A note on Furuta type operator equation

Xiaolin Zeng ${ }^{\text {a }}$, Jian Shib,*
${ }^{a}$ School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.
${ }^{b}$ College of Mathematics and Information Science, Hebei University, Baoding, 071002, P. R. China.

Abstract

In this paper, we will show the existence of positive semidefinite solution of Furuta type operator equation

$$
\sum_{j=0}^{n-1} A^{j} X A^{n-j-1}=Y
$$

where Y can be expressed by a comprehensive form.
Keywords: Furuta type operator equation, generalized Furuta inequality, positive definite operator and positive semidefinite operator.
2010 MSC: 47A62, 47A63.
(c)2018 All rights reserved.

1. Introduction and main result

A capital letter, such as T , stands for an operator on a Hilbert space \mathscr{H}.
In 2010, T. Furuta investigated operator equation $\sum_{j=0}^{n-1} A^{j} X A^{n-j-1}=Y$ and obtained the following result.

Theorem 1.1 ([2]). Let m and n be natural numbers. If A and B are a positive definite operator and a positive semidefinite operator, respectively, then there exists positive semidefinite operator solution X satisfying the following operator equation:

$$
\sum_{j=0}^{n-1} A^{j} X A^{n-j-1}=A^{\frac{n r}{2(m+r)}}\left(\sum_{i=1}^{m} A^{\frac{n(m-i)}{m+r}} B A^{\frac{n(i-1)}{m+r}}\right) A^{\frac{n r}{2(m+r)}}
$$

for r such that $\begin{cases}r \geqslant 0, & \text { if } n \geqslant m ; \\ r \geqslant \frac{m-n}{n-1}, & \text { if } m \geqslant n \geqslant 2 .\end{cases}$
*Corresponding author
Email addresses: xlinzeng@163.com, 408961555@qq.com (Xiaolin Zeng), mathematic@126.com (Jian Shi)
doi: 10.22436/jmcs.018.01.10
Received 2017-09-01

In 2014, we extends Furuta's result as follows.
Theorem 1.2 ([3]). Let m, n and k be positive integers. If A and B are a positive definite operator and a positive semidefinite operator, respectively, then for each $t \in[0,1]$, there exists positive semidefinite operator solution X which satisfies the following operator equation:

$$
\sum_{j=0}^{n-1} A^{j} X A^{n-j-1}=A^{\frac{n r}{2[(m-t) k+r]}}\left(\sum_{i=1}^{k} \sum_{j=1}^{m} A^{\frac{n[2(m-t)(k-i)-t+2(m-j)]}{2[(m-t) k+r]}} B A^{\frac{n[2(j-1)-t+2(m-t)(i-1)]}{2[(m-t) k+r]}}\right) A^{\frac{n r}{2[(m-t) k+r]}}
$$

for r such that $\begin{cases}r \geqslant t, & \text { if }(1-t) n \geqslant(m-t) k ; \\ r \geqslant \max \left\{\frac{(m-t) k-(1-t) n}{n-1}, t\right\}, & \text { if }(m-t) k \geqslant(1-t) n \text { with } n \geqslant 2 .\end{cases}$
As a continuation, in this short note, we extend Theorem 1.2 as follows.
Theorem 1.3. Let $k_{1}, k_{2}, k_{3}, k_{4}, j_{1} j_{1}, j_{2}, j_{3}, j_{4}$ be nonnegative integers. If A and B are a positive definite operator and a positive semidefinite operator, respectively, then for $t \in[0,1]$, there exist a positive semidefinite solution X satisfying

$$
\sum_{j=0}^{n-1} A^{j} X A^{n-j-1}=A^{\frac{n r}{2 \delta}}\left(\sum_{j_{4}=0}^{k_{4}-1} H^{j_{4}} \tilde{H} H^{k_{4}-j_{4}-1}\right) A^{\frac{n r}{2 \delta}}
$$

where

$$
\begin{array}{ll}
H=A^{\frac{\left[\left(\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right] n}{\delta}}, & \widetilde{H}=A^{-\frac{n t}{2 \delta}}\left(\sum_{j_{3}=0}^{k_{3}-1} K^{j_{3}} \widetilde{K} K^{k_{3}-j_{3}-1}\right) A^{-\frac{n t}{2 \delta}}, \\
K=A^{\frac{\left[\left(k_{1}-t\right) k_{2}+t\right] n}{\delta}}, & \widetilde{K}=A^{\frac{n t}{2 \delta}}\left(\sum_{j_{2}=0}^{k_{2}-1} L^{j_{2}} \widetilde{L} L^{k_{2}-j_{2}-1}\right) A^{\frac{n t}{2 \delta}}, \\
L=A^{\frac{\left(k_{1}-t\right) n}{\delta}}, & \widetilde{L}=A^{-\frac{n t}{2 \delta}}\left(\sum_{j_{1}=0}^{k_{1}-1} A^{\frac{n j_{1}}{\delta}} B A^{\frac{n\left(k_{1}-j_{1}-1\right)}{\delta}}\right) A^{-\frac{n t}{2 \delta},} \\
\delta=\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4}+r, &
\end{array}
$$

r is a positive number such that

$$
\begin{cases}r \geqslant t, & \text { if }(1-t) n \geqslant\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4} ; \\ r \geqslant \max \left\{\frac{\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4}-(1-t) n}{n-1}, t\right\}, & \text { if }\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4} \geqslant(1-t) n \text { with } n \geqslant 2 .\end{cases}
$$

In order to prove the main result above, we list a useful lemma first.
Lemma 1.4 ([1, Generalized Furuta inequality]). If $A \geqslant B \geqslant 0$ with $A>0, p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$, then

$$
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}} B^{p_{1}} A^{-\frac{t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{-\frac{t}{2}}\right]^{p_{4}} A^{\frac{r}{2}}\right\}^{\left.\frac{\pi\left(p_{1}-t\right) p_{2}+t+r}{}+p_{3}-t\right) p_{4}+r}
$$

holds for $\mathrm{t} \in[0,1]$ and $\mathrm{r} \geqslant \mathrm{t}$.

2. Proof of the main result

In this section, we prove Theorem 1.3, which is the main result. We use the same method as in [2] and [3].

Proof of Theorem 1.3. For $A+x B \geqslant A>0, x>0, A^{-1} \geqslant(A+x B)^{-1}>0$.
Replacing A by A^{-1}, B by $(A+x B)^{-1}$ in generalized Furuta inequality, then

$$
\begin{equation*}
A^{-(1-t+r)} \geqslant\left\{A^{-\frac{r}{2}}\left[A^{\frac{t}{2}}\left\{A^{-\frac{t}{2}}\left(A^{\frac{t}{2}}(A+x B)^{-p_{1}} A^{\frac{t}{2}}\right)^{p_{2}} A^{-\frac{t}{2}}\right\}^{p_{3}} A^{\frac{t}{2}}\right]^{p_{4}} A^{-\frac{r}{2}}\right\}^{\frac{1-t+p}{\left.\left[\left(p_{1}-t\right) p_{2}+t\right) p_{3}-t\right) p_{4}+r}} \tag{2.1}
\end{equation*}
$$

Let $p_{1}=k_{1}, p_{2}=k_{2}, p_{3}=k_{3}, p_{4}=k_{4}$ in (2.1), take reverse and apply Löwner-Heinz inequality for $\alpha \in[0,1]$, we have

$$
\begin{equation*}
\left\{A^{\frac{r}{2}}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}}\right]^{k_{4}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{\delta} \alpha} \geqslant A^{(1-t+r) \alpha} \tag{2.2}
\end{equation*}
$$

where $\delta=\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4}+r$.
Let $\frac{\delta}{(1-t+r) \alpha}$ be some a positive integer n, i.e., $\frac{\delta}{(1-t+r) \alpha}=n$. Because $\alpha=\frac{\delta}{(1-t+r) n} \in[0,1]$, then $r \geqslant \frac{\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4}-(1-t) n}{n-1}$ if $\left\{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t\right\} k_{4} \geqslant(1-t) n$.

Put $F(x)=\left\{A^{\frac{r}{2}}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}}\right]^{k_{4}} A^{\frac{r}{2}}\right\}^{\frac{1}{n}}$. Together with (2.2) we can obtain that

$$
F(x) \geqslant F(0)=A^{(1-t+r) \alpha}=A^{\frac{\delta}{n}}
$$

holds for any $x \geqslant 0$. Thus $\left.F^{\prime}(x)\right|_{x=0} \geqslant 0$.
Differentiate $F^{n}(x)=A^{\frac{r}{2}}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}}\right]^{k_{4}} A^{\frac{r}{2}}$, and take $x=0$, we have

$$
\begin{align*}
\left.\frac{d}{d x}\left[F^{n}(x)\right]\right|_{x=0} & =\left.\frac{d}{d x}\left\{A^{\frac{r}{2}}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}}\right]^{k_{4}} A^{\frac{r}{2}}\right\}\right|_{x=0} \\
& =A^{\frac{r}{2}}\left\{\left.\frac{d}{d x}\left[A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}}\right]^{k_{4}}\right|_{x=0}\right\} A^{\frac{r}{2}} \tag{2.3}\\
& =A^{\frac{r}{2}}\left\{\left.\sum_{j_{4}=0}^{k_{4}-1} H^{j_{4}}(x) H^{\prime}(x) H^{k_{4}-j_{4}-1}(x)\right|_{x=0}\right\} A^{\frac{r}{2}}
\end{align*}
$$

where

$$
\begin{equation*}
H(x)=A^{-\frac{t}{2}}\left\{A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}}\right\}^{k_{3}} A^{-\frac{t}{2}} \tag{2.4}
\end{equation*}
$$

It is easy to obtain that

$$
\begin{equation*}
H(0)=A^{\left[\left(k_{1}-t\right) k_{2}+t\right] k_{3}-t} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
H^{\prime}(0) & =\left.\frac{d}{d x}[H(x)]\right|_{x=0} \\
& =A^{-\frac{t}{2}}\left\{\left.\sum_{j_{3}=0}^{k_{3}-1} K^{j_{3}}(x) K^{\prime}(x) K^{k_{3}-j_{3}-1}(x)\right|_{x=0}\right\} A^{-\frac{t}{2}} \tag{2.6}
\end{align*}
$$

where

$$
\begin{equation*}
K(x)=A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}}\right)^{k_{2}} A^{\frac{t}{2}} \tag{2.7}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
K(0)=A^{\left(k_{1}-t\right) k_{2}+t} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{align*}
K^{\prime}(0) & =\left.\frac{d}{d x}[K(x)]\right|_{x=0} \\
& =A^{\frac{t}{2}}\left\{\left.\sum_{j_{2}=0}^{k_{2}-1} L^{j_{2}}(x) L^{\prime}(x) L^{k_{2}-j_{2}-1}(x)\right|_{x=0}\right\} A^{\frac{t}{2}} \tag{2.9}
\end{align*}
$$

where

$$
\begin{equation*}
L(x)=A^{-\frac{t}{2}}(A+x B)^{k_{1}} A^{-\frac{t}{2}} . \tag{2.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathrm{L}(0)=A^{\mathrm{k}_{1}-\mathrm{t}} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
L^{\prime}(0) & =\left.\frac{d}{d x}[L(x)]\right|_{x=0} \\
& =A^{-\frac{t}{2}}\left\{\left.\sum_{j_{1}=0}^{k_{1}-1}(A+x B)^{j_{1}}(A+x B)^{\prime}(A+x B)^{k_{1}-j_{1}-1}\right|_{x=0}\right\} A^{-\frac{t}{2}} \tag{2.12}\\
& =A^{-\frac{t}{2}}\left\{\sum_{j_{1}=0}^{k_{1}-1} A^{j_{1}} B A^{k_{1}-j_{1}-1}\right\} A^{-\frac{t}{2}}
\end{align*}
$$

Notice that

$$
\begin{equation*}
\left.\frac{d}{d x}\left[F^{n}(x)\right]\right|_{x=0}=\left.\sum_{j=0}^{n-1} F^{j}(x) F^{\prime}(x) F^{n-j-1}(x)\right|_{x=0}=\sum_{j=0}^{n-1} F^{j}(0) F^{\prime}(0) F^{n-j-1}(0) \tag{2.13}
\end{equation*}
$$

and $F(0)=A^{\frac{\delta}{n}}$.
Let $X=F^{\prime}(0)$, therefore,

$$
\begin{equation*}
\sum_{j=0}^{n-1} A^{\frac{\delta j}{n}} X A^{\frac{\delta(n-j-1)}{n}}=\left.\frac{d}{d x}\left[F^{n}(x)\right]\right|_{x=0} \tag{2.14}
\end{equation*}
$$

Replacing A by $A^{\frac{n}{\delta}}$ in (2.3)-(2.14), and letting $H=H(0), \widetilde{H}=H^{\prime}(0), K=K(0), \widetilde{K}=K^{\prime}(0), L=L(0)$, $\widetilde{\mathrm{L}}=\mathrm{L}^{\prime}(0)$, then we finish the proof.

Acknowledgment

X. Zeng is supported by National Natural Science Foundation of China (No. 11301568), Science Foundation of Chongqing Technology and Business University (No. 2012-56-10). J. Shi (the corresponding author) is supported by National Natural Science Foundation of China (No. 11702078 and No. 61702019), Hebei Education Department (No. ZC2016009).

References

[1] T. Furuta, An extension of order preserving operator inequality, Math. Inequal. Appl., 13 (2010), 49-56.1.4
[2] T. Furuta, Positive semidefinite solutions of the operator equation $\sum_{j=1}^{n} A^{n-j} X A^{j-1}=B$, Linear Algebra Appl., 432 (2010), 949-955. 1.1, 2
[3] J. Shi, An application of grand Furuta inequality to a type of operator equation, Global Journal of Mathematical Analysis, 2 (2014), 281-285. 1.2, 2

