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Abstract 
In this paper, we improve the multiquadric (MQ) quasi-interpolation operator𝐿𝑊2

. The operator 𝐿𝑊2
 is 

based on inverse multiquadric radial basis function (IMQ-RBF) interpolation, and Wu and Schaback's 

MQ quasi-interpolation operator 𝐿𝐷. In definition process of the quasi-interpolation 𝐿𝑊2
, the second 

derivative of function is used that approximated by center finite difference. In this paper, we use compact 

finite difference for approximation of the second derivative and increase accuracy of quasi-interpolation 

𝐿𝑊2
 . Numerical experiments demonstrate that the proposed MQ quasi-interpolation scheme is valid. 

 

 

Keywords: Radial basis function; Multiquadric quasi-interpolation; Inverse multiquadric; Compact finite 
difference. 

 

1. Introduction 

Radial basis functions (RBFs) are a tool for interpolating data. Applications of RBFs include bathymetry, 

topography, hydrology, mapping, geophysics, geology, image warping and medical imaging, and see [1, 

4, 8, 14, 15, 18, 26]. Experience in a variety of applications has shown RBFs to be particularly well suited 

to scattered data interpolation problem. RBFs have been widely used as a spatial approximation scheme in 

various fields such as neural networks and solution of differential equation [3, 5, 9-12, 21-23, 25]. 

In the RBF interpolation, we have to solve a linear system of equations where the system matrix tend 

to become very ill-condition as the interpolating data distributed densely. To avoid this problem, the 

multiquadric (MQ) quasi-interpolation method is suggested. 
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MQ quasi-interpolation is constructed directly from linear combination of MQ basis and the 

approximated function. Hon and Wu [17], Wu [27, 28] and others have provided some successful 

examples using MQ quasi-interpolation scheme for solving differential equations. Beatson and Powell [2] 

and Wu and Schaback [29] proposed other univariate MQ quasi-interpolations. Recently, Jiang et al. [19] 

have introduced a new multi-level univariate MQ quasi-interpolation approach with high approximation 

order compared with initial MQ quasi-interpolation scheme, namely as 𝐿𝑊 and 𝐿𝑊2
. This approach is 

based on inverse multiquadric (IMQ) RBF interpolation, and Wu and Schaback's MQ quasi-interpolation 

operator 𝐿𝐷 that have the advantages of high approximation order. Up to now, the MQ quasi-interpolation 

scheme is used for various partial differential equations (PDEs) such as Korteweg-de Vries (KdV), Sine-

Gordon and Burgers' equations, see [6, 7, 13, 16, 20, 30]. 

In definition process of the quasi-interpolation 𝐿𝑊2
, the second derivative of function is used that 

approximated by center finite difference. In this paper, we use compact finite difference for 

approximation of the second derivative and increase accuracy of quasi-interpolation𝐿𝑊2
. 

The rest of present paper is arranged as follows. Brief information of the MQ quasi-interpolation 

operators 𝐿𝑊 and 𝐿𝑊2
and improvement from 𝐿𝑊2

 are given in Section 2. Several numerical experiments 

are presented in Section 3, followed by a conclusion summary in Section 4. 

 

2. The MQ quasi-interpolation scheme  
 

For a given interval 𝛺 = [𝑎, 𝑏]   and a finite set of distinct point   

𝑎 =  𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏,   ℎ = max1≤𝑖≤𝑁 𝑥𝑖 − 𝑥𝑖−1 ,  

quasi-interpolation of a univariate function  𝑓: [𝑎, 𝑏] → ℝ is given by 

𝐿 𝑓 =  𝑓 𝑥𝑖 𝛹𝑖 𝑥 ,𝑁
𝑖=0   

where function 𝛹𝑖 𝑥   is a linear combination of the MQs 

𝛹𝑖 𝑥 =  𝑐2 + (𝑥 − 𝑥𝑖)
2  

 and  𝑐 ∈ ℝ+  is a shape parameter. In [29], Wu and Scheback presented the univariate MQ quasi-

interpolation operator 𝐿𝐷  that is defined as 

𝐿𝐷𝑓(𝑥) =  𝑓 𝑥𝑖 𝛹 𝑖 𝑥 ,𝑁
𝑖=0    

where 

𝛹 0 𝑥 =
1

2
+

𝛹1 𝑥 −(𝑥−𝑥0)

2(𝑥1−𝑥0)
,  

𝛹 1 𝑥 =
𝛹2 𝑥 −𝛹1 𝑥 

2(𝑥2−𝑥1)
+

𝛹1 𝑥 −(𝑥−𝑥0)

2(𝑥1−𝑥0)
,
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𝛹 𝑖 𝑥 =
𝛹𝑖+1 𝑥 −𝛹𝑖 𝑥 

2(𝑥𝑖+1−𝑥𝑖)
+

𝛹𝑖 𝑥 −𝛹𝑖−1 𝑥 

2(𝑥𝑖−𝑥𝑖−1)
,    2 ≤ 𝑖 ≤ 𝑁 − 2

  

𝛹 𝑁−1 𝑥 =
 𝑥𝑁−𝑥 −𝛹𝑁−1 𝑥 

2(𝑥𝑁−𝑥𝑁−1)
+

𝛹𝑁−1 𝑥 −𝛹𝑁−2 𝑥 

2(𝑥𝑁−1−𝑥𝑁−2)
,  

and 

𝛹 𝑁 𝑥 =
1

2
+

𝛹𝑁−1 𝑥 −(𝑥𝑁−𝑥)

2(𝑥𝑁−𝑥𝑁−1)
.  

    In RBFs interpolation, high approximation order can be gotten by increasing the number of 

interpolation centers but we have to solve unstable linear system of equations. By using MQ quasi-

interpolation scheme, we can avoid this problem, whereas the approximation order is not good. Therefore, 

Jiang et al. [19] defined two MQ quasi-interpolation operators denoted as 𝐿𝑊  and 𝐿𝑊2
 which pose the 

advantages of RBFs interpolation and MQ quasi-interpolation scheme. The process of MQ quasi-

interpolation of 𝐿𝑊 and 𝐿𝑊2
 are as follows that is described in [19]. 

   Suppose that  𝑥𝑘𝑖
 𝑁 

𝑖=1
 is a smaller set from the given points  𝑥𝑖 

𝑁
𝑖=0

 where 𝑁  is a positive integer 

satisfying 𝑁 < 𝑁 and 0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑁 +1 = 𝑁.  Using the IMQ-RBF, the second derivative of 

𝑓(𝑥) can be approximated by RBF interpolant 𝑆𝑓" 
as 

 

𝑆𝑓" 𝑥 =  𝛼𝑗
𝑁 
𝑗=1 𝜑 𝑗  𝑥 ,  

where 

𝜑 𝑗  𝑥 =
𝑠2

(𝑠2+(𝑥−𝑥𝑘𝑖
)2)3/2,  

and 𝑠 ∈ ℝ+ is a shape parameter. The coefficients  𝛼𝑗  
𝑁 

𝑗 =1
 are uniquely determined by the interpolation 

condition 

𝑆𝑓" 𝑥𝑘𝑖
 =  𝛼𝑗

𝑁 
𝑗=1 𝜑 𝑗  𝑥𝑘𝑖

 = 𝑓" 𝑥𝑘𝑖
 ,    1 ≤ 𝑖 ≤ 𝑁 .  

Since, the Eq. (4) is solvable [24], so 

𝛼 = 𝐴𝑋
−1 . 𝑓𝑋

", 
     

 

where 

𝑋 =  𝑥𝑘1
, … , 𝑥𝑘𝑁 

 ,         𝛼 =  𝛼1 , … , 𝛼𝑁  
𝑇 ,         𝐴𝑋 =  𝜑 𝑗 (𝑥𝑘𝑖

) ,        𝑓𝑋
" =  𝑓" 𝑥𝑘1

 , … , 𝑓" 𝑥𝑘𝑁 
  

𝑇
.  

By using 𝑓 and the coefficient 𝛼 defined in Eq. (12), a function 𝑒(𝑥) is constructed in the form 

𝑒 𝑥 = 𝑓 𝑥 −  𝛼𝑖
𝑁 
𝑖=1  𝑠2 + (𝑥 − 𝑥𝑘𝑖

)2 . 

Then the MQ quasi-interpolation operator 𝐿𝑊  by using 𝐿𝐷  defined by Eqs. (1) and (2) on the data 
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(𝑥𝑖 , 𝑒 𝑥𝑖 )0≤𝑖≤𝑁  
 with the shape parameter c is defined as follows: 

𝐿𝑊𝑓 𝑥 =  𝛼𝑖
𝑁 
𝑖=1  𝑠2 + (𝑥 − 𝑥𝑘𝑖

)2 − 𝐿𝐷𝑒 𝑥 .  

The shape parameters 𝑐 and 𝑠 should not be the same constant in Eq. (7). 

    In Eq. (4), 𝑓𝑥𝑘𝑖

" can be replaced by 

𝑓𝑥𝑘𝑖

" =
𝑓 𝑥𝑘𝑖+1

 −2𝑓 𝑥𝑘𝑖
 +𝑓(𝑥𝑘𝑖−1

)

ℎ2
2 ,     with  ℎ2 =

𝑏−𝑎

𝑁 
,  

when the data  𝑥𝑘𝑖
, 𝑓 𝑥𝑘𝑖

  
0≤𝑖≤𝑁 

 are given, and (𝑥𝑖)0≤𝑖≤𝑁 
are equally spaced points. So, if 𝑓𝑋

"  in Eq. (12) 

replace by 

𝐹𝑋
" =  𝑓𝑥𝑘1

" , … , 𝑓𝑥𝑘𝑁 

"  
𝑇

,  

the quasi-interpolation operator defined by Eqs. (6) and (7) is denoted by 𝐿𝑊2
. For more details about the 

properties and accuracy of 𝐿𝑊  and 𝐿𝑊2
, one can see [19]. 

      If 𝑓" 𝑥𝑘𝑖
 
 
 in Eq. (3) replace by 

𝑓" 𝑥𝑘𝑖
 =

𝛿𝑥
2

ℎ2
2(1+12𝛿𝑥

2)
𝑓 𝑥𝑘𝑖

 ,  

where  𝛿𝑥
2𝑓 𝑥𝑘𝑖

 = 𝑓 𝑥𝑘𝑖+1
 − 2𝑓 𝑥𝑘𝑖

 + 𝑓 𝑥𝑘𝑖−1
 
 
yields 

 𝛼𝑗
𝑁 
𝑗 =1 𝜑 𝑗  𝑥𝑘𝑖

 =
𝛿𝑥

2

ℎ2
2(1+12𝛿𝑥

2)
𝑓 𝑥𝑘𝑖

 ,    1≤ 𝑖 ≤ 𝑁 . 

At the result, the coefficients  𝛼𝑖 
𝑁 

𝑖=1
 are uniquely determined by the linear system 

𝛼 = 𝐴𝑋
∗ −1 . 𝑓𝑋

", 
     

 

where 𝐴𝑋
∗ =  (1 + 12𝛿𝑥

2)𝜑 𝑗  𝑥𝑘𝑖
   . In this case, the quasi-interpolation operator defined in Eq. (7) is 

denoted by 𝐿𝑊2
. 

3. The numerical experiments 

       Three experiments are studied to investigate the robustness and the accuracy of the proposed method. 

The numerical results of the quasi-interpolation 𝐿𝑊 2
 is compared with these associated with 𝐿𝑊  and 𝐿𝑊2

. 

The 𝐿∞  
norm of 212

 equally spaced points on [0,1] which is defined by  

𝐿∞ =  𝐿𝑓 − 𝑓 ∞ = max0≤𝑗≤212  𝐿𝑓 𝜉𝑗  − 𝑓 𝜉𝑗   ,  
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is used to measure the accuracy of the schemes. In all experiments, the shape parameters 𝑠 and 𝑐 are 

considered as 10ℎ2 and ℎ, respectively, and ℎ2 = 4ℎ. 

The computations associated with our experiments are performed in Maple 14 on a PC with a CPU of 2.4 

GHZ. 

Experiment 1 

In this experiment, we consider the function 

𝑓1 𝑥 = sin 4.5𝑥 , 

The 𝐿∞  
error of the approximated results by using 𝐿𝑊 2  

is listed in Table 1 and compared with the quasi-

interpolation operators 𝐿𝑊 and 𝐿𝑊2
.  The graphs of 𝑓1 𝑥  and 𝐿∞  

 error approximation of 𝑓1 𝑥   by using 

𝐿𝑊 2
, 𝐿𝑊  and 𝐿𝑊2

 are given in Fig. 1. 

Table 1 shows that the scheme 𝐿𝑊 2
 is more accurate than 𝐿𝑊 and 𝐿𝑊2

 schemes. 

 

                       

Figure 1: The graphs of 𝑓1 𝑥  (left) and error approximation of 𝑓1 𝑥  (right) by using 𝐿𝑊 2
, 𝐿𝑊 and 𝐿𝑊2

  of 

experiment 1. 

 

Table 1: The 𝐿∞  of the MQ quasi-interptolation 𝐿𝑊 2
, 𝐿𝑊 and 𝐿𝑊2

with different number of data points of 

experiment 1. 

𝑁 𝑳𝑾   𝟐 𝑳𝑾 𝑳𝑾𝟐
 

40 8.73351 × 10−6 2.64131 × 10−5 3.49141 × 10−4 

80 5.31134 × 10−7 1.59019 × 10−6 2.64502 × 10−5 
160 8.51048 × 10−8 2.54117 × 10−7 1.94118 × 10−6 
320 1.77623 × 10−8 5.25990 × 10−8 1.39288 × 10−7 

640 4.46403 × 10−9 1.32682 × 10−8 1.81210 × 10−8 
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Experiment 2 

    In this experiment, the following function 

𝑓2 𝑥 = 𝑥9, 

is considered. The 𝐿∞   error of the approximated results by using 𝐿𝑊 2
 is listed in Table 2 and compared 

with the quasi-interpolation operators 𝐿𝑊 and 𝐿𝑊2
. The profile of the function and errors of the 

approximating results by using 𝐿𝑊 2
, 𝐿𝑊  and 𝐿𝑊2

 are shown in Fig. 2. 

Experiment 3 

    In this experiment, we consider the function 

𝑓3 𝑥 = sin 𝑥 + 0.1 sin 32𝑥 .  

The graphs of 𝑓3 𝑥  and 𝐿∞  error of numerical results by using all of the MQ quasi-interpolations 

mentioned in this paper for this function are shown in Fig. 3. 

                

Figure 2: The graphs of 𝑓2 𝑥  (left) and error approximation of 𝑓2 𝑥  (right) by using 𝐿𝑊 2
, 𝐿𝑊  and 𝐿𝑊2

  of 

experiment 2. 

 

Table 2: The 𝐿∞   of the MQ quasi-interpolation 𝐿𝑊 2
, 𝐿𝑊  and 𝐿𝑊2

 with different number of data points of 

experiment 2. 

𝑁 𝑳𝑾   𝟐 𝑳𝑾 𝑳𝑾𝟐
 

40 2.50206 × 10−4 6.24470 × 10−4 1.20701 × 10−3 
80 1.12242 × 10−5 3.27713 × 10−5 1.12681 × 10−4 

160 1.06403 × 10−6 3.16585 × 10−6 9.03069 × 10−6 
320 1.43486 × 10−7 4.26968 × 10−7 6.74010 × 10−7 

640 2.45344 × 10−8 7.30686 × 10−8 4.88460 × 10−8 
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Figure 3: The graphs of 𝑓3 𝑥   (left) and error approximation of 𝑓3 𝑥  (right) by using 𝐿𝑊 2
,  𝐿𝑊  and 𝐿𝑊2

  

of experiment 3. 

 

Table 3: The  𝐿∞   of the MQ quasi-interpolation 𝐿𝑊 2
, 𝐿𝑊  and 𝐿𝑊2

 with different number of data points of 

experiment 3. 

𝑁 𝑳𝑾   𝟐 𝑳𝑾 𝑳𝑾𝟐
 

40 2.43413 × 10−1 1.00499 × 10−0 3.79953 × 10−1 

80 1.73800 × 10−3 4.05360 × 10−3 5.06065 × 10−3 
160 1.31477 × 10−5 2.92361 × 10−5 2.76056 × 10−4 

320 1.76708 × 10−7 2.22275 × 10−7 2.19455 × 10−5 
640 3.93651 × 10−8 1.18591 × 10−7 1.66290 × 10−6 

 

Also, the approximated results by using 𝐿𝑊 2
 is listed in Table 3 and compared with the quasi-interpolation 

operators 𝐿𝑊  and 𝐿𝑊2
. Table 3 shows that the scheme 𝐿𝑊 2

 is more accurate than 𝐿𝑊  and 𝐿𝑊2
 schemes. 

 

4. Conclusion 

     In this paper, a MQ quasi-interpolation 𝐿𝑊 2
 based on Jiang et al. [16] MQ quasi-interpolation scheme 

and compact finite difference scheme is presented. The numerical results which are given in the previous 

section demonstrate the good accuracy of the present scheme. Also, the Tables show that this scheme 

performs better than 𝐿𝑊  and 𝐿𝑊2
 methods. 

    In the present method, we have to use equidistant data that it is a weakness of the method whereas 

𝐿𝑊  scheme can be used for non-equidistant data. Moreover, by using the following value 
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𝑓𝑥𝑘𝑖

" =
2  𝑥𝑘𝑖

−𝑥𝑘𝑖−1
 𝑓 𝑥𝑘𝑖+1

 − 𝑥𝑘𝑖+1
−𝑥𝑘𝑖−1

 𝑓 𝑥𝑘𝑖
 + 𝑥𝑘𝑖+1

−𝑥𝑘𝑖
 𝑓(𝑥𝑘𝑖−1

) 

 𝑥𝑘𝑖
−𝑥𝑘𝑖−1

  𝑥𝑘𝑖+1
−𝑥𝑘𝑖

  𝑥𝑘𝑖+1
−𝑥𝑘𝑖−1

 
,  

instead of Eq. (8), 𝐿𝑊2
 can also be applied for scattered data. 
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