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Abstract 
In this paper, a numerical method for solving a general optimal control of systems is presented. These 

systems governed by stochastic Volterra integral equations. This method is based on block pulse 

functions. By using the properties of block pulse functions and associated operational matrices, optimal 

control problem is converted to an optimization problem and will be solved via mathematical 

programming techniques. The error estimations and associated theorems have been provided. Finally, 

some numerical examples are presented to show the validity and efficiency of the proposed method. 
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1. Introduction 

The theory of optimal control for stochastic differential equations is a mathematical challenging and 

it has been considered in many fields such as economics, engineering, biology and finance [1]-[7]. The 

stochastic optimal control problem has been studied in textbooks [8], [9]. 

In deterministic setting, there are many text books for analytic solutions of optimal control problems 

such as [8]-[15]. Also, numerical methods for these problems have been provided in [16]-[22].  

Stochastic optimal control problems are studied by many researchers[8], [9], [23]. Every system of 

controlled stochastic differential equations can be usually written by a system of controlled 

stochastic Volterra integral equations. Øksendal and Zhang have presented a maximum principle for 

optimal control of general stochastic Volterra equations[24]. However there are few literature to 

demonstrate some analytical research on the necessary conditions on the existence solution optimal 

control of stochastic Volterra integral equations [25]-[28]. 

Except in a limited number of stochastic optimal control problems, most of them do not have an 

explicit solution. The reason is that they are often dependent on a noise source. Therefore, there 
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have been many attempts to develop new methods for obtaining numerical solutions which 

reasonably approximate the exact solutions. 

The Markov chain approximation method for the solution of quite general stochastic control 

problems was employed by Kushner[29]. Munk discussed about the applicability of the approach to 

financial control problems and alternative approaches by using the Kushner’s method [30], [31]. 

Chavanasporn and Ewald introduced a numerical method to solve stochastic optimal control 

problems, which are linear in the control [32]. The aim of this research is to develop a numerical 

method based on block pulse functions (BPFs) to solve the general optimal control of stochastic 

Volterra integral equations. One of the standard tools in numerical analysis is approximating a 

function as a linear combination of a set of orthogonal basis functions. Maleknejad et al. investigated 

numerical solution of stochastic Volterra integral equations using block pulse functions and their 

stochastic operational matrix of integration [33]. These matrices are applied to reduce a controlled 

stochastic integral equation in a system of algebraic equations by expanding the state vector process 

X(t) and control vector process u(t) as BPFs. 

The optimal control problem of stochastic integral equations is introduced in section 2. In section 3, 

the BPFs, their properties and error estimates theorems are briefly presented. Section 4 is devoted to 

the solution of optimal control problem of stochastic Volterra integral equations by using the 

operational matrices of BPFs. Section 5 will present some numerical examples illustrating the 

efficiency and accuracy of the proposed method. Finally, section 6 gives some brief conclusion. 

2. Preliminaries and formulation 

Let (Ω, ℱ, ℱt , P) be a filtrated probability space and B(t), t ≥ 0 is a ℱt −measurable real valued 

Brownian motion. Consider the dynamic optimization problem in which the behavior of dynamic 

system x(t) at time t is governed by the following controlled stochastic Volterra equation: 

xu t  = x0 +  
t

0
b xu s , u s  ds +  

t

0
σ xu s , u s  dB s ,   x 0 = x0,     (1) 

where u(t) is our control process. Let U be a closed, convex subset of ℝ, which will be the space of 

admissible controls. 

The goal of the problem is to find u(t), and then the performance functional of the following form:  

J u = E   
T

0
f xu t , u t  ds + g xu T   ,(2) 

is minimized by u(t), where b, σ: ℝ × U → ℝ and f: ℝ × U → ℝ are ℱt-predictable and g: ℝ → ℝ is 

ℱT-measurable. Now, we intend to approximate the stochastic Volterra control problem via block 

pulse basis functions. 

3. Block-pulse functions (BPFs) 

The block pulse functions from a complete set of orthogonal functions which defined on the interval 

[0, T) by  

ϕi t =  
1,     i − 1 h ≤ t < 𝑖ℎ,
0,    otherwise,

          (3) 
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 where i = 1,2, . . . , m with a positive integer value for m and h =
T

m
. In this paper, we assume that 

T = 1, so BPFs are defined over [0,1), and h =
1

m
.  

3.1 Properties of BPFs 

Here we review some elementary properties of BPFs [34], [35]. For each i, j = 1,2, … , m, we have:   

Disjointness: 

ϕi t ϕj t =  
ϕi t ,    i = j,
0,           i ≠ j,

       (4) 

Orthogonality:  

 

 
1

0

ϕi t ϕj t dt = hδij ,              (5) 

 

where δij  is Kronecker delta.  

Completeness:  

For every f ∈ ℒ2[0,1) when m tend to the infinity, Parseval’s identity holds: 

 
1

0

f 2 t dt =  

∞

n=1

fn
2 ∥ ϕn t ∥2 ,         (6) 

where 

fn =
1

h
 

1

0

f t ϕn t dt,        n = 1,2, …    (7) 

3.2  The operational matrices of the BPFs 

The operational matrices of integration PB , stochastic integration PBS  and product F B  respectively are 
given by the following and details of obtaining these matrices can be found in [33], [36], [37] 

 
t

0

Φm s ds ≃ PBΦm t ,                (8) 

 

 
t

0

Φm s dB s ≃ PBS Φm t , (9) 

 

Φm t Φm
T  t F = F BΦm t ,           (10) 

 

where B(s) is a Brownian motion process, 

 

Φm t =  ϕ1 t , ϕ2 t , … , ϕm t  
T

,                    (11) 
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F =  f1, f2 , … , fm T ,                                                    (12) 
 

PB =
h

2

 

 
 

1 2 2 … 2
0 1 2 … 2
0 0 1 … 2
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1 

 
 

,                                  (13) 

 

PBS =

 

 
 

p11 p12 p13 … p1m

p21 p22 p23 … p2m

p31 p32 p33 … p3m

⋮ ⋮ ⋮ ⋱ ⋮
pm1 pm2 pm3 … pmm  

 
 

,              (14) 

 

pij =

 
 
 

 
 B(

2i − 1

2
h) − B((i − 1)h) i = j,

B(ih) − B((i − 1)h) j > 𝑖,

0 otherwise,

 (15) 

 

and 

F B =

 

 
 

f1 0 0 … 0
0 f2 0 … 0
0 0 f3 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … fm 

 
 

.                       (16) 

3.3  Function approximation 

A function f(t) defined over the interval [0,1) may be expanded with respect to ϕi(t), i = 1,2, … , m 

as follows: 

f t ≃  

m

i=1

fiϕi t = FTΦm t ,                          (17) 

where F = (f1 , f2, . . . , fm )T  and fi  are defined by (7). 

 

Theorem 3.1. [37] Suppose that f(t) is an arbitrary real bounded function, which is square integrable in 

the interval [0,1), and e(t) = f(t) − f m (t), t ∈ [0,1), which f m (t) =   m
i=1 fiϕi(t) is the block pulse series 

of f(t). Then, 

 

∥ e t ∥≤
h

2 3
sup

t∈ 0,1 
 f ′ t  .                            (18) 

 

Similarly, a two dimensional function k(t, s) ∈ ℒ2([0,1) × [0,1)) can be expand into BPFs by  



M. Saffarzadeh, A Delavarkhalafi, Z Nikoueinezhad / J. Math. Computer Sci.    11 (2014), 22-36 
 

26 
 

 

k t, s ≃  

m

i=1

 

m

j=1

kijϕi t ϕj s = Φm
T  t KΦm s , (19) 

 

where K = (kij ), i, j = 1,2, . . . , m is the m × m block pulse coefficient matrix with 

 

kij =
1

h2
 

1

0

 
1

0

k t, s ϕi t ϕj s dtds. (20) 

 

Theorem 3.2. [37] Suppose that k(t, s) ∈ ℒ2([0,1) × [0,1)), and e(t, s) = k(t, s) − k m (t, s), (t, s) ∈ D 

which D = [0,1) × [0,1) and k (t, s) =   m
i=1   m

j=1 kijϕi(t)ϕj(s) is the block pulse series of k(t, s). Then, 

 

∥ e(t, s) ∥≤
h

2 3
( sup
 x,y ∈D

 ks
′  t, s |2 + sup

 x,y ∈D
 kt

′  t, s |2)
1
2. (21) 

 

Lemma 3.3. Let f(t) ≃ FTΦm (t) then  f(t) n ≃ Fn
TΦm (t) where Fn =  f1

n , f2
n , . . . , fm

n  T. 

Lemma 3.4. For each function h(x(t), u(t)) ∈ ℝ, such that 

h x t , u t  =  

M

i=0

 

N

j=0

hij x
i t uj t , (22) 

 

can be expand into BPFs as following form: 

h x t , u t  ≃ Ψ X, U Φm t , (23) 

where X and U are block pulse coefficients vectors of x(t) and u(t), respectively. 

 

Proof: By the properties of BPFs and Lemma 3.3, we can obtain 

h x t , u t  =  

M

i=0

 

N

j=0

hij x
i t uj t ≃  

M

i=0

 

N

j=0

hij  Xi
TΦm t   Uj

TΦm t  
T

≃  

M

i=0

 

N

j=0

hij Xi
T Φm (t)Φm (t)TUj

           

U jΦm  t 

≃   

M

i=0

 

N

j=0

hij Xi
TU j 

1×m

Φm t ≃ Hm×1
T  X, U Φm t . ∎                                                (24) 

Remark 3.5. When function h(x(t), u(t)) is strongly nonlinear, we can use bivariable Taylor series 
expansion of this function with respect to x(t) and u(t). Then above method can be applied easily by 
using operational matrices of integration and product.  

4. Solving stochastic optimal control of Volterra integral equation using BPFs 

Consider the following controlled stochastic Volterra integral equation: 
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xu t = x0 +  
t

0

b xu s , u s  ds +  
t

0

σ xu s , u s  dB s ,   x 0 = x0. (25) 

 

The aim of this section is to find the block pulse function coefficient of xu (t) and an admissible 
control function u(t) which minimizes the optimality criterion (2). 

We expand x(t) and u(t) in terms of BPFs as: 

x t ≃  

m

i=1

xiϕi t = XTΦm t , 

u t ≃  

m

i=1

uiϕi t = UTΦm t . (26) 

The expansion of x0(t) in terms of BPFs is shown as follows:  

x0 ≃ X0
TΦm t . (27) 

According the Lemma 3.4 and Remark 3.5 we substitute (26) and (27) in equation (25) 

XTΦm t ≃ X0
TΦm t +  

t

0

BT X, U Φm s ds +  
t

0

ΣT X, U Φm s dB s ≃
 8 , 9 

X0
TΦm t + BT X, U PBΦm t 

+ ΣT X, U PBS Φm t .                       (28) 

 

Eq. (28), can be written as the following equation: 

ΨT X, U Φm t = 0,   (29) 

where Ψ(X, U) ∈ ℝm . We can obtain a new equation Ψ(X, U) = 0 because the block pulse functions 

ϕi t , i = 1, . . . , m, t ∈  0,1  are linearly independent. 

4.1.  Monte Carlo sampling and sample average approximation (SAA) method 

Monte Carlo simulation is a common method to reduce the scenario set which is based on random 

sampling. Higham used a Monte Carlo approach which is based on random variable are simulated with a 

random number generator and expected values are approximated by computed averages [38].We want 

to solve the problem without consideration of expected value with N discretized Brownian paths, so 

intend to estimate expected value with respect to underlying Brownian paths. Therefore, for each 

sample paths of Brownian motion, we have: 

Ji X, U =  
T

0

f i t, XTΦm t , UTΦm t  dt + gi XTΦm T  ,      i = 1,2, … , N. (30) 

Now, the expectation function (2) is approximated by the sample average 

JN X, U =
1

N
 

N

i=1

JW i  X, U . (31) 

For notational simplicity, we use J(X, U) instead of Ji(X, U). The problem minimizes the optimality 
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criterion (30) to find X and U with constraints set ΨT(X, U) = 0. 

Consider the following problem: 

 
𝑷: Minimize  J(X, U)

 
s. t. Ψ X, U = 0 

       (32) 

The necessary optimality conditions can be stated as follows. If (X, U) is an optimal solution P, under a 

suitable constraint, there exist a vector λ =  λ1 , λ2 , . . . , λm T  such that: 

 

J X, U, λ = J X, U + λTΨ X, U , (33) 

 

 where λ is Lagrange multiplier associated with the constraint Ψ(X, U) = 0.Then, we have 

 

∂J

∂Xi

 X, U, λ = 0,                                                             

∂J

∂Ui

 X, U, λ = 0,                                                     (34) 

∂J

∂λi

 X, U, λ = 0,                                                                   

for i = 1,2, . . . , m. 

4.2.  Special Case 

In this section, we assume that the state of the system is generated by a linear noisy system  

xu t = x0 +  
t

0

Axu s ds +  
t

0

Bu s ds +  
t

0

dB s ,   (35) 

where B(s) is a Brownian motion. Also, consider the performance functional  

 

J(u) = E[ 
T

0

Qxu (s)2ds +  
T

0

Ru2 s ds + QTxu T)2 .   (36) 

 

The action space considered by the controller is assumed to be the set of linear feedback actions. This 

means that the optimal control strategy is a function of the time and the current state. The set of this linear 

feedback actions also provides an optimal solution for the stochastic control problem (35),(36). 

Theorem 4.1.[39] Assume that the Riccati differential equation 

k  t = −2Ak t + Sk2 t − Q, k T = QT ,      (37) 



M. Saffarzadeh, A Delavarkhalafi, Z Nikoueinezhad / J. Math. Computer Sci.    11 (2014), 22-36 
 

29 
 

has a solution on  0, T , where S = R−1B2.Then the control ulfb (t) = −R−1Bk(t)X(t) is optimal for the 

stochastic control problem  

min
u t ∈Γlfb

E   
T

0

(Qxu (t)2 + RF2(t)xu (t)2)dt + QTxu (T)2 , (38) 

subject to the system (35), where  

Γlfb =  u t  u t = F t x t  ,    (39) 

and F(. ) is a piecewise continuous function. 

5.  Numerical examples 

To demonstrate the applications of the both presented methods, open loop and linear feedback control, 

we consider the following examples.  

Example 5.1 Consider the following performance functional and dynamical system:  

 

J = min
u∈U

E  
1

2
 

1

0

 2x2 t + u t  dt , (40) 

 

dx t =  −
1

2
x t + u t  dt + dB t , x 0 = 1. (41) 

 

 It is clear that we can write the following Volterra integral equation instead of Eq.(41):  

 
t

0

dx s =  
t

0

 −
1

2
x s + u2 s  dt +  

t

0

dB s . (42) 

Open Loop Control: 

By substituting Eq. (26) and Eq. (27) in Eq. (42) and (40), we have  

x t − x 0 ≃  XTΦm t − X0
TΦm t ≃   

t

0

 −
1

2
XTΦm s + UTΦm s  ds +  

t

0

1TΦm s dB s 

≃
1

2
XT  

t

0

Φm s ds + UT  
t

0

Φm s ds + 1T  
t

0

Φm s dB s ≃
 8 , 9 

 −
1

2
XTPBΦm t + UTPBΦm t 

+ 1T PBS Φm t ,                                (43) 

and 
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J X, U    =
1

2
 

1

0

2  XT Φm (t)(Φm
T (t)X           

diag  X Φm  t 

 dt +  
1

0

1

2
 UT Φm t Φm

T  t U         
diag  U Φm  t 

 dt

≃      XT diag X +
1

2
UTdiag U    

1

0

Φm t dt ≃      XT diag X +
1

2
UTdiag U   h1 . (44) 

 

where 1 = (1,1, . . . ,1)m×1
T . Also, we obtain: 

ΨT X, U = XT − X0
T +

1

2
XTPB − UTPB − 1TPBS , (45) 

and 

J X, U = h  XTdiag X +
1

2
UTdiag U  1. (46) 

Linear Feedback Control 

By using Theorem 4.1, the linear feedback optimal control is  

ulfb t = k t x t , (47) 

where  

k t =
−2 e−3t+3 − 1 

1 + 2e−3t+3
. (48) 

By terms of approximating k(t) respect to the BPFs and substituting the obtained formed into (40) and 

(41), the numerical results are shown in Tables 1 and 2. The graphs of approximate solutions computed 

by the both presented methods are given in Fig.1. 

 

Fig 1. Graphs of approximate solutions for Example 5.1. 
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Table 1. Open loop and linear feedback control in different times for Example 5.1. 

t XOpen  loop (t) UOpen  loop (t) XLFB (t) ULFB (t) 

0 0.9892287 -0.8962915 0.9891420 −0.9170710 

0.1 0.8632260 −0.7620760 0.8620300 −0.7779690 

0.2 0.7500150 −0.6440920 0.7480970 −0.6507030 

0.3 0.6443140 −0.5242450 0.6420490 −0.5309350 

0.4 0.5628039 −0.4333895 0.5604060 −0.4320720 

0.5 0.4940540 −0.3388410 0.4918140 −0.3437310 

0.6 0.4360210 −0.2657610 0.4339930 −0.2635810 

0.7 0.3897110 −0.1993660 0.3882690 −0.1914860 

0.8 0.3572560 −0.1263700 0.3563050 −0.1261470 

0.9 0.3360800 −0.0655266 0.3353020 −0.0634211 

 

 

 

Table 2. Difference between Open loop and linear feedback methods for Example 5.1. 

t ex   eu  

0 8.67080E − 5   2.07794E − 2 

0.1 1.19600E − 3   1.58930E − 2 

0.2 1.91800E − 3   6.61100E − 3 

0.3 2.26500E − 3   6.69000E − 3 

0.4 2.39791E − 3   1.31746E − 3 

0.5 2.24000E − 3   4.89000E − 3 

0.6 2.02800E − 3   2.18000E − 3 

0.7 1.44200E − 3   7.88000E − 3 

0.8 9.51000E − 4   2.23000𝐸 − 4 

0.9 7.78000E − 4   2.10550𝐸 − 3 
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Example 5.2 Consider the following performance functional and dynamical system: 

 

J = min
u∈U

E  
1

2
  

1

0

u2 t dt + x2 1   , (49) 

 

dx t = u t dt + dB t , x 0 = 1.              (50) 

The numerical results for the both presented methods are shown in Tables 3 and 4. The graphs of 

approximate solutions computed in Fig. 2. 

 

 

 

Fig 2. Graphs of approximate solutions for Example 5.2. 
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Table 3.Open loop and linear feedback control in different times for Example 5.2. 

t XOpen  loop (t) UOpen  loop (t) XLFB (t) ULFB (t) 

0 0.9962740 −0.4932620 0.9935670 −0.4967835 

0.1 0.9451660 −0.4932620 0.9489053 −0.4994239 

0.2 0.8894460 −0.4932620 0.8603350 −0.4779639 

0.3 0.8314370 −0.4932640 0.8236622 −0.4845072 

0.4 0.7768210 −0.4932660 0.7807941 −0.4879963 

0.5 0.7252890 −0.4932660 0.7281781 −0.4854521 

0.6 0.6711330 −0.4932660 0.6805939 −0.4861385 

0.7 0.6197070 −0.4932640 0.6262345 −0.4817189 

0.8 0.5715320 −0.4932620 0.5838139 −0.4865116 

0.9 0.5294100 −0.4932620 0.5331870 −0.4847154 

. 

 

Table 4. Difference between Open loop and linear feedback methods for Example 5.2. 

t ex   eu  

0 2.70700E − 3   3.52150E − 3 

0.1 3.73930E − 3   6.16190E − 3 

0.2 2.91110E − 2   1.52981E − 2 

0.3 7.77480E − 3   8.75680E − 3 

0.4 3.97310E − 3   5.26970E − 3 

0.5 2.88910E − 3   7.81390E − 3 

0.6 9.46090E − 3   7.12750E − 3 

0.7 6.52750E − 3   1.15451E − 2 

0.8 1.22819E − 2   6.75040𝐸 − 3 

0.9 3.77700E − 3   8.54660𝐸 − 3 

 

6. Conclusion 

In this paper a numerical method, which is based on block pulse functions, is developed to calculate 

both open loop and feedback optimal controls of stochastic Volterra integral equations. There is no 
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analytical solution for forgoing stochastic optimal control problems. In this paper the numerical 

method for solving general case of these problems was proposed. For future work this method can 

be solve by other orthogonal functions or polynomials, such as Hybrid functions, Chebyshev 

polynomials and Spline polynomials. 
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