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Abstract 
   In this paper we introduce a numerical technique based on Fourier series for solving of nonlinear 

optimal control problems, where this approach is used for solving optimal control problem of an HIV 

infection treatment control model. In this paper, first by using healthy cells CD4
+
T (T), infected cells 

CD4
+
T (I), viral load (V) and also by using a drug inhibitor of reverse polygraph as a control 

function, a control model is presented for treatment of HIV infection. A cost function to minimize 

the cost of drug during the treatment is defined as well. To find the pair of trajectory and control of 

such nonlinear optimal control problem, we used  Fourier series  to approximate optimal pair of 

trajectory and control. 

Keywords: Fourier Series, approximation theory, HIV infection, optimal control. 

1. Introduction 

Despite remarkable success in medical science, still solution and definitive treatment for HIV has 

not been found by scientists, and every day is added to statistics victims and patients. The 

importance of these diseases caused, the other researchers including mathematic scientists, to 

deal with it, come to the help of medical science scientists. In this regard, various mathematical 

models to represent the dynamics of immune system cells and the HIV virus, has been presented. 

Solving optimal control problems related to these models, because of the nonlinear dynamic 

system, the classic method of solving the optimal control is not possible. Therefore present a 

simple and efficient method for solving such problems is very important. In recent years 

approximation functions, such as orthogonal functions and polynomials to solve a variety of 

mathematical and dynamical systems are used. Orthogonal functions and polynomial series have 

received considerable attention in dealing with various problems of dynamical systems. Examples 

are the use of the Fourier series [1]-[3], the Walsh functions [3], the Taylor series [4], the 
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Legender polynomials[5], the Chebyshev polynomials [6] and the block– pulse functions [7].In this 

paper we described the optimal control model of HIV will be solved by Fourier series. 

 

2. Fourier series 

 A function 𝑓(𝑡) belong to the space  𝐿2[0, 𝐿]  may be expanded into a Fourier series as follows: 

𝑓 𝑡 = 𝑎0 +   𝑎𝑛 cos
2𝑛𝜋𝑡

𝐿
+ 𝑎𝑛

∗  sin⁡
2𝑛𝜋𝑡

𝐿
 ∞

𝑛=1                                                 (1) 

where the Fourier coefficients given by  

                                               𝑎0 =
1

𝐿
 𝑓 𝑡 𝑑𝑡       
𝐿

0
   

                                         𝑎𝑛 =
2

𝐿
 𝑓 𝑡 𝑐𝑜𝑠

2𝑛𝜋𝑡

𝐿
𝑑𝑡                                    𝑛 = 1,2,3,…

𝐿

0
                                

(2) 

         𝑎∗
𝑛 =

2

𝐿
 𝑓 𝑡 𝑠𝑖𝑛

2𝑛𝜋𝑡

𝐿
𝑑𝑡                                   𝑛 = 1,2,3,…

𝐿

0
                   

The series in (1) has an infinite number of terms. To obtain an approximate expression for 𝑓(𝑡), 

we truncate the seriers up to the (2r+1)th term as follows: 

    𝑓 𝑡 ≅ 𝑎0 +   𝑎𝑛𝜑𝑛(𝑡) + 𝑎𝑛
∗𝜑𝑛

∗(𝑡) = 𝐴𝑇𝜑 𝑡 = 𝜑 𝑡 𝑇𝐴𝑟
𝑛=1  .                         (3) 

     Here, the Fourier series coefficient vector A and the Fourier series vector 𝜑(𝑡) are defined as  

            𝐴 =  𝑎0  𝑎1  𝑎2   …  𝑎𝑟   𝑎1 
∗  𝑎2

∗   …  𝑎𝑟
∗ 𝑇 = [𝑎0 ⋮ 𝑎 𝑇 ⋮ 𝑎 𝑇∗]      ,                              (4)       

    𝜑 𝑡 =  𝜑0 𝑡   𝜑1 𝑡   𝜑2 𝑡   …  𝜑𝑟 𝑡   𝜑1
∗ 𝑡   𝜑2

∗ 𝑡   …  𝜑𝑟
∗ 𝑡  𝑇                         (5)      

with 

                   𝜑𝑛(𝑡) = cos  
2𝑛𝜋𝑡

𝐿
 ,            𝑛 = 0,1,2,3,… , 𝑟      ,                                                      (6a) 

                       𝜑𝑛
∗ 𝑡 = sin  

2𝑛𝜋𝑡

𝐿
 ,              𝑛 = 1,2,3,… , 𝑟.                                                          (6b) 

The elements of φ(t) are orthogonal in the interval (0,L). 

3. The operational matrix of integration 

    Integration of vector φ(t) defined in  (5) can be approximated by  

                          φ t dt ≅ Hφ(t)
t

0
                                                                                               (7) 

where H is the  2𝑟 + 1 × (2𝑟 + 1)  operational matrix for forward integration and is given as 

follows[7]: 
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If we integrate both sides of (3) from 0 to 𝑡 and using (7), we obtain  

                  f t′ dt′ = ATHφ t 
t

0
= φ(t)THTA                                                                      (8) 

  One may express the product of  𝜑𝜑𝑇as follow:  

                         𝜑𝜑𝑇𝐴 = 𝐴 𝜑                                                                                                         (9) 

where 𝐴   is the product operational matrix for vector 𝐴 and can be written  as: 
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4. HIV Basic Model    

The target cells of HIV infection are lymphocyte helper cells, especially CD4+T cells. These cells 
become infected and begin to produce free various. The main fact about HIV infection is reducing 
the count of CD4+T cells, which have an essential role in protecting body against deferent 
pathogens. So it is important to understand the dynamics of CD4+T cell count as a function of time. 
In HIV infection basic model, three groups of molecules are considered; Uninfected CD4+T cells (T), 
infected CD4+T cells (I) and viral load (V). Biological descriptions, translation to reactions and 
corresponding ODE’s are presented in Table 1. 
 

                                          Table 1. HIV basic model interactions. 

Biological description Translation to 

reactions 

Reaction rate     Translation to ODE 

 0 → T s T = s 
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CD4+T cells production 

CD4+T cells natural death T → 0 d T = −dT 

CD4+T cells become infected by 

virus T+V → I +V β T = −βTV    I = β𝑇𝑉 

Infected CD4+T  cells death I → 0 μ I = −μI 

Virus replication in infected CD4+T  I → I +V k V = kI 

Virus natural death V → 0 c V = −cV 

    

 
Now, according to Table 1, the complete ODE model, which is sum of contributions from all 
reactions, is as flollows: 

                                                               𝑇 = 𝑠 − 𝑑𝑇 − 𝛽𝑇𝑉 
                                                               𝐼 = 𝛽𝑇𝑉 − 𝜇𝐼 

                                                              𝑉 = 𝑘𝐼 − 𝑐𝑉                                (11) 
 
Where the following estimated parameters are as model (1) [9]: 

7, 0.007, 0.00000042163, 0.0999, 0.2, 90.67s d c k      

  

5. HIV infection treatment control model 

There are three convenient groups of drugs for AIDS retroviral therapy; reverse transcriptase, 
protease, and Integrate enzyme inhibitors. In this section, we study the role of reverse 
transcriptase inhibitors. The main action of this kind of drugs is preventing to produce viral load 
with infection Lymphocyte cells. This action is equivalent to the reaction 𝐼 → 𝐼 + 𝑉 [9]. So we 
control the third equation to prevent of produce viral load with infection lymphocyte cells. This 
control function is called u(t), where 0 ≤ 𝑢(𝑡) ≤ 1. The most drug efficiency is in the case 
𝑢(𝑡) ≡ 1 which means viral load is not produce by infection cells. At the other side, 𝑢(𝑡) ≡ 0 is 
the case which the drug does not change the disease progression. By above argument, the control 
system is as follows [5]: 

                                                         𝑇 = 𝑠 − 𝑑𝑇 − 𝛽𝑇𝑉 

                                                         𝐼 = 𝛽𝑇𝑉 − 𝜇𝐼 

                                                        𝑉 = 𝑘𝐼 1 − 𝑢 − 𝑐𝑉                             (12) 

 

6. Solving HIV infection treatment control model 

Using [10] consider the objective functional to be defined as:  

0

21
( , , , ) [ ( ) ( )]

2

ft

t
J T I V u T t u t dt 

 
Where 𝛼 = 110. Our goal is maximizing the objective functional J subject to the control system 
(12); that is, maximizing the total count of CD4+T cells and minimizing the costs of treatment by 
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applying some RTI drugs. The solution of this optimal control problem should be calculated by 
numerical methods. We have used a special discretization method, based on Fourier series. For 
detailed explanation of this method, see [10]. So optimal control problem in  0,1000  interval 
days, given by:  
 

 max 𝐽 =   𝑇 𝑡 −
1

2
∝ 𝑢2 𝑡  𝑑𝑡

1000

0

 

                                                          s.t.   𝑇 = 𝑠 − 𝑑𝑇 − 𝛽𝑇𝑉 

                                                                  𝐼 = 𝛽𝑇𝑉 − 𝜇𝐼 

                                                                 𝑉 = 𝑘𝐼 1 − 𝑢 − 𝑐𝑉    
                                                                 𝑇 𝑡 , 𝐼 𝑡 , 𝑉 𝑡 ≥ 0, 0 ≤ 𝑢 𝑡 ≤ 1, ∀𝑡 ∈  0,1000  
                                                                 𝑇 0 = 363, 𝐼 0 = 57, 𝑉 0 = 28860                            (13)  

 

In this problem using of drug after 129 days of entry the HIV virus into the body has been 
considered. Therefore, the initial value of problem to the solution of AVK discrete optimization 
technique for model-based HIV infection has been calculated at 129 days [9]. Constraints optimal 
control problem are as a nonlinear differential equations.The  approximate solutions for control 
function u(t) and state functions  T(t), I(t) and V(t)  are  respectively as: 
 

            𝑢 𝑡 = 𝑈𝑇𝜑(𝑡),  𝑈 =  𝑢0  𝑢1  𝑢2  …  𝑢𝑟   𝑢1 
∗  𝑢2

∗   …  𝑢𝑟
∗ 𝑇;                             

      𝑇 𝑡 = 𝑇𝑇𝜑(𝑡),  𝑇 =  𝑡0  𝑡1  𝑡2  …  𝑡𝑟   𝑡1
∗  𝑡2 

∗  …  𝑡𝑟
∗ 𝑇;                                  

 𝐼 𝑡 = 𝐼𝑇𝜑(𝑡),  𝐼 =  𝑖0  𝑖1  𝑖2  …  𝑖𝑟   𝑖1
∗  𝑖2 

∗  …  𝑖𝑟
∗ 𝑇;                                 

                             𝑉 𝑡 = 𝑉𝑇𝜑(𝑡),  𝑉 =  𝑣0  𝑣1  𝑣2  …  𝑣𝑟   𝑣1
∗  𝑣2 

∗  …  𝑣𝑟
∗ 𝑇 .                       (14) 

 
   Integrating  (12) from 0 to 𝑡 and using (7)-(9)  and by equality the coefficients of the entries  vector  

𝜑(𝑡) we find: 

                                                           𝑇𝑇 − 𝑇0 − 𝑠𝑀 + 𝑑𝑇𝑇𝐻 + 𝛽𝑇𝑇𝑉 𝐻 = 0 

                                                           𝐼𝑇 − 𝐼0 − 𝛽𝑇𝑇𝑉 𝐻 + 𝜇𝐼𝑇𝐻 = 0 

                                            𝑉𝑇 − 𝑉0 − 𝑘𝐼𝑇 + 𝑘𝐼𝑇𝑈 𝐻 + 𝑐𝑉𝑇𝐻 = 0                                   (15) 

Where  

𝑇0 = [363  0  …    0   0  …   0]𝑇,    𝐼0 = [57   0  …   0   0  …   0]𝑇,  𝑉0 = [28860  0  …    0   0  …   0]𝑇  

and 𝑀 = [
1

2
  0  0 …  0  

−1

𝜋
  
−1

2𝜋
 …  

−1

𝑟𝜋
]𝑇 are  (2r+1)×1 matrices. 

     Now for performance index we have: 

max   𝐽 = 𝑇𝑇𝐻𝜑 1000 −
1

2
𝛼𝑈𝑇𝐷𝑈                                                       (16) 

where  
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𝐷 =   𝜑 𝑡 𝜑𝑇 𝑡  𝑑𝑡 = 1000

 
 
 
 
 
  1 0
  0 0.5

0 …
0 ⋯

0
0

0 0
⋮ ⋮

0.5 ⋯
⋮ ⋱

0
⋮

0 0 0       0 0.5 
 
 
 
 

1000

0
 . 

Now  the optimal control problem (13) reduce to maximizing (16), subject to (15).  Using  the 

Lagrange multiplier technique, the optimization problem  turns into a set of nonlinear algebraic 

equations which can solved using Newton’s iterative method to obtain the variable 𝑢𝑖 ,  𝑢𝑗
∗, 𝑡𝑗  ,

𝑡𝑗
∗, 𝑖𝑖 ,  𝑖𝑗

∗, 𝑣𝑖 , 𝑣𝑗
∗ and  𝐽, for 𝑖 = 0, 1, 2, … , 𝑟 and 𝑗 = 1, 2, … , r. With solving of this nonlinear 

programming problem  by Mathematica software for 𝑟 = 5,the funtions T(t), I(t), V(t) and u(t)  are 

obtained. 

 By plotting these functions,  we have these diagrams: 
 

   
 

  
 

Figure. 1 Solution of the optimal control problem with control 

 

According to Figure 1, it is seen that after taking the drug, the number of uninfected cells 4CD T  

(T)  is increasing, however these cells rate of increasing after 200 days because of approaching 

normal human body decreases. The number of infected cells (I) and viral load (V) is reduced and 

finally, an average dose for the drug during treatment recommended. 

   To fix the drug dose, we can use the average value of function u(t) in the [𝑎, 𝑏] intervals. So, the 

drug dose would be according to following table: 
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Table 2 

Days Drug dose 

0-200 0.354 

200-800 0.341 

800-1000 0.823 

7. Conclusions 

 
According to, the dynamic of most real systems in nature are nonlinear and optimal control 
problems related to them in classical form are often extremely complex and difficult, method used 
in this paper is effective and efficient method, because it makes these problems to nonlinear 
algebraic problems solving. In this paper, the problem of minimizing the cost of treatment with 
drug in a model controlling HIV infection is solved with using Fourier serier  and a mean value for 
drug use during treatment is recommended. Figures obtained from the solution of the problem 
show drug effects during treatment as well as. 
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