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Abstract 
In the present paper, a fully implicit finite difference method is introduced for the numerical 

solution of the modified regularized long wave (MRLW) equation. The accuracy of the method is examined 

by different problems of the MRLW equation. The results and comparisons with analytical and other 

numerical invariants clearly show that results obtained using the fully implicit finite difference scheme are 

precise and reliable.       
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1.  Introduction 

The non-linear generalized regularized long wave (GRLW) equation has the form,  
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where u  is the wave amplitude,   and  are positive parameter and m  is a positive integer. Physical 

boundary conditions require 0u  as x . This equation is very important in physics since it 

describes phenomena with weak nonlinearity and dispersion waves including nonlinear transverse waves 

in shallow water, ion acoustic and magnetohydrodynamic waves in plasma, and phonon packets in 

nonlinear cyrstals. Their solutions are kinds of solitary waves called solitons whose shapes are not affected 

by collision. A special case of Eq. (1) for 1m  is the regularized long wave (RLW) equation derived for 

long waves propagating with dispersion processes, has the following form, 
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The equation was first obtained by Peregrine [1]. In this paper, we consider another special case of 

the generalized regularized long wave (GRLW) equation for ,2m  called the modified regularized long 

wave (MRLW) equation given by 
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In literature, many numerical methods have been proposed and implemented for approximating 

solution of the MRLW equation. Khalifa et al. [2] solved the MRLW equation by collocation method using 

cubic B-splines finite element. Adomian decomposition method is applied for the modified regularized long 

wave equation by Khalifa et al. [3]. The homotopy perturbation method is used to implement the equation 

by Achouri et al. [4]. Raslan developed a new algorithm based on the collocation method to solve the 

MRLW equation [5]. Collocation methods using sextic B-splines have been developed for solving 

numerically the modified regularized long wave equation by Hassan et al. [6]. Raslan et al. [7] used B-

spline finite element method to solve the equation. Dereli [8] solved the equation by using the meshless 

method based on collocation with well-known radial basis functions. Numerical scheme based on quartic 

B-spline collocation method is designed for the solution of MRLW equation by Haq et al. [9]. Dereli [10] 

used meshless kernel based method of lines by using radial basis functions for the modified regularized 

long wave equation. A homotopy analysis method employed to obtain approximate numerical solution of 

the equation by Khan et al. [11]. Karakoc et al. [12] solved the MRLW equation by a Petrov-Galerkin finite 

element method. Dag et al. [13] used a collocation method based on an extended cubic B-spline function 

for the numerical solution of the equation. 

On the other hand, the fully implicit finite difference schemes are high-accuracy schemes for the 

numerical solution of the nonlinear problems. Bahadır employed the fully implicit finite difference method 

to compute an approximation to the solution of 1D [14] and 2D [15] Burgers' equations. İnan and Bahadır 

used the method for solving numerically the equal width wave equation [17].  

In this paper, we develop a fully implicit finite difference scheme for solving the MRLW equation. 

To show efficiency and validity of the algorithm we apply this technique to several test examples and 

comparisons with the solutions obtained by other methods. 

This paper is organized in four sections. In Section 2, we introduce the fully implicit finite 

difference scheme for the MRLW equation. Numerical examples are given in Section 3. Section 4 contains 

some conclusions. 

 

2.  Fully implicit finite difference method for solving the MRLW equation 
 

The discretization is done by the finite differences with the implicit approach of solutions. Solution 

domain is discretized into cells described by the nodes set ),( ni tx  in which ),...,2,1,0(, Niihxi    and 

,...),2,1,0(,  nnktn   h   is the spatial mesh size and k  is the time step. 

 Eq. (3) can be written in the following form: 
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The derivatives of Eq. (4) can be approximated as 
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Putting these approximations in (4) we get 

 

 n

i

n

i

n

i

n

i

n

i

n

i UUUU
hk

UU
11

1

1

1

1

1

4

1















 

 

        3

1

3

1

31

1

31

1
12

n

i

n

i

n

i

n

i UUUU
h









 


 

 

                                       022 11

1

1

11

12
 









n

i

n

i

n

i

n

i

n

i

n

i UUUUUU
kh


                                    (5) 

which is valid for values of i  lying in the interval 11  Ni . Where  
n

iU   denotes the finite difference 

approximation at the grid point  ni tx ,  to the exact solution ),( txu . Eq. (5) is a system of nonlinear 

difference equations. Let us consider this nonlinear system of equations in the form 

 

                                                                           0VF )(                                                                      (6) 

where  TNfff 121  ,, ,  F   and    .,,, 1
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 V   Newton's method applied to Eq. (6) 

results in the following iteration: 

1. Set  
)0(

V  ,  an initial guess. 

2. For  ,2,1,0m    until convergence do: 

      Solve  );()( )()()( mmm FJ VV    

Set   
)()()1( mmm 

VV   where )( )(mJ V  is the Jacobian matrix which is evaluated analytically. The 

solution at the previous time-step is taken as the initial estimate. The Newton's iteration at each time-step 

is stopped when .10)( 5)( 


m

VF The convergence is generally obtained in two or three iterations. 

 

3. Test Problems and Discussion 
 

In this section, some test problems have been considered to illustrate the performance of the method 

described in previous section. 

The accuracy of the method is measured by using the  2L   and  L   norms defined by 
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Where u  and U  represent the exact and approximate solutions, respectively. We also examined our results 

by calculating the following three conserved quantities corresponding to mass, momentum and energy [16], 

respectively [10]. 
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To give a clear overview of the methodology the following examples will be discussed. 

 

3.1. Motion of single solitary wave 

We first model the motion of a single solitary wave of the MRLW equation. The solitary wave 

analytical solution of the MRLW equation (3) is 

 

                                         ))1((sech),(  xtcxpAtxu                                                                (9) 

 

where  ccp  1/ . This solution corresponds to a solitary wave of amplitude /6cA   and 

initially centered on the peak position
x . The initial and boundary conditions are set to:   

Axu )0,(  sech ))((  xxp   and  0u   as  x  , respectively. 

The analytical values of conservation quantities can be found as [2] 
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To allow comparison with the previous method parameters are taken as 1  and 6 . In the first case, 

we choose the parameters 1c , 2.0h , 025.0k and 40x  over the solution domain  1000  x

. The analytical values for the invariants are 442883.41 I , 299832.32 I and  414214.13 I . The 

numerical solutions and 2L  and L error norms are found for these parameters are presented in Table 1. 

The growths of the invariants 1I , 2I  and 3I  from their initial values to  10t  are less than 
13105  , 
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6101    and 
5101  , respectively. The comparisons of numerical invariants with some previous results 

and analytical values of the invariants at  10t   for these parameters are given in Table 2. Figure 1 

illustrates the motion of a single solitary wave for this case at different times. It is observed from Figure 1 

that the single solitary wave moved to the right with constant amplitude and shape as time increases. 

 

Table 1. Invariants and error norms for single solitary wave with 1c . 

𝑡 𝐼1 𝐼2 𝐼3 𝐿2 𝐿∞ 

0 4.442883 3.299777 1.414268   

1 4.442883 3.299795 1.414236 0.0064435 0.0048730 

2 4.442883 3.299811 1.414206 0.0116747 0.0076591 

3 4.442883 3.299816 1.414188 0.0158906 0.0158906 

4 4.442883 3.299817 1.414176 0.0195888 0.0114470 

5 4.442883 3.299815 1.414167 0.0230392 0.0131584 

6 4.442883 3.299812 1.414160 0.0263702 0.0148681 

7 4.442883 3.299809 1.414153 0.0296452 0.0165691 

8 4.442883 3.299805 1.414147 0.0328959 0.0182659 

9 4.442883 3.299800 1.414142 0.0361388 0.0199612 

10 4.442883 3.299796 1.414136 0.0393822 0.0216564 

 

 

Table 2. The comparisons of results for single solitary wave at 10t . 

Method 𝐼1 𝐼2 𝐼3 

Analytical 4.442883 3.299832 1.414214 

Present 4.442883 3.299796 1.414136 

Khalifa et al. [2] 4.44288 3.29983 1.41420 

Raslan [5] ( 1.0h , 025.0k ) 4.445176 3.302476 1.417411 

Dereli [8] G 4.44280 3.29957 1.41395 

Karakoc et al. [12] 4.4431758 3.3003023 1.4146927 

 

 
 

Figure 1: Single solitary wave of the equation with 1c . 
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In the second case, the parameters are chosen 05.0c ,  ,40x   with space step 1.0h , time 

step  1.0k  and with range  80 ,0 . The analytical values of the invariants are 219174.31 I ,

465532.02 I  and 008001.03 I . Invariants and error norms for a single solitary wave are presented in 

Table 3. It is observed that from Table 3, error norms are satisfactorily small. The growths in 1I , 2I   and 

3I  from their initial values are 
5104  , 

9106   and 
8101  , respectively. These values indicate that our 

scheme provides high accuracy. 

 

 

 

 

 

 

 

 

 

 

   

  

             

 

 

 

3.2. Interaction of two solitary waves 

Secondly, the interaction process of two solitary waves traveling in the same direction is studied 

by using the initial condition 

 

                                      ))((sech))((sech)0,( 222111

  xxpAxxpAxu                                       (11) 

 

 where ,/6 jj cA   𝑝𝑗 = √𝑐𝑗/𝜇(1 + 𝑐𝑗) , 2,1j   and the boundary conditions are 0u  as  

.x   To allow comparison with the previous method parameters are taken as 1  and 6 . 

The analytical values of the invariant quantities are [2] 
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Table 3. Invariants and error norms for single solitary wave with 05.0c . 

𝑡 𝐼1 𝐼2 𝐼3 𝐿2 𝐿∞ 

0 3.218504 0.465532 0.008001   

0.2 3.218503 0.465532 0.008001 0.000005 0.000002 

0.4 3.218501 0.465532 0.008001 0.000009 0.000004 

0.6 3.218499 0.465532 0.008001 0.000015 0.000007 

0.8 3.218494 0.465532 0.008001 0.000019 0.000010 

1.0 3.218489 0.465532 0.008001 0.000024 0.000013 

1.2 3.218483 0.465532 0.008001 0.000029 0.000016 

1.4 3.218475 0.465532 0.008001 0.000034 0.000019 

1.6 3.218466 0.465532 0.008001 0.000039 0.000022 

1.8 3.218456 0.465532 0.008001 0.000047 0.000026 

2.0 3.218444 0.465532 0.008001 0.000049 0.000029 
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Firstly, the parameters are taken as 41 c , 12 c , 251 
x , 552 

x , 1.0h  and  025.0k   

over the solution domain 2500  x , then the amplitudes are in ratio 2:1, where 21 2AA  .  The results 

are tabulated in Table 4. The analytical values of the invariants are 467698.111 I , 629243.142 I  and 

880466.223 I  and the growth of invariants 1I , 2I  and 3I  are 
7101  , 025137.0  and 113372.0 , 

respectively. Comparisons of the invariants for this case are documented in Table 5. Figure 2 shows the 

interaction of two solitary waves for these parameters at different time levels. It can be seen from Figure 2 

that the larger solitary wave has passed the smaller solitary wave as time increases. Then, two solitary 

waves regain their original shape after the interaction. 

 

Table 4. Invariants for interaction of two solitary waves. 

𝑡 𝐼1 𝐼2 𝐼3 

0 11.467698 14.629194 22.880514 

1 11.467698 14.626621 22.870153 

2 11.467698 14.624007 22.859699 

3 11.467698 14.621398 22.849280 

4 11.467698 14.618792 22.838876 

5 11.467698 14.616187 22.828464 

6 11.467698 14.613584 22.818009 

7 11.467698 14.610848 22.806149 

8 11.467698 14.607107 22.784129 

9 11.467698 14.598231 22.715753 

10 11.467698 14.604057 22.767142 

 

 

 

 

 

 

Table 5. The comparisons of results for interaction of two solitary waves at 10t . 

Method 𝐼1 𝐼2 𝐼3 

Analytical 11.467698 14.629243 22.880466 

Present 11.467698 14.604057 22.767142 

Raslan et al. [7] ( 2.0h , 025.0k ) 11.460050 14.608160 22.842790 

Haq et al. [9] ( 2.0h , 025.0k ) 11.467700 14.603687 22.771773 
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Figure 2: Interaction of two solitary waves at selected times. 

 

Secondly, we chose 11 c , 5.02 c , 101 
x , 402 

x , 2.0h  and 05.0k  over the 

solution domain .1000  x  Invariants for interaction of two solitary waves are given in Table 6. The 

analytical values of the invariants are 29053243.81 I , 22433254.52 I  and 79911374.13 I . The 

growths of invariants 1I ,  2I   and 3I   are  
3101  ,  

5106    and 
5108  , respectively. 

 

Table 6. Invariants for interaction of two solitary waves. 

𝑡 𝐼1 𝐼2 𝐼3 

0 8.287956 5.224284 1.799162 

2 8.292722 5.224238 1.799022 

4 8.294685 5.224171 1.798906 

6 8.296623 5.224095 1.798812 

8 8.298449 5.224015 1.798727 

10 8.299991 5.223934 1.798644 

12 8.301186 5.223852 1.798562 

14 8.302087 5.223768 1.798483 

16 8.302801 5.223699 1.798376 

18 8.303417 5.223601 1.798331 

20 8.303961 5.223505 1.798281 

 

 

3.3. Interaction of three solitary waves 

Thirdly, the interaction process of three solitary waves traveling in the same direction is studied by 

using the initial condition 
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 where ,/6 jj cA   𝑝𝑗 = √𝑐𝑗/𝜇(1 + 𝑐𝑗) , 3,2,1j  and the boundary conditions are 0u  as  

x .  To allow comparison with the previous method parameters are taken as 1  and 6 . The 

analytical values of the invariant quantities are [2] 
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In this case, following parameters are used: 41 c , 12 c , 25.03 c , 151 
x , 452 

x ,

603 
x , 2.0h  and 025.0k  over the solution domain 2500  x . Thus the amplitudes are in the 

ratio 4:2:1 where .42 321 AAA   The analytical values of invariants for the interaction of three waves are 

980105.141 I , 821812.152 I  and 992270.223 I . Numerical values of the invariants are obtained 

by fully implicit finite difference method are recorded in Table 7. The growths in 1I , 2I   and 3I  are 

5104  , 014989.0  and 146276.0 , respectively. The comparison of invariants for these parameters are 

given in Table 8. Figure 3 presents interaction of these solitary waves to .25t   Figure 3 shows that the 

largest solitary wave has passed the smallest solitary wave as time increases.                               

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Invariants for interaction of three solitary waves. 

𝑡 𝐼1 𝐼2 𝐼3 

0 14.980098 15.836732 23.008932 

1 14.980112 15.834559 22.997699 

2 14.980115 15.832109 22.987443 

3 14.980119 15.829650 22.977288 

4 14.980122 15.827206 22.967134 

5 14.980126 15.824793 22.956927 

6 14.980129 15.822343 22.946991 

7 14.980133 15.820419 22.934121 

8 14.980136 15.819951 22.908805 

9 14.980139 15.820619 22.832402 

10 14.980141 15.821743 22.862656 
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Table 8. The comparisons of results for interaction of three solitary waves 10t . 

Method 𝐼1 𝐼2 𝐼3 

Analytical 14.980105 15.821812 22.992269 

Present 14.980141 15.821743 22.862656 

Khalifa et al. [2] 13.6891 15.6514 22.8388 

Raslan et al. [7]  14.930390 15.822500 22.964190 

Dereli [8] G  ( 5.0h , 01.0k ) 14.9794 15.8049 22.8703 

 

 
Figure 3:  Interaction of three solitary waves at selected times. 

 

 

3.4. The Maxwellian initial condition 

Finally, we use the initial condition 

 

                                                          ))7(exp()0,( 2 xxu                                                               (15) 

and the boundary conditions are 0u  as x  to analyse the evolution of an Maxwellian pulse into 

solitary waves. 

In this test, we study for values of 1.0 , 04.0 , 015.0 , 01.0  and 6   through 

the interval 1000  x . 

Table 9 gives the invariants obtained from the present method for 1.0h , 001.0k . The growth 

of 1I , 2I , 3I  are given in Table 10. Figure 4 shows wave profiles for the Maxwellian initial condition at  

15t  for 1000  x . This figure contains figures for 1.0 , 04.0 , 015.0  and 01.0 ,  

respectively. As can be seen from Figure 4,   is reduced more and more solitary waves are formed, as 

expected.  
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Table 10. The growth of invariants for the Maxwellian initial condition. 
  𝐼1 𝐼2 𝐼3 

0.1 1×10⁻¹⁶ 2×10⁻⁵ 2×10⁻⁵ 
0.04 2×10⁻¹⁵ 5×10⁻⁵ 5×10⁻⁵ 
0.015 1×10⁻¹⁵ 1×10⁻⁵ 1×10⁻⁵ 
0.01 1×10⁻¹⁵ 1×10⁻⁴ 1×10⁻⁴ 

 

 
Figure 4: Maxwellian initial condition for 𝑘 = 0.025, ℎ = 0.2 at 𝑡 = 15. 

 

4. Conclusion 

 
In this paper, a fully implicit finite difference method has been successfully applied to finding the 

solution of the MRLW equation. Numerical tests for single solitary wave, interaction of two solitary waves, 

interaction of three solitary waves and Maxwellian initial condition are considered by the fully implicit 

finite difference method. The numerical results demonstrate that the present method is quite accurate and 

readily implemented in the solution of the MRLW equation. 
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Table 9. Invariants for the Maxwellian initial condition. 

t   𝐼1 𝐼2 𝐼3   𝐼1 𝐼2 𝐼3 

0.01 0.1 1.772454 1.378632 0.760909 0.015 1.772454 1.272108 0.867433 

0.03 1.772454 1.378623 0.760918 1.772454 1.272078 0.867463 

0.05 1.772454 1.378606 0.760936 1.772454 1.272015 0.867526 

     

0.01 0.04 1.772454 1.303440 0.836102 0.01 1.772454 1.265842 0.873699 

0.03 1.772454 1.303420 0.836121 1.772454 1.265808 0.873734 

0.05 1.772454 1.303382 0.836159 1.772454 1.265737 0.873805 
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