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Abstract
The objective of this paper is to establish the bi-matrix games with crisp payoffs based on ranking value function method. We

obtain that the equilibrium solution of the game model can be translated into the optimal solution of the non-linear programming
problem. Finally, to illustrate the effectiveness and correctness of the obtained model, an example is provided.
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1. Introduction

Generally speaking, the bi-matrix game model is accurate, when the bet is a small amount of money.
In real-life, the relations between the interests of people are more complex. Particularly, in some areas of
the economy, the interests of the two players is precisely the opposite. It is well known that these games
are two person non-zero-sum game, which are called bi-matrix games for short. Therefore, much research
in recent years has focus on bi-matrix game problems.

Mangasarian et al. [16] showed that the equilibrium solution of bi-matrix game is equivalent to the
programming problem about linear constraints and a quadratic objective function. Hladik [10] introduced
interval bi-matrix games and obtained the conclusion that the equilibrium solution of interval bi-matrix
game can converted into the linear mixed integer programming problem. The methods of solving the
interval bi-matrix games by a pair of auxiliary bilinear programming models is discussed by Fei and Li
[9].

There have been a great number of studies in single objective fuzzy bi-matrix games [2, 3, 11, 12, 15, 19,
24, 25] and intuitionistic fuzzy bi-matrix games [13, 17, 18]. Maeda [15] discussed a bi-matrix game with
fuzzy payoffs and proved the existence of Nash equilibrium in a fuzzy bi-matrix game. Vidyottama et al.
[24] confirmed that a bi-matrix game with fuzzy goal and a crisp non-linear programming problem are
of equal value. Vijay et al. [25] presented a bi-matrix game with fuzzy payoffs and fuzzy goals through
a fuzzy relation method, and they showed that the solution is equal to two semi-infinite optimization
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problems. Li [12] proposed the concept of crisp parametric bi-matrix games and discussed the existence
of equilibrium solutions of fuzzy bi-matrix games. Recently, Nayak and Pal [18] studied a bi-matrix game
with intutionistic fuzzy goals. Subsequently, Li [13] discussed the way to deal with the bi-matrix games
with payoffs of intuitionistic fuzzy sets via bilinear programming method and defuzzification ranking
approach.

Although the research of bi-matrix game problems have been extensively studied in recent years, it
needs to be further conducted from the perspective of the non-linear programming method. Gaining
enlightenment from [2, 9, 13], we will put forward a non-linear programming method for solving bi-
matrix games with payoffs matrices of ranking value function in this paper.

The outline of this paper is as follows. Section 2 describes the basic definitions and recalls the results
that regard to crisp single-objective bi-matrix game. In Section 3, the bi-matrix games with crisp payoffs
based on ranking value function method is established. And then the equivalence between the equilibrium
solution of the game model problem and the optimal solution of a non-linear programming problem is
interpreted. In Section 4, an example is provided to illustrate the effectiveness and correctness of the main
results in this paper. Conclusions and suggestions for future research are given in the last section.

2. Section title

The following notations, definitions and results will be needed in the sequel.
We denote KC as the family of all bounded closed intervals in R [7], that is,

KC = {[aL,aR]|aL,aR ∈ R and aL 6 aR}.

A fuzzy set x̃ of R is characterized by a membership function µx̃ : R→ [0, 1] [26]. For each such fuzzy
set x̃, we denote by [x̃]α = {x ∈ R : µx̃(x) > α} for any α ∈ (0, 1], its α-level set. Define the set [x̃]0 by
[x̃]0 =

⋃
α∈(0,1] [x̃]

α, where A denotes the closure of a crisp set A. A fuzzy number x̃ is a fuzzy set with
non-empty bounded closed level sets [x̃]α = [x̃L(α), x̃R(α)] for all α ∈ [0, 1], where [x̃L(α), x̃R(α)] denotes
a closed interval with the left end point x̃L(α) and the right end point x̃R(α) [8]. We denote the class of
fuzzy numbers by F .

Definition 2.1 ([4]). Let τ : F → R be a function defined by

τ(x̃) =

∫ 1

0
α[x̃L(α) + x̃R(α)]dα

for all x̃ ∈ F . Then τ is called ranking value function.

Definition 2.2 ([4]). Suppose that x̃ and ỹ are two fuzzy numbers. Then x̃ precedes ỹ (x̃ � ỹ) if∫ 1

0
α[x̃L(α) + x̃R(α)]dα 6

∫ 1

0
α[ỹL(α) + ỹR(α)]dα.

Note that the order relation � is reflexive and transitive. Moreover, any two elements of F are
comparable under the ordering �. For more details see [22, 23, 27].

Lemma 2.3 ([4]). For x̃, ỹ ∈ F , then x̃ � ỹ if and only if τ(x̃) 6 τ(ỹ).

Definition 2.4 ([14]). Let ãi be fuzzy numbers and xi > 0 (i = 1, 2, . . . ,n) be an real numbers. Then,
n∑
i=1

ãixi is a fuzzy number.

In the following, we shall describe a crisp bi-matrix game model in [1, 2].

Definition 2.5 ([2]). The set of mixed strategies for player I is denoted by

Sm = {x = (x1, x2, · · · , xm)T ∈ Rm|

m∑
i=1

xi = 1, xi > 0, i = 1, 2, · · · ,m}. (2.1)
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Similarly, The set of mixed strategies for player II is denoted by

Sn = {y = (y1,y2, · · · ,yn)T ∈ Rn|

n∑
j=1

yj = 1,yj > 0, j = 1, 2, · · · ,n}, (2.2)

where xT is the transposition of x, and Rm and Rn are m- and n-dimensional Euclidean spaces, respec-
tively.

A payoff matrix of the Player I and Player II in bi-matrix game are denoted by ([1, 2])

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 and B =

 b11 · · · b1n
...

. . .
...

bm1 · · · bmn

 ,

respectively. Assume that the player I and player II both are maximized players. A bi-matrix game (BG)
model in [2] is taken as

BG = (Sm,Sn,A,B).

Definition 2.6 ([1, 2]). Let A be a payoff matrix of the Player I. When Player I and Player II choose mixed
strategies x ∈ Sm and y ∈ Sn, respectively, an expected payoff of Player I is denoted by

E(x,y,A) = xTAy =

m∑
i=1

n∑
j=1

aijxiyj.

Similarly, let B be a payoff matrix of the Player II, an expected payoff of Player II is denoted by

E(x,y,B) = xTBy =

m∑
i=1

n∑
j=1

bijxiyj.

Definition 2.7 ([1, 2]). (x̄, ȳ) ∈ Sm × Sn is called the pair of equilibrium solution of the game (BG) model
if

xTAȳ 6 x̄TAȳ,∀x ∈ Sm, x̄TBy 6 x̄TBȳ,∀y ∈ Sn.

Theorem 2.8 ([1, 2]). For any a given game (BG) model, (x̄, ȳ) is an equilibrium solution of game (BG) model if
and only if it is a optimal solution the following problem (NLP1) model,

max σ1+σ2 − p− q

subject to Aiy 6 p, (i = 1, 2, . . .m) ,

BTj x 6 q, (j = 1, 2, . . .n),

xTAy > σ1,

xTBy > σ2,
0 6 λ 6 1,

x ∈ Sm, y ∈ Sn.

(NLP1)

3. A bi-matrix game model based on ranking value function

In this section, we will establish a bi-matrix game model through a ranking value function. Let Sm

and Sn be introduced in Section 2. Suppose that the elements of Ã and B̃ be fuzzy numbers. Therefore,
the bi-matrix game with fuzzy payoffs [2], denoted by BGFP, can be presented as

BGFP = (Sm,Sn, Ã, B̃).
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Definition 3.1. Let Ã be fuzzy payoff matrix of the Player I. When Player I and Player II choose mixed
strategies x ∈ Sm and y ∈ Sn, respectively, a fuzzy expected payoff of Player I is denoted by

E
(
x,y, Ã

)
= xT Ãy =

m∑
i=1

n∑
j=1

ãijxiyj.

Similarly, let B̃ be fuzzy payoff matrix of the Player II, a fuzzy expected payoff of Player II is denoted by

E
(
x,y, B̃

)
= xT B̃y =

m∑
i=1

n∑
j=1

b̃ijxiyj.

Definition 3.2. Let (x,y) ∈ Sm × Sn. If x ∈ Sm and y ∈ Sn satisfy the following conditions,

xT Ãȳ � x̄T Ãȳ,∀x ∈ Sm, x̄T B̃y � x̄T B̃ȳ,∀y ∈ Sn,

then (x̄, ȳ) ∈ Sm × Sn is called the equilibrium solution of (BGFP).

In order to get the equilibrium solution of (BGFP), by Definition 2.1, we introduce payoff matrices
based on ranking value function of Player I and Player II as follows:

τ(Ã) =

 τ(ã11) · · · τ(ã1n)
...

. . .
...

τ(ãm1) · · · τ(ãmn)

 and τ(B̃) =

 τ(b̃11) · · · τ(b̃1n)
...

. . .
...

τ(b̃m1) · · · τ(b̃mn)

 , (3.1)

where

τ(ãij) =

∫ 1

0
α[(ãij)L(α) + (ãij)R(α)]dα and τ(b̃ij) =

∫ 1

0
α[(b̃ij)L(α) + (b̃ij)R(α)]dα.

Thus, we obtain that the bi-matrix game based on ranking value function, denoted by BGRVFP, can
be presented as

BGRVFP = (Sm,Sn, τ(Ã), τ(B̃)).

Next, we give an equivalent definition of equilibrium solution of (BGFP).

Definition 3.3. Let α ∈ [0, 1], (x,y) ∈ Sm × Sn. If x ∈ Sm and y ∈ Sn satisfy following the conditions:

xTτ(Ã)ȳ 6 x̄Tτ(Ã)ȳ,∀x ∈ Sm, x̄Tτ(B̃)y 6 x̄Tτ(B̃)ȳ,∀y ∈ Sn,

then, (x̄, ȳ) ∈ Sm × Sn is called the equilibrium solution of (BGRVFP).

Theorem 3.4. The point (x̄, ȳ) ∈ Sm× Sn is the equilibrium solution of (BGFP) if and only if it is the equilibrium
solution of (BGRVFP).

Proof. Since the elements of Ã and B̃ be fuzzy numbers, by Definition 2.4, we obtain that the elements of
xT Ãȳ, x̃T Ãȳ, x̄T B̃y, and x̄T B̃ȳ are fuzzy numbers. Using Lemma 2.3, we have

xT Ãȳ � x̄T Ãȳ⇔ xTτ(Ã)ȳ 6 x̄Tτ(Ã)ȳ, ∀x ∈ Sm, x̄T B̃y � x̄T B̃ȳ⇔ x̄Tτ(B̃)y 6 x̄Tτ(B̃)ȳ, ∀y ∈ Sn.

Thus, The point (x̄, ȳ) ∈ Sm × Sn is the equilibrium solution of (BGFP) if and only if it is the equilibrium
solution of (BGRVFP).

Therefore, we convert the equilibrium solution of (BGFP) to the equilibrium solution of (BGRVFP).
Now, we consider the game (BGRVFP) model. By Definition 3.3, we conclude the following theorem.
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Theorem 3.5. (x̄, ȳ) ∈ Sm × Sn is the equilibrium solution of (BGRVFP) if only and if it is the optimal solution
of the following problem (P1)

max
x

xTτ(Ã)ȳ+ max
y

x̄Tτ(B̃)y such that ∀x ∈ Sm,∀y ∈ Sn. (P1)

Proof. By Definition 3.3, we can obtain that the equilibrium solution of (BGRVFP) is equal to the following
two problems (P2) and (P3).

max
x

xTτ(Ã)ȳ such that ∀x ∈ Sm, (P2)

max
y

x̄Tτ(B̃)y such that ∀y ∈ Sn. (P3)

In terms of ∀x ∈ Sm and ∀y ∈ Sn, the constraints of (P2) and (P3) are separable. Then, the problems
(P2) and (P3) can be rewritten as (P1). Thus, the proof of this theorem is completed.

Based on the above discusses, we can get the following theorem.

Theorem 3.6. For any a given game (BGRVFP) model, (x̄, ȳ) is an equilibrium solution of (BGRVFP) if and only
if it is an optimal solution of the following problem (NLP2),

max σ1+σ2 − p− q

subject to τ(Ãi)y 6 p, (i = 1, 2, . . .m),

τ(B̃Tj )x 6 q, (j = 1, 2, . . .n),

xTτ(Ã)y > σ1,

xTτ(B̃)y > σ2,
0 6 λ 6 1,

x ∈ Sm, y ∈ Sn.

(NLP2)

Proof. From (2.1), (2.2), and conditions of (NLP2), we can directly get

σ1 + σ2 − p− q 6 xTτ(Ã)y+ xTτ(B̃)y−
m∑
i=1

xip−

n∑
j=1

yjq

= xTτ(Ã)y+ xTτ(B̃)y−

m∑
i=1

xiτ(Ãi)y−

n∑
j=1

yjτ(B̃
T
j )x

= xTτ(Ã)y+ xTτ(B̃)y− xTτ(Ã)y− xTτ(B̃)y = 0.

Therefore, observe that
max σ1 + σ2 − p− q 6 0. (3.2)

Further, we get that (x̄, ȳ, p̄, q̄, σ̄1, σ̄2) is an optimal solution of (NLP2). Here p̄ = σ̄1 = x̄Tτ(Ã)ȳ,
q̄ = σ̄2 = x̄Tτ(B̃)ȳ. Hence, we get that maximum value of objective function of (NLP2) is 0.

Sufficiency. Suppose that (x̄, ȳ, p̄, q̄, σ̄1, σ̄2) be the optimal solution of problem (NLP2). Based on the above
discussion, we have

max σ̄1 + σ̄2 − p̄− q̄ = 0. (3.3)

Combining with (2.1), (2.2), and conditions of (NLP2), we obtain

xTτ(Ã)ȳ =

m∑
i=1

xiτ(Ãi)ȳ 6
m∑
i=1

xip̄ = p̄, (3.4)
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x̄Tτ(B̃)y =

n∑
j=1

yjτ(B̃
T
j )x̄ 6

n∑
j=1

yjq̄ = q̄, (3.5)

x̄Tτ(Ã)ȳ > σ̄1, (3.6)

x̄Tτ(B̃)ȳ > σ̄2. (3.7)

From (3.3), (3.6), and (3.7), we have

p̄+ q̄ = σ̄1 + σ̄2 6 x̄Tτ(Ã)ȳ+ x̄Tτ(B̃)ȳ.

That is,
p̄+ q̄− x̄Tτ(B̃)ȳ 6 x̄Tτ(Ã)ȳ.

In condition (3.4), let x = x̄, we have

p̄+ q̄− x̄Tτ(B̃)ȳ 6 x̄Tτ(Ã)ȳ 6 p̄.

Hence,
x̄Tτ(B̃)ȳ > q̄. (3.8)

In condition (3.5), let y = ȳ, we have

p̄+ q̄− x̄Tτ(Ã)ȳ 6 x̄Tτ(B̃)ȳ 6 q̄.

Thus,
x̄Tτ(Ã)ȳ > p̄. (3.9)

Combining with (3.4), (3.5), (3.8), and (3.9), we obtain

xTτ(Ã)ȳ 6 x̄Tτ(Ã)ȳ, ∀x ∈ Sm, x̄Tτ(B̃)y 6 x̄Tτ(B̃)ȳ, ∀y ∈ Sn.

By Definition 3.3, we get that (x̄, ȳ) is an equilibrium solution of (BGRVFP).

Necessity. Let (x̄, ȳ) be an equilibrium solution of (BGRVFP). Utilizing Definition 3.3, we can get

xTτ(Ã)ȳ 6 x̄Tτ(Ã)ȳ, ∀x ∈ Sm, x̄Tτ(B̃)y 6 x̄Tτ(B̃)ȳ, ∀y ∈ Sn.

Since p̄ = σ̄1 = x̄Tτ(Ã)ȳ, q̄ = σ̄2 = x̄Tτ(B̃)ȳ. Then,

σ̄1 + σ̄2 − p̄− q̄ = 0.

However, from (3.2), we get

0 = σ̄1 + σ̄2 − p̄− q̄ = max σ1 + σ2 − p− q.

Thus, (x̄, ȳ) is an optimal solution the problem (NLP2).

Corollary 3.7. The optimal solution of the following problems (P1) is equal to the optimal solution the problem
(NLP2).

Corollary 3.8. If τ(Ã) = −τ(B̃), the problem (NLP2) can become the following primal-dual pair of problems (LP1)
and (LD1).

max −p such that τ(Ãi)y 6 p, (i = 1, 2, . . . ,m), ∀y ∈ Sn, (LP1)

max −q such that − τ(ÃTj )x 6 q, (j = 1, 2, . . . ,n), ∀x ∈ Sm. (LD1)

Now, let −q = λ, then problems (LP1) and (LD1) can rewritten as

min p such that τ(Ãi)y 6 p, (i = 1, 2, . . . ,m), ∀y ∈ Sn, (LP2)

max λ such that τ(ÃTj )x > λ, (j = 1, 2, . . . ,n), ∀x ∈ Sm. (LD2)
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Theorem 3.9. For any a given game (BGRVFP) model, if the elements of Ã and B̃ are triangular fuzzy numbers,
then (x̄, ȳ) is an equilibrium solution of (BGRVFP) if and only if it is a optimal solution of the problem (NLP3).

max σ1 + σ2 − p− q

subject to
n∑
j=1

áij + 4aij + àij
6

yj 6 p, (i = 1, 2, . . . ,m),

m∑
i=1

b́ij + 4bij + b̀ij
6

xi 6 q, (j = 1, 2, . . . ,n),

m∑
i=1

n∑
j=1

áij + 4aij + àij
6

xiyj > σ1,

m∑
i=1

n∑
j=1

b́ij + 4bij + b̀ij
6

xiyj > σ2,

x ∈ Sm,y ∈ Sn.

(NLP3)

Proof. Since the elements of Ã and B̃ are triangular fuzzy numbers,

[ãij]
α = [(ãij)L(α), (ãij)R(α)] = [áij +α(aij − áij), àij −α(àij − aij)]

and

[b̃ij]
α = [(b̃ij)L(α), (b̃ij)R(α)] = [b́ij +α(bij − b́ij), b̀ij −α(b̀ij − bij)]

for i = 1, 2, . . . ,m; j = 1, 2, . . . ,n. By Definition 2.1, we can get

τ(ãij) =

∫ 1

0
α[(ãij)L(α) + (ãij)R(α)]dα =

∫ 1

0
α[áij +α(aij − áij) + àij −α(àij − aij)]dα =

áij + 4a+ àij
6

,

τ(b̃ij) =

∫ 1

0
α[(b̃ij)L(α) + (b̃ij)R(α)]dα =

∫ 1

0
α[b́ij +α(bij − b́ij) + b̀ij −α(b̀ij − bij)]dα =

b́ij + 4a+ b̀ij
6

.

By using Theorem 3.6, we have that (x̄, ȳ) is an equilibrium solution of (BGRVFP) if and only if it is a
optimal solution of the problem (NLP3).

4. Example

In order to illustrate the effectiveness and correctness of the obtained model, we now consider the
following fuzzy bi-matrix game (BGRVFP) model.

Example 4.1. For any a given game (BGRVFP) model, the fuzzy payoff matrices of the Player I and Player
II are taken as

Ã =

(
(1.80, 2.00, 2.20) (2.90, 3.00, 3.10) (7.75, 8.00, 8.20)
(7.75, 8.00, 8.10) (3.50, 4.00, 4.20) (0.90, 1.00, 1.20)

)
and

B̃ =

(
(4.80, 5.00, 5.50) (1.80, 2.00, 2.75) (4.80, 5.00, 5.50)
(5.75, 6.00, 6.40) (0.75, 1.00, 1.20) (3.50, 4.00, 4.50)

)
,

respectively.

We now solve this problem with the above model. By using (3.1), we get the following payoff matrices
of Player I and Player II ,

τ(Ã) =

(
2.00 3.00 7.99

7.975 3.95 1.02

)
and τ(B̃) =

(
5.05 2.09 5.05
6.025 0.99 4.00

)
,

respectively. Thus now utilizing conditions of (NLP3), we obtain the following problem (NLP4).
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max σ1 + σ2 − p− q

subject to 2.00y1 + 3.00y2 + 7.99y3 6 p,
7.975y1 + 3.95y2 + 1.02y3 6 p,
5.05x1 + 6.025x2 6 q,
2.09x1 + 0.99x2 6 q,
5.05x1 + 4.00x2 6 q,
2.00x1y1 + 7.975x2y1 + 3.00x1y2 + 3.95x2y2 + 7.99x1y3 + 1.02x2y3 > σ1,
5.05x1y1 + 6.025x2y1 + 2.09x1y2 + 0.99x2y2 + 5.05x1y3 + 4.00x2y3 > σ2,
x ∈ Sm,y ∈ Sn.

(NLP4)

We obtain that the optimal solution of the problem (NLP4) is ((x̄1 = 0.4, x̄2 = 0.6), (ȳ1 = 0.4, ȳ2 =
0.3, ȳ3 = 0.3)). By Theorem 3.9, we can get that ((x̄1 = 0.4, x̄2 = 0.6), (ȳ1 = 0.4, ȳ2 = 0.3, ȳ3 = 0.3)) is an
equilibrium solution of the above game (BGRVFP) model.

5. Conclusion

In this paper, we have presented the bi-matrix game model with crisp payoffs based on ranking value
function method. It is shown that the equilibrium solution of the game model can be translated into the
optimal solution of a non-linear programming problem. In recent years, more and more researchers have
studied the bi-matrix game model under the environment of intuitionistic fuzzy and entropy [5, 6, 13, 17,
18, 20, 21]. We believe that our research is cost-effective and it offers an understanding of the bi-matrix
game model. Further studies involving the game model of intuitionistic fuzzy (entropy) environment are
expected to be discussed.
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