fuzzy number (see Figure 1) with a 

piecewise membership function (see Equation (1) [15]. 
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presents a “risk-full” value-interval for the decision maker. In the proposed model, there is a 
trade-off between maximizing the decision maker’s utility and minimizing the sum of traditional 

costs of the CFP. Thus, interval  ),(tDu

p
 is not considered in our model, because the 

production volume within this interval causes simultaneous increasing operation costs while the 
decision maker’s utility remains constant. 
 
 Cut-level This parameter is determined by the DM and used to convert the fuzzy proposed 

model into a crisp parametric model. The  -level cut concept [16] limits the range 
of demand for part p  in period t and capacity of machine type m  according to the 

DM's preferences. For any   value, we have an optimal solution; so the solution 
with   grade of membership is actually fuzzy [17]. 

pB  Batch size for inter-cell material movements for processing two consecutive 

operations of part type p . 

pV  Inter-cell material movement cost for each batch of part type p . 

pU  Subcontracting cost for each batch of part type p . 
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mM  Maintenance cost of machine type m  (constant). 

mO  Operating cost of machine type m  per hour (variable). 

jpmh  Time required performing operation j  of part type p  on machine type m

(constant). 


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mr  Relocation cost of machine type m . 

UB  Upper bound for the cell size. 

)(tPm  Purchasing cost of machine type m  in period t . 

)(tYm  Maximum allowed number of machine type m  to procure in period t . 

)(tw jpmc
 Workload on machine type m  in cell c due to performing operation j  of part type 

p  in period t . 

)(tw jpc
 Average workload on each machine in cell c due to performing operation j  of part 

type p  in period t . 

2.2. Decision Variables 

)(tNmc  Number of machine type m  in cell c  in period t . 

)(tnmc

  Number of increased machine type m  to cell c  in period t . 

)(tnmc

  Number of decreased machine type m  from cell c  in period t . 

)(tQp
 Production volume of part type p  in period t . 

)(tjpmc  The proportion of the total demand of part type p  with operation j  to perform by 

machine type m  in cell c  during period t . 

)(tp  The proportion of the total demand of part type p  to be subcontracted in period t . 
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2.3. Mathematical model 

Based on the definitions that describe in complete paper, the proposed model for the 
CFP under dynamic and fuzzy demand is illustrated as follows: 
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2.3. Model Defuzzification    

Since some parameters in form of variables and resources are uncertain and showed as fuzzy 
numbers, the proposed non-symmetric fuzzy model is converted into a crisp one by applying the  -
cut concept according to the Verdegay's approach [18]. It means that the minimum preference level 

determined by the DM is equal to . Therefore, we substitute the fuzzy demand for part p (
pQ ), by 

crisp parameters, named 
pQ , through defining appropriate  -cut constraints (see Equations 18 to 

20): 
 
  tptDp ,)(                                                                                                                             (18) 

10                                                                                                                                                  (19) 
 

Membership functions of Equation are substituted and then the following constraints are 
added to the primary model, which limit the production volume and indicate the confidence 
level of the DM. 
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3. Proposed Multi-Objective Scatter Search 

In this section we propose a new approach to solve DCMS4 problem with two 
objective functions. As shown in the figure 2, scatter search algorithm has 5 phases to 
solve the single objective problem. Other procedures added or modified to produce 
Pareto optimal solutions by considering dynamic Pareto archive set, produce initial 
solution to produce better output from algorithm. 

This method was first introduced by Glover [19] as a meta-heuristic method for integer 
programming. It was conceived as a relaxation, which was designed for the solution of integer 
programming problems, such as surrogate constraint relaxation. However, links between the 
approaches have increased in recent years. In the original SS proposal by Glover as a method 
that uses a succession of coordinated initializations to generate solutions. He introduced the 
reference set (RefSet) of solutions and several guidelines, including that the search takes place in 
a systematic way as oppose to the random designs of other methods (e.g., genetic algorithms). 
The approach was conceived to begin by identifying a convex combination of the reference 
points. This central point, together with subsets of the initial reference points, was then used to 
define new sub-regions. Thus, analogous central points of the sub-regions were examined in a 
logical sequence. Finally, these latter points were rounded (in a broad sense, depending on the 
solution representation) to obtain the desired solutions. These observations and principles lead 
to the well-known template consisting of five methods as follows: 

1. Diversification generation method. 
2. Improvement method. 
3. Reference set update method. 
4. Subset generation method. 
5. Solution combination method. 
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Figure 2. Flow chart of scatter search 
 

3.1. Tagouchi Design 
Taguchi method offers a systematic approach, simple and yet efficient optimized design 

parameters of each algorithm, using a limited set of experiments. Two main tools for change and 
the Taguchi method systematically test different levels of each factor, are: 1) design of  

experiments especially insyarra lanogohtro ; 2)N / S ratio. 

3.2. Planning
In order to comprehensively evaluate all the parameters used; we define five levels of the 

parameters we studied. Also, since the type of crossing and mutation operators such factors in 
any evolutionary algorithm based on population and among them are the SS algorithm, so our 
four Crossover operator and mutation as the four levels studied these operators in terms take. 
The following table summarize, factors considered and their levels as the first stage results show 
that Taguchi method. 

 
3.3. Conducting 

We calculate Mean value and the S / N ratio to each of two criteria f1 and f2 separately 
based on the best solution produced by algorithm MOSS. This is taken from there because we 
compared the resolutions of both criteria f1 and f2 at the same time we have considered, so the 
algorithms adjust the parameters of the policy can be used  

 

 
Table 2. Effective factors of MOSS and each levels

 Factors 

Levels Cross Rate ∈[0,1] b1/b2 Mutation Type Crossover Type 

1 0 0.5 1 1 

2 0.25 0.75 2 2 

3 0.5 1 3 3 

4 0.75 1.25 4 4 

5 1 1.75 2 3 

     

 
3.4. Analysis 

When all the S / N ratios and the average response to each of the tests were calculated, 
Taguchi method approaches of a chart to analyze the data uses. In this approach, plots the 
average ratios S / N and the average mean response for each factor and to exchange their 
different levels, are plotted. 

 

Function 2Function 1
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Figure 3. Taguchi design for making MOSS robust 

 

4. Computational results 
In this section, performance model for manufacturing cell formation problem studied by a 

few issues and all matters placed by the software MATLAB version 7.6 has been implemented. 
The experiments on a Laptop and GHZ 2.66 MB 512 RAM Windows XP operating system are 
done. Each test problem is shown by the code M-P-O-C-T which M indicates the number in front 
of the machine count, the number of P is represented parts count; O represents the number of 
digits after the operation of each piece, after the figure represents the number of cells allowed C 
and T is the number of periods. 

 
Table 3. NSGA-II parameters  

Archive SizeMutation RateCross over rateNo. of Generationpopulation 

300.050.95200100

 
Information about 10 samples is randomly generated. To compare the results of the 

proposed algorithm, a number of quality measures relating specially for multi-objective function 
which are widely used in the literature have been applied. The following description explains 
these measures. 

Table 4. MOSS parameters 

Archive Size
Mutation 

Rate 
Cross Over 

Rate

Local 
Iteration 
Number 

No. of 
Iteration 
without 

Changing

1b 2bNo. of 
Generation

Population

300.050.75532015200100
 

4.1. Hyper Area Ratio Metric
This index shows the number of optimal solutions obtained by each algorithm. Since the 

number of Pareto optimal solutions is not clear for us, requires that by Comprehensive 
enumeration the total optimal solutions have to be obtained for each test problem. But since 
obtaining the non-dominated optimal solutions by comprehensive enumeration is time-
consuming task even for small scale problems, we use a way to calculate this measure for each 
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test problems after determination of optimal solutions of each test problem and comparing its 
solutions to the dominant optimal solutions of each algorithm, number of non-dominated 
optimal solutions can be realized. 
The metric definition is the following: 

𝐻𝐴𝑅𝑀 =
𝐻𝑒𝑠

𝐻𝑠𝑐
                                                                                                                                       (21) 

Where Hes the area is occupied by the solution set of practical Pareto front, and Hsc is the 
area occupied by the theoretical Pareto front. As finding the theoretical Pareto front is 
practically impossible, we produce it by all non-dominated solutions provided from three 
algorithms. If the value of the hyper area ratio is smaller than 1, the points of the practical 
tradeoff surface are not spread over the whole tradeoff surface. If the value of the hyper area 
ratio is greater than 1, the practical tradeoff surface is distant from the tradeoff surface. [20] 
 

 
Figure 4. Hyper area ratio metric for each algorithms

 

4.2. Spacing metrics 

Spacing metrics can be classified in the diagnosis of uniformity in distribution of 
answers to help us Pareto curve. This index is calculated as follows. 
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d is the mean value of id and n is the number of Pareto curve’s elements. At First, for each 

Pareto point related id is calculated. To calculate this parameter, the nearest neighbor points are 

used. Then S is calculated which is classified as spacing metric. The value of this index is closer to 
zero indicates more and better distribution of answers. Basic definitions related to this index by 
Collette and Siarry is expressed. [20] 
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Figure 5. Spacing metric for each algorithm 

4.3. Quality metrics 
Number of Pareto solutions index alone cannot appropriate metrics to evaluate the two 

because algorithms is not clear how many of the answers provided by a Pareto algorithms are 
with high quality. Quality metrics is calculated by putting together dominant response algorithm 
produced both A and B and such ratio in the number of share each method of final Pareto 
solutions. 

 An experiment for studying the influence of two methods and ten objective spaces (test 
problems) on the spacing metric with ten replicates is performed. The analysis of variance is 
shown in Table 4. The main effects and interaction are significant. MOSS provides lower value of 
the spacing metric.[20] 

 
Figure 6. Quality metric for each algorithms 

 
Total information about 10 test problems based on runtime, hyper area ration metric, 

quality metric and spacing metric are shown in Table 5. It is worthy nothing that each of 
algorithm 10 times runs and average of results provided as illustrated in the Table 6.  
Hyper Area Ratio Metric come in many test problems by MOSS algorithm compared with NSGA-
II algorithm shows that the standard deviation is closer to number 1.  

Number of solutions generated by the two dominant algorithms in a way that all the 
problems generated by the number of solutions to MOSS algorithm NSGA-II, consistently show 
higher values and this indicates that this is a good algorithm MOSS has dominated in finding 

solutions. In the spacing metric column between the classifications, distribution more 
efficient solutions can be generated by the proposed algorithm is concluded.  
 

Table 5. ANOVA regarding to quality metric 

Source of Variation SS df MS F P-value F crit 
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Problems 1775.54 9.00 197.28 142.84 0.00 2.00 

Algorithms 3994.24 1.00 3994.24 2891.97 0.00 3.96 

Interaction 246.44 9.00 27.38 19.83 0.00 2.00 

Within 110.49 80.00 1.38 
   

Total 6126.71 99.00         

 
The time needed for implementation show the two algorithms. Could be concluded that the 

proposed algorithm has a mechanism Because of the possible search space will solve, obviously 
more time than NSGA-II algorithm can be spent. Yet the quality of answers to MOSS algorithm 
NSGA-II is to increase a runtime algorithm to solve the NSGA-II is negligible.
 

Table 6. result of MOSS and NSGA-II 

SM QM HARM Runtime 
M-P-O-C-T 

Test 
Problem NSGA-II MOSS MOSS : NSGA-IINSGA-II MOSS NSGA-IIMOSS

1.65 1.3 38:235 1.05 0.9 89.43 110.36 3-4-2-2-21

2.5 2.1 38.4:23 0.85 1 93.56 119.46 3-4-2-2-22

2.67 2.4 32.4:14.6 1.2 1 88.12 100.95 4-3-3-2-23

2.7 2.5 37.6:23.9 0.8 0.95 85.35 105.84 6-5-3-2-24

3.2 2.8 37.3:29 1.6 1.25 88.56 130.2 5-6-3-3-25

3.05 2.43 38.7:22.8 1.15 1 90.04 125.32 7-5-3-3-26

3.4 2.79 33.8:17.5 0.9 1.05 83.31 109.05 7-6-4-3-27

2.8 2.21 27.3:13.9 0.4 1.3 120.32 145.09 7-6-3-3-28

3.25 2.95 29.6:13.5 1.3 1 140.50 168.80 8-6-4-3-39

3.54 2.43 28.2:21.3 1.55 0.98 150.45 158.44 8-6-4-4-310

 
5. Conclusion 

In this paper a new multi-objective dynamic cell formation considering fuzzy demand was 
proposed. Due to the NP-hardness nature of our problem we designed a multi-objective scatter 
search for finding Pareto optimal solution of mentioned test problems. To illustrate the 
performance of MOSS, we benchmarked the performance of our proposed algorithm with one of 
the most popular and well-known algorithm which is widely used for solving multi-objective 
problem called NSGA-II base on some quality measures which are introduced in the literature. 

Results from implementing two algorithms on test problems show that proposed algorithm 
has the superior output comparing NSGA-II algorithm. It can be concluded, implementing 
proposed algorithm will have promising results for solving multi-objective problems.  
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